Lecture 4

Statistical Inference. Inference for
one population mean and one
population proportion



6.1. Uncertainty and confidence

Although the sample mean,x , is a unique number for any particular
sample, if you pick a different sample you will probably get a different

sample mean.

In fact, you could get many different values for the sample mean, and
virtually none of them would actually equal the true population mean, ..
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But the sample distribution is narrower than the population distribution,

by a factor of \n.
Sample means, X
n subjects
Thus, the estimates X
. =y
gained from our samples e G/ : /n
are always relatively Population, X
individual subjects

close to the population b

parameter p.

If the population is normally distributed N(u,0),
so will the sampling distribution N(u,o/\n),



Density curve of X

95% of all sample means will
be within roughly 2 standard
deviations (2*o/\n) of the
population parameter L.

Because distances are

symmetrical, this implies that

the population parameter u

must be within roughly 2

standard deviations from

the sample average X, in

95% of all samples.

Red dot: mean value
. _ . o _ of individual sample
This reasoning is the essence of statistical inference.



The weight of single eggs of the brown variety is normally distributed N(65 g,5 g).
Think of a carton of 12 brown eggs as an SRS of size 12.
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- Normal (mean w4, standard deviation o/\n) = N(65 g,1.44 g).

Find the middle 95% of the sample means distribution.
Roughly + 2 standard deviations from the mean, or 65g + 2.88g.

X

population sample

You buy a carton of 12 white eggs instead. The box weighs 770 g. The
average egg weight from that SRS is thus X = 64.2 g.

Knowing that the standard deviation of egg weight is 5 g, what can you
infer about the mean u of the white egg population?

There is a 95% chance that the population mean y is roughly within
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[ .
Confidence interval

The confidence interval is a range of values with an associated
probability or confidence level C. The probability quantifies the chance

that the interval contains the true population parameter.

X+42=272+42

. 0
Population o N=2
95% of these

=7 M‘* X:U.2=268+4.2 > intervals capture
the unknown p
F= 60
SRS n-240 ¥el2=273+42

X + 4.2 is a 95% confidence interval for the population parameter .

This equation says that in 95% of the cases, the actual value of « will be
within 4.2 units of the value of x.



Implications

[t

We don'’t need to take a lot of Oy szt 7 |l

1 " SRS ofsizenwn.  _
—_— X

random samples to “rebuild” the =

50

sampling distribution and find u
at its center. B

Mean odor threshold for 10 subjects

Means x of n subjects

Sample — All we need is one SRS of
“‘_’*{M__ “ size n and relying on the
Population Observations on 1 subject properties of the sample
\ N means distribution to infer

the population mean L.
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Reworded

Density curve of X

With 95% confidence, we can say

that u should be within roughly 2

standard deviations (2*o/Vn) from — ——

our sample mean x bar. |

v
v
v,
v -

o In 95% of all possible samples of

this size n, y will indeed fall in our

confidence interval.

o In only 5% of samples would X be

farther from p.




A confidence interval can be expressed as:

o Meanxtm o Two endpoints of an interval
m is called the margin of error u within (X - m) to ( X+ m)
pwithin X+ m ex. 114 to 126

Example: 120 £ 6

A confidence level C (in %) — e e
indicates the probability that the

u falls within the interval.

It represents the area under the 1-C
Probability = =5~

Probability = ¢ Probability - ‘T

normal curve within £ m of the

center of the curve.

A
v



Varying confidence levels

Confidence intervals contain the population mean xin C% of samples.

Different areas under the curve give different confidence levels C.

Practical use of z: z*

o Z¥ is related to the chosen
confidence level C.

o C is the area under the standard
normal curve between -z* and z*.

The confidence interval is thus:

)_CiZ*G/\/;

Slanglard
normal curve

C

Probability = 0.8

Probability = 6.1 Probabiity = .1

/

— Z*' 1.28 Z* = 1,28

Example: For an 80% confidence
level C, 80% of the normal curve’s
area is contained in the interval.



B
How do we find specific z* values?

We can use a table of z/f values (Table C). For a particular confidence

level, C, the appropriate z* value is just above it.

z ¢ 0674 0241 103 1282 1R43 1980 208 | 2326| 2376 2BOT A04] LY.

................. 5|:r'lt,|j|:r'lt,j-'[r'lt,3[r'lt, 'j[r'lt, . '35"1;:, ; ':u_."lt, . 'jE,"lp:, . 'jltr'lt, 'an."',:,'an"',:,'jn"r".:,

Confidence level C

Example: For a 98% confidence level, z*=2.326

We can use software. In R:

gnorm(probability,mean,standard_dev)
gives z quantile for a given probability.

Since we want the middle C probability, the probability we need to input is (1 - C)/2

Example: For a 98% confidence level, gnorm(0.01,0,1) = -2.326348 (= neg. z¥)
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Link between confidence level and margin of error

The confidence level C determines the value of z* (in table C).

The margin of error also depends on z*.

mzz*c)'/\/;

Higher confidence C implies a larger
margin of error m (thus less precision

in our estimates).

A lower confidence level C produces a

smaller margin of error m (thus better L ——(

precision in our estimates).



Different confidence intervals for the same
set of measurements

Density of bacteria in solution:

Measurement equipment has standard deviation
o=1 * 10° bacteria/ml fluid.

Three measurements: 24, 29, and 31 * 10° bacteria/ml fluid

Mean: x = 28 * 10° bacteria/ml. Find the 96% and 70% CI.

96% confidence interval for the 70% confidence interval for the
true density, z* = 2.054, and write true density, z* = 1.036, and write
_ O _ O
X+ z*—=28+2054(113) X+ z*—=28+1.036(1/3)

Jn Jn
=28 +1.19 x 106 =28 +0.60 x 106
bacteria/ml bacteria/ml

r 0674 0841 1036 1282 1645 1960 2064 2326 2576 ZBOT 3041 3,291
P el TR &% G0 90% GOE%  O9B% O0%  005% D08k 905%

Confldence level C



Impact of sample size

The spread in the sampling distribution of the mean is a function of the
number of individuals per sample.

The larger the sample size, the smaller
the standard deviation (spread) of the
sample mean distribution.

But the spread only decreases at a rate
equal to Vn.

‘Standard error q/\/n |

Sample size n




B
Sample size and experimental design

You may need a certain margin of error (e.g., drug trial, manufacturing
specs). In many cases, the population variability (o) is fixed, but we can

choose the number of measurements (n).

So plan ahead what sample size to use to achieve that margin of error.

2
o z* o

m=z%*— < =
An m

Remember, though, that sample size is not always stretchable at will. There are
typically costs and constraints associated with large samples. The best

approach is to use the smallest sample size that can give you useful results.
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What sample size for a given margin of error?

Density of bacteria in solution:

Measurement equipment has standard deviation
o =1 * 106 bacteria/ml fluid.

How many measurements should you make to obtain a margin of error
of at most 0.5 * 106 bacteria/ml with a confidence level of 90%?

For a 90% confidence interval, z* = 1.645.

%~ \? %1\ 2
n:(Z Uj — n:(wj —3.29% =10.8241

m 0.5

Using only 10 measurements will not be enough to ensure that m is no

more than 0.5 * 106. Therefore, we need at least 11 measurements.

z 0.674 IIIE--!J J.IIIE 1.282 J.E--ﬁ l.9en 2054 236 2576 E.EIIIT A.0a] 3,241
j 5["'.55 I_-I:l'"n:- T"I:l".'E- 8% 'ZID"% ':IS"R:- ':I""n:- ':IE-".'E- 0% 00.5% _I'?IE."' _I'TI"I'"cu
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Cautions:

Data: a SRS
Formulas for other randomized designs available
Haphazard data = unreliable conf. int.

O O O O

Population need not be normal (our Example 1 wasn’t) but outliers
pose a threat to validity of conclusions.

o We need to know o the population variability. We will recall how to
deal with the usually unknown ¢ later in this lecture.



Section 6.2: Tests of Significance

The scheme of reasoning

Stating hypotheses

Test statistics

P-values

Statistical significance

Test for population mean

Two-sided test and confidence intervals



We have seen that the properties of the sampling distribution of x bar help us
estimate a range of likely values for population mean .

We can also rely on the properties of the sample distribution to test
hypotheses.

Example: You are in charge of quality control in your food company. You
sample randomly four packs of cherry tomatoes, each labeled 1/2 |b. (227 g).

The average weight from your four boxes is 222 g. Obviously, we cannot
expect boxes filled with whole tomatoes to all weigh exactly half a pound.
Thus,

o Is the somewhat smaller weight simply due to chance variation?

o Is it evidence that the calibrating machine that sorts
cherry tomatoes into packs needs revision?




Null and alternative hypotheses

A test of statistical significance tests a specific hypothesis using

sample data to decide on the validity of the hypothesis.

In statistics, a hypothesis is an assumption or a theory about the

characteristics of one or more variables in one or more populations.

What you want to know: Does the calibrating machine that sorts cherry
tomatoes into packs need revision?

The same question reframed statistically: Is the population mean u for the

distribution of weights of cherry tomato packages equal to 227 g (i.e., half
a pound)?




The null hypothesis is a very specific statement about a parameter of
the population(s). It is labeled H,,.

The alternative hypothesis is a more general statement about a

parameter of the population(s) that is exclusive of the null hypothesis. It
is labeled H..

Weight of cherry tomato packs:

H,: u =227 g (u is the average weight of the population of packs)

H,: u+227 g (uis either larger or smaller)




One-sided and two-sided tests

o A two-tail or two-sided test of the population mean has these null
and alternative hypotheses:

H,: p = [a specific number] H,: u# [a specific number]

o A one-tail or one-sided test of a population mean has these null and
alternative hypotheses:
H,: up = [aspecific number] H,: p<[a specific number] OR

H,: p = [a specific number] H,: p > [a specific number]

The FDA tests whether a generic drug has an absorption extent similar to
the known absorption extent of the brand-name drug it is copying. Higher or
lower absorption would both be problematic, thus we test:

HO : 'Ugeneric = 'Ubrand Ha : /Jgeneric ¢'Ubrand two-sided



I
How to choose?

What determines the choice of a one-sided versus a two-sided test is
what we know about the problem before we perform a test of statistical
significance.

A health advocacy group tests whether the mean nicotine content of a
brand of cigarettes is greater than the advertised value of 1.4 mg.

Here, the health advocacy group suspects that cigarette manufacturers sell
cigarettes with a nicotine content higher than what they advertise in order
to better addict consumers to their products and maintain revenues.

Thus, this is a one-sided test: H,:y=14mg H,:uy>1.4mg

It is important to make that choice before performing the test or else
you could make a choice of “convenience” or fall in circular logic.



The P-value

The packaging process has a known standard deviation o= 5 g.

Hy: u=227 gversus H,: u+227 g
The average weight from your four random boxes is 222 g.

What is the probability of drawing a random sample such as yours if H, is true?

Tests of statistical significance quantify the chance of obtaining a
particular random sample result if the null hypothesis were true. This

quantity is the P-value.

This is a way of assessing the “believability” of the null hypothesis given

the evidence provided by a random sample.



EE——
Interpreting a P-value

Could random variation alone account for the difference between
the null hypothesis and observations from a random sample?

o A small P-value implies that random variation because of the

sampling process alone is not likely to account for the observed
difference.

o With a small p-value we reject H,. The true property of the
population is significantly different from what was stated in H,,.

Thus, small P-values are strong evidence AGAINST H,.

But how small is small...?



P=0.2758

P =0.2758 P = 0.0735
\ Significant A\
P=01711 P-value =+~ P = 0.05
S \
P = 0.0892

Arpa = 0305|

\Q P =0.01

When the shaded area becomes very small, the probability of drawing such a
sample at random gets very slim. Oftentimes, a P-value of 0.05 or less is
considered significant: The phenomenon observed is unlikely to be entirely
due to chance event from the random sampling.




Tests tfor a population mean

To test the hypothesis H,: y = y, based on an SRS of size n from a

Normal population with unknown mean y and known standard deviation

g, we rely on the properties of the sampling distribution N(u, a\n).

The P-value is the area under the sampling distribution for values at
least as extreme, in the direction of H,, as that of our random sample.

Sampling

Again, we first calculate a z-value distribution

and then use Table A.

p value

X —
Z = H
0/ \/n _
X H
defined by H,




I
P-value in one-sided and two-sided tests

-
Hp: > po is A(Z> 2) /\,
z
One-sided <
(one-tailed) test
Il b2 fEis.NEL =2 _//\
\ Z
TWOSIOSd M £ o is 2PUZ > |2) /\

(two-tailed) test 2l

To calculate the P-value for a two-sided test, use the symmetry of the

normal curve. Find the P-value for a one-sided test, and double it.



Does the packaging machine need revision?
o Hy:u=227gversus H,: u#227g

o What is the probability of drawing a random sample such
as yours if H, is true?

—u 222-227

x=222¢g o=5g n=4 =-2
a/ Jn 5/Va
From table A, the area under the standard
normal curve to the left of z is 0.0228. Sampling
distribution

Thus, P-value = 2*0.0228 = 4.56%.
25¢

The probability of getting a random

sample average so different from 017 597 239 237

H is so low that we reject H,,.

=» The machine does need recalibration.



The significance level o

The significance level, a, is the largest P-value tolerated for rejecting a
true null hypothesis (how much evidence against H, we require). This

value is decided arbitrarily before conducting the test.

o If the P-value is equal to or less than a (P = a), then we reject H,,.

o If the P-value is greater than a (P > a), then we fail to reject H,,.

Does the packaging machine need revision?

Two-sided test. The P-value is 4.56%.

* If a had been set to 5%, then the P-value would be significant.

* If a had been set to 1%, then the P-value would not be significant.



When the z score falls within the

Significant
ato =0.05

Not significant

rejection region (shaded area on e

the tail-side), the p-value is
smaller than a and you have

shown statistical significance.

z=-1.645 \
One-sided
test, a =5%
5ignifi(al1t Not Signiﬁcant Slqnlﬁfant
ata=001 | ata =0.01 |ate =001
Two-sided
Area = 0,005 Area = 0.005 test, a=1%

Z -2.576 2.576



Rejection region for a two-tail test of 4 with o = 0.05 (5%)

A two-sided test means that a is spread
between both tails of the curve, thus:

-A middle area C of 1 — a =95%, and
-An upper tail area of a /2 = 0.025.

0.025

-1.96

Frofyabiity
=

Table C

upper tail progability[ﬁ).25 0.20 0.15 0.10 0.05

0.025

0 1.96 Z

0.02 0.01 0.0850.0025 0.001 0.000¢

y 4
y 4
v 4
v 4
v 4

(...)

z* 0.674 0.841 1.036 1.282 1.645
Confidence interval C50% 60% 70% 80% 90%

1.960

95%

054 2.326 2.576 2.807 3.091 3.291
96% 98% 99% 99.5% 99.8% 99.99
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Contfidence intervals to test hypotheses

Because a two-sided test is symmetrical, you can also use a
confidence interval to test a two-sided hypothesis.

— Standard
normal curve

In a two-sided test,

C=1-aqa.

: Probability = - Probability = ¢ Probability = 1-¢
C confidence level 2 >
a significance level

Packs of cherry tomatoes (0 =5 g): Hy: u =227 g versus H,_: u+# 227 g
Sample average 222 g. 95% Cl for y = 222 + 1.96*5/N4 =222 g+4.9g
227 g does not belong to the 95% CI (217.1 to 226.9 g). Thus, we reject H,,.



[ .
Logic of confidence interval test

Ex: Your sample gives a 99% confidence interval of x +m =0.84+0.0101.

With 99% confidence, could samples be from populations with y = 0.867? y = 0.857

Cannot reject

Hor =085 peject Hy: 1= 0.86
99%.C.I.
X
| |
0.83 0.8 0.85 0.6

A confidence interval gives a black and white answer: Reject or don't reject H,,.

But it also estimates a range of likely values for the true population mean p.

A P-value quantifies how strong the evidence is against the H,. But if you reject

H,, it doesn’t provide any information about the true population mean p.
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Section 6.3: Use and abuse of tests

O O O O 0O

Choosing the level of significance
Significance vs. practical significance
Lack of significance may be informative
Dangers of searching for significance
Assumptions about the data



Caution about significance tests

Choosing the significance level a

o a=0.05 is accepted standard, but...

o if the conclusion that H, is true has “costly” implications, smaller a may be
appropriate

e.g.,

o What are the consequences of rejecting the null hypothesis
(e.g., global warming, convicting a person for life with DNA evidence)?

o Are you conducting a preliminary study? If so, you may want a larger a so that
you will be less likely to miss an interesting result.

Some conventions:

o We typically use the standards of our field of work.

o There are no “sharp” cutoffs: e.g., 4.9% versus 5.1 %. Oftentimes, describing
the evidence using the P-value itself may be enough

o Itis the order of magnitude of the P-value that matters: “somewhat significant,”
“significant,” or “very significant.”



Practical significance

Statistical significance only says whether the effect observed is
likely to be due to chance alone because of random sampling.

Statistical significance may not be practically important. That's because
statistical significance doesn’t tell you about the magnitude of the
effect, only that there is one.

An effect could be too small to be relevant. And with a large enough
sample size, significance can be reached even for the tiniest effect.

o A drug to lower temperature is found to reproducibly lower patient
temperature by 0.4°Celsius (P-value < 0.01). But clinical benefits of
temperature reduction only appear for a 1° decrease or larger.



Interpreting lack of significance

o Consider this provocative title from the British Medical Journal: “Absence
of evidence is not evidence of absence”.

o Having no proof of whom committed a murder does not imply that the
murder was not committed.

Indeed, failing to find statistical significance in results means that
we do not reject the null hypothesis. This is very different from
actually accepting it. The sample size, for instance, could be too
small to overcome large variability in the population.

When comparing two populations, lack of significance does not imply
that the two samples come from the same population. They could
represent two very distinct populations with the similar mathematical
properties.
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Interpreting effect size: It’s all about context

There is no consensus on how big an effect has to be in order to be
considered meaningful. In some cases, effects that may appear to be
trivial can in reality be very important.

o Example: Improving the format of a computerized test reduces the average
response time by about 2 seconds. Although this effect is small, it is
important since this is done millions of times a year. The cumulative time
savings of using the better format is gigantic.

Always think about the context. Try to plot your results, and compare
them with a baseline or results from similar studies.



The power of a test

The power of a test of hypothesis with fixed significance level a is the
probability that the test will reject the null hypothesis when the
alternative is true.

In other words, power is the probability that the data gathered in an
experiment will be sufficient to reject a wrong null hypothesis.

Knowing the power of your test is important:

o When designing your experiment: to select a sample size large enough to
detect an effect of a magnitude you think is meaningful.

o When a test found no significance: Check that your test would have had
enough power to detect an effect of a magnitude you think is meaningful.
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Test of hypothesis at significance level a 5%:
Hy: u=0versus H,: y>0

Can an exercise program increase bone density? From previous studies, we
assume that o = 2 for the percent change in bone density and would consider a
percent increase of 1 medically important.

Is 25 subjects a large enough sample for this project?

A significance level of 5% implies a lower tail of 95% and z = 1.645. Thus:

z=(x-w/(c/Vn) Pl /\
¥=prz¥olin) R0 —

% =0+1.645%(2/+/25)

¥ =0.658

» Reject Hy,

1
0.658

All sample averages larger than 0.658 will result in rejecting the null hypothesis.



What if the null hypothesis is wrong and the true population mean is 1?

The power against the alternative = P(x >20.658 when u=1)
U = 1% is the probability that H, will | X—u S 0.658-1
be rejected when in fact y = 1%. G/\/z - 2/V 25

= P(z >—0.855)=0.80

Fail to

reject Hy * i * Reject H
We expect that a ]
_ Distribution
sample size of 25 of xwhen u =1

would yield a Power = 0.80

power of 80%.

-2 -1 0 1 2 3
0.658

A test power of 80% or more is considered good statistical practice.
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Factors affecting power: Size of the effect

The size of the effect is an important factor in determining power.
Larger effects are easier to detect.

More conservative significance levels (lower a) yield lower power.
Thus, using an a of .01 will result in lower power than using an a of .05.

Increasing the sample size decreases the spread of the sampling
distribution and therefore increases power. But there is a tradeoff
between gain in power and the time and cost of testing a larger sample.

A larger variance o? implies a larger spread of the sampling distribution,
o/sqrt(N). Thus, the larger the variance, the lower the power. The
variance is in part a property of the population, but it is possible to
reduce it to some extent by carefully designing your study.



. I, -
*\:Zl - LV> - @ |_| @ ||_| it Adviize. cou. edu/powerpowerapplet] . il

WISE Power Applet

H:u=0

o.oo
13,60
13,60
10.000
1.360
0.050

0000

1.000

|

Sample

T

T T T T T
HodgoMd

ol
0.039 | Atemative Population i — —— o. 10
ID.SQS I ' Hull F‘olpulal'tion ' I I ii j‘h o l% : _ n = 300
0.359 Fans [woss | | |e —
03149 : i IW " _: a 5 A)
0279 | = W e .
| o= I Fr = —_
" red. area s [ H} 1. Real yis 3 =>power =.5
0158 IS ,8 B lslT 3 .
B b 2. Real pis 5.4 =>power =.905
AT Thearetical dmiple —
Sampling
3. Real yis 13.5 => power =1
I -3n|.n -2|;.n -1c||.n 0 | ml.n znl.n snl.n I
0.0349 Atemative Population Ho = IF F 1 F |
T T T s T T T Hi = |5-4D :
e Hull Population B i IT
I E F .
| S = larger differences
0,314 | d= W Fn -:r H
| oe  PEm |3 are easier to detect
o | =t'|
: £
0.159 | this IW :
e | Power =
Theoretical Fample | _
0w sampling . e
003 Distrbtions 0.074a | emative Population Ho =
f T T ) T T T I I I Hull Folpulation I I T |
-30.0 -20.0 100 0o 0D 0.0 30.0 0208 M - =
— | 0.359 : s
0219 | 3
0.37 | s
0239 : :
0.198 | e
0.159 | ke
0118 | Power =
Thearstical I
B Sampling |
http://wise.cqu.edu/power/power _applet.html | | o=t
I -3|;.n -zé.n -ml.n LR ml.n 2nl.n 3nl.n I



http://wise.cgu.edu/power/power_applet.html

# P, = R
<\;:| - LVJ - @ 2o @ ||_| http: /e, cou. edud power/powerapplet] . html

WISE Power Applet

H :

(o]

=0
10

0.059 | Atemative Papulation o = .00 1 F 1 a
B — i m= pa Realy=5.4
e Mull Population - e IT ] u
0.359 : o= |1D-UUD b P d - 5(%)
0319 I d = [o:540 n| v
0.279 | we [ooso— | | fe 1 — 1 O => — 52 5
0239 : 4o . r . N= - pOWGF - .
0.193 | s Im— 3
0.158 | - [ 2 = 30 = = 905
RS | Fower = 1% . B n - => power —
. Theoretical Sample | —
0.079 :
Sampling
3. n=80 =>power =.999
I T T T T T T
=300 =200 -10.0 0.0 | 0.0 0.0 0.0
0.0349 Atemative Population Ho = .00 F 1 F |
T T T s T T T Hi = |5-4D E E
e Hull Population B i IT
| E o
0.359 = 100,000
| o | fe => | | i
| - B arger sample sizes
0279 | =% 0.050 e :
| i I—I e yield greater power
| F= : 8
0.149 | s ISD— 3
0.189 | - I—
e | Power = L P
DlD?Q Thearetical Sample I T
n.ggg Sampling 0039 | Mtemative Population o = o0 —
: Distributions o
p o= |5.4EI
T T T T T T T I I I Hull F‘c-lpulation I I ' F
00 00 00 00| 0D W00 300 LEE | - =[50 E
0,354 = 10.000
| o I LP
0319 | d.= Ig.54|3 _:_
0.279 | e [ooso Le
0239 : . [oooi _r
0.199 | ISD— g
0.159 | i W
0118 | Power = = P
DlD?Q Theorstical Fample | _
' Sampling
0038 | pistributions
I T T T T T T
=300 -20.0 -10.0 o.o | 0.0 20.0 0.0




s P, - .
‘\\;:l - Ll«” - @ (%) @ ||_| http: / wize. cou. edu/powerpowerapplet] bt

WISE Power Applet

H,: u

0

0026 | HAtemative Population o = 000 F1 F Real ” — 5.4
= |5.4D
I I I Mull Folpulation I I e E E n - 30
0.285 | e N A
| e [ ||l a=5%
0212 : 5 EET
0,136 |n.nsn e .
o = - - — —
| S o P 1. ois 5 =>power = .628
& Sy |
i 0638 b - —_
pover - | 2. 0is 10 => power = .905
Theoretical Sample | —
0053 )
Sampling .
3. 0is 15 =>power = 1
I -4;.0 -snl.n -15|.n LI 15|.n 3nl.n 4<sl.n I
0039 Atemative Population o = .00 F 1 F |
T T T L T T T T | 1 = |5-‘“J 3 3
0208 Hull F‘opulaltlon - IT ] -
0.350 e [oooe | | fp . g
| e B Ll => smaller variability
079 | = |n.nﬁn e :
| - | e yields greater power
| % |n.|:|95 b
0.194a | .- I?'D— 3
0.150 | - I—
0 11a | pPower = 1" P
) Theoretical Sample | e
e Sampling Atemative Population F1 F
0079 = |
D03 | Distibasions | Fo 0.00 ELE
. . . : T T T T I I I Hull Polpulatic-n I ' ML e o F
-0 300 -10.0 0o 100 0.0 0 TR -y = |5.4D ELE
0718 : e [sooo | 'E
0638 | 4.2 [foso e
0563 | 2 IW - Le
I
0478 : s |—n.nnn q
0398 | . ISD— g
0319 | =
038 | POWEL = I"DDD P
. Thearstical | Sample | e
0,159 } |
Sampling
0073 | Distributions
T T T T T T T T
150 100 5.0 0o 6D 10.0 150




Type I and 1I errors

o A Type | error is made when we reject the null hypothesis and the

null hypothesis is actually true (incorrectly reject a true H,).

The probability of making a Type | error is the significance level o

o A Type Il error is made when we fail to reject the null hypothesis

and the null hypothesis is false (incorrectly keep a false H,).

The probability of making a Type Il error is labeled g.

The power of atestis 1 - S.



Running a test of significance is a balancing act between the chance a
of making a Type | error and the chance S of making a Type Il error.

Reducing a reduces the power of a test and thus increases f.

Reject H,

Accept H,

It might be tempting to emphasize greater power (the more the better).
o However, with “too much power” trivial effects become highly significant.

o A type Il error is not definitive since a failure to reject the null hypothesis

H, true H, true
Correct
Type | error decision
Correct
.. Type Il error
decision yp

does not imply that the null hypothesis is wrong.
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Section 7.1

Inference for the mean of a population

Change: Population s.d. sigma unknown.
o The tdistribution

o One-sample t confidence interval
o One-sample ¢ test

o Matched pairs t procedures

o Robustness of t procedures



I
Sweetening colas

Cola manufacturers want to test how much the sweetness of a new
cola drink is affected by storage. The sweetness loss due to storage
was evaluated by 10 professional tasters (by comparing the sweetness
before and after storage):

Taster Sweetness loss
O 1 2.0
E g 8:‘71 Obviously, we want to test if
. 4 20 storage results in a loss of
O 5 -0.4 sweetness, thus:
o 6 2.2
. / -1.3 Hy: u=0versus H: u>0
O 8 1.2
O 9 1.1
o 10 2.3

This looks familiar. However, here we do not know the population parameter o.

= The population of all cola drinkers is too large.
= Since this is a new cola recipe, we have no population data.

This situation is very common with real data.



When ois unknown

The sample standard deviation s provides an estimate of the population
standard deviation o.

oWhen the sample size is large, oBut when the sample size is
the sample is likely to contain small, the sample contains only
elements representative of the a few individuals. Then sis a
whole population. Then sis a more mediocre estimate of o.
good estimate of o.

Population
distribution
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I
Standard deviation s — standard error s/ Vn

For a sample of size n,

the sample standard deviation s is: S = LZ (x. — )7)2
l

n — 1 is the “degrees of freedom.” n—l

The value s/\n is called the standard error of the sample mean or simply
standard error of the mean (SEM).

Scientists often present sample results as mean + SEM.

k. A study examined the effect of a new medication on the seated
{ systolic blood pressure. The results, presented as mean + SEM for
25 patients, are 113.5 £ 8.9.

| / What is the standard deviation s of the sample data?

SEM = s/N\n <=> s =SEM*Vn
s=8.9*25=445




The ¢distribution:

The goal is to estimate or test for unknown y in situation when o is also
unknown .

Solution: estimate o by s and use intelligently in formulas.

Challenge: the distribution of the test statistic will change and will no longer be
z-distribution.

Suppose that an SRS of size n is drawn from an N(u, o) population.
o When ois known, the sampling distribution is N(z, o/\n).

o When ois estimated from the sample standard deviation s, the sampling distribution

follows a t distribution #(z, s/\n) with degrees of freedom n - 1.

X —p
[ =——F is the one-sample t statistic.
S/ \Vn




When n is very large, s is a very good estimate of oand the
corresponding t distributions are very close to the normal distribution.

The t distributions become wider for smaller sample sizes, reflecting the
lack of precision in estimating o from s.

t distributions have more
area in the tails than the i,
standard Normal distribution /:

-= t,2 degrees of freedom

----- t, 9 degrees of freedom
standard Normal

=,
',
-----
........




EE————
Standardizing the data before using Table D

As with the normal distribution, the first step is to standardize the data.

Then we can use Table D to obtain the area under the curve.

XU
— —
S/’\/n
ANRNNANANN | |
57 59 6163 6567 6971 73 7 77 79 81 83 85 87 89 91 93 A m oh o
H X

Here, 11 is the mean (center) of the sampling distribution,
and the standard error of the mean s/An is its standard deviation (width).
You obtain s, the standard deviation of the sample, with your calculator.



Upper tail probability p

Table D

When O is unknown,
we use a t distribution
with “n-1” degrees of
freedom (df).

Table D shows the
z-values and t-values
corresponding to
landmark P-values/
confidence levels.

When o is known, we
use the normal
distribution and the
standardized z-value.

df 25 20 15 10 05 025 .02 01 005  .0025 001 .0005
1 1.000 1.376 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3 636.6
2 f 0816 1061 1386 1886 2920 4303 4849 6965 9.925 1409 2233 31&
3 F 0765 0978 1250 1638 2353 3182 3482 4541 5841 7453 1021  12.92
4 F 0741 0941 1190 1533 2132 2776 2999 3747 4604 5598 7.173 8610
5 F 0.727 0.920 1.156 1.476 2.015 Pl 2.757 3.365 4.032 4.773 5.893 6.869
6 F 0718 0906 1.134 1440 1943 2447 2612 3143 3707 4317 5208 5950
7F 0711 089 1119 1415 1895 2365 2517 2998 3499 4.029 4785 5408
8 F 0706 0889 1108 1397 1860 2306 2440 2896 3355 3.833 4501 5041
9F 0703 0883 1100 1383 1.833 2262 2398 2821 3250 3690 4297 4781

10 F 0700 0879 1093 1372 1812 2228 2359 2764 3169 3581 4144 4587
11 | 0697 0876 1088 1363 1796 2201 2328 2718 3106 3497 4025 4437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930 4.318
13 | 0694 0870 1.079 1.771 2.650 3372 3852 4221
14 | 0692 0868 1.076 3326 3787  4.140
15 F 0691 0866 1.074 3.286 3,733 4073
16 | 0690 0865 1071 3252 3686 4015
17 | 0689 0863 1.069 3222 3646 3965
18 | 0688 0862 1.067 3197 - 361F . 392
19 | 0688 0861 1.066 3.174 3579 3883
20 | 0687 0860 1.064 ST B0 2 RE
21 | 0686 0859 1.063 3135 3.527 3.819
22 } 0686 0858 1.061 3119 3505  3.792
23} 0685 0858 1.060 : . : ; 3104 3485  3.768
24 } 0685 0857 1059 1318 1711 2064 2172 2492 2797 3.091 3467  3.745
23 0.684  0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450 3.725
26 | 0684 0856 1058 1315 1706 2.056 2.162 2479 2779 3.067 3435 3.707
27 F 0684 "DB55 1057 1314 1703 - 2052 215852493 U201 - 3057 - a1 3660
28 | 0683 0855 1056 1313 1701 2.048 2154 2467 2763 3.047 3408 3674
20 | 0683 0854 1055 1311 1699 2045 2150 2462 2756 3.038 3396  3.659
30 | 0683 0854 1055 1310 1697 2042 2147 2457 2750 3030 3385 3.646
40 | 0681 0851 1050 1303 1684 2021 2123 2423 2704 2971 3307  3.55]
50 | 0679 0.849 1.047 1299 1676 2.009 2109 2403 2678 2937 3261 349
60 0.679 0.848 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195 3.416
100 | 0677 0.845 1.042 1290 1660 1984 2081 2364 2626 2871 3174 3.390
0673 0 842 1037 1 282 1. 646 1 050 2056 2330 25831 2 213 3 Qo2 3 300
I z* { 0674 0841 1.036 1282 1645 1.960 2054 2326 2576 2807 3001 3291
P 50% 95%  96%

60%

70%

98% :

Confidence level C

99.5%

99.8%

99.9%




Table A vs. Table D - ke s s e

D T P T R e T R R R R R A A Y T R A R R R

—34 © 0003 0003 000G 0003 0003 0003 0003 0003 0003 0002

Table A gives the area to the —33 © 0005 ODD5 0005 0004 0004 0004 0004 0004 0004 0003

~32 | 0007 0007 0006 0006 0006 0006 000G 0005 0005 0005

- —31 ¢ 0010 0000 0008 0009  OO0R L0008 0008 .0ODR 0007 0007

LEFT of hundreds of z-values. -30 © 0013 0013 0013 0012 0012 L0011 0011 0011 0010 0010
—20 © 0019 0018 0018 0017 0016 0016 0015 0015 0014 0014

—28 © 002 0025 0024 0023 0023 0022 0021 0021 0020 0010

—27 © 0035 0034 0033 0082 0031 L0030 0020 0028 0027 0026

It should only be used for 255 | qosr ooas ooar o043 ood1 ooa0 oos oose 007 oo

s . —25 © 0062 0DBO0 0050 0057 0055 .0054 0052 0051 0040 0048

Normal distributions. —24 : 00B2 00RO OOTE 0075 0072 0071 0060 .0OGR  .OOGE 0064

—23 © 0107 0104 0102 0009 0006 0004 0001 00D O0RT  .O0DR4
22 ¢ 0130 013 0132 0120 0125 0122 0119 0116 0113 0110

Table D gives the area
to the RIGHT of a

1 1000 1376 1063 3078 6314 1271 1580 3182 6366 1273 3183 6366
2 0816 1061 1386 1.886 2020 4303 4840 6065 0025 1400 2233 3160
3 0765 0578 1250 1638 2353 3182 3482 4541 5841 7453 10.21 202 dozen t or z-values.
4 i 0741 0041 1100 1533 2132 2776 2000 3747 4604 5508 T.IT 8610

5 | 0727 0820 1156 1476 2015 2571 2757 3365 4032 4773 5803 6.860

6 i D071 0006 1134 1440 1043 2447 2612 3143 3707 4317 5208 5050

7 0711 0896 1.119 1415 1895 2365 2517 2008 34090 4020 4785 5408 It can be used for

100 | 0677 0845 1042 1200 1660 1084 208l 2364 2626 2871 317 s300  tdistributions of a
1000 : 0675 0842 1037 1282 1646 1062 2056 2330 2581 2813 3008 3.300

* | 0674 0841 1036 1282 1.645 19680 2054 2326 2576 2.807 3001 3291 1
7 e —— ' S | given df, and for the

............ Normal dlstrlbutlon-

Confidence level C

Table D also gives the middle area under a t or normal distribution comprised
between the negative and positive value of t or z.



The one-sample #confidence interval

The level C confidence interval is an interval with probability C of
containing the true population parameter.

We have a data set from a population with both # and o unknown. We
use x to estimate 1, and s to estimate o, using a t distribution (df n—1).

Practical use of t : t*
oC is the area between —t* and t*.

oWe find t* in the line of Table D

for df = n—1 and confidence level
C.

olThe margin of error m is:

m:t*s/\/z




Red wine, in moderation

Drinking red wine in moderation may protect against heart attacks. The
polyphenols it contains act on blood cholesterol and thus are a likely cause.

To see if moderate red wine consumption increases the average blood level of
polyphenols, a group of nine randomly selected healthy men were assigned to
drink half a bottle of red wine daily for two weeks. Their blood polyphenol levels

were assessed before and after the study, and the percent change is presented
here: 0.7 35 4 49 55 7 74 81 84

Firstly: Are the data approximately normal?

0
47 1 S 7
c _
53t 2 g9 . value, but overall
(o) 3 3
S 2T = - € 44
§ 1 109 |83 . the datta can be
0 33 Q2] considered
6 _
25 5 75 9 Mee | | | e |reasonably normal.
Percentage change in polyphenol E 14 2 1 0 1 2

Histogram

blood levels

Normal

quantiles

There is a low



What is the 95% confidence interval for the average percent change?

Sample average = 5.5; s=2.517;df=n-1=8

8 i 0706 0889 1108 1397 1860[ 2306] 2449 2896 3355 3833 4501 504

........................................................................................................................................................................................................................................

Confidence level C

The sampling distribution is a t distribution with n — 1 degrees of freedom.
For df =8 and C = 95%, t* = 2.306.

The margin of error mis: m = t*s/N\n = 2.306*2.517/49 =~ 1.93.

With 95% confidence, the population average percent increase in
polyphenol blood levels of healthy men drinking half a bottle of red wine
daily is between 3.6% and 7.6%. Important: The confidence interval shows

how large the increase is, but not if it can have an impact on men’s health.



The one-sample #test

As in the previous chapter, a test of hypotheses requires a few steps:

nal

o

. Stating the null and alternative hypotheses (H, versus H,)

Deciding on a one-sided or two-sided test
Choosing a significance level

Calculating t and its degrees of freedom

Finding the area under the curve with Table D

Stating the P-value and interpreting the result



The P-value is the probability, if H, is true, of randomly drawing a

sample like the one obtained or more extreme, in the direction of H..

The P-value is calculated as the corresponding area under the curve,

one-tailed or two-tailed depending on H.:

One-sided
(one-tailed)

Two-sided
(two-tailed)

He: o> po Ty P(T

H,: it < pg :> P(T <t

VAN

VAN

t

Hy: jt # po =) 2P(T = |t|) _/\

;= Hy
s/\n

[t]




Table D df 25 .20 15 10 05 025 005 0025 001 0003

.................................................................................................................................................................................................................

How to:

4032 4773 5893  6.868
3707 4317 5208 5959
3499 4029 4785 5408
3355 3833 4501 508

look into the
corresponding row.

1

2

3 .

For df = 9 we only 50727 0920 1156 1476 2015 2571

6 3

7

8

9

220 3000 4707 478}

3169 3581 414 4587
3106 3497  4.025 4437
3.055 3428 3930 4318
3012 3372 3852 4221
2977 3326 3787 4140
2947 32806 3733 4073
2921 3257 3686 4015

~onAn A Aaan N A A Ar=

t distribution,
9 degrees of freedom

P-value =0.0123 he calculated value of tis 2.7.

We find the 2 closest f values.

2398 < t=2.7 <2.821
thus
0.02 > upper tail p > 0.01

+— Values of t ———

For a one-sided H,, this is the P-value (between 0.01 and 0.02);
for a two-sided H,, the P-value is doubled (between 0.02 and 0.04).



o These are just approximate values.
o To find exact p-values use R

o The function to be used is:
o pt(quantile, df)



Sweetening colas (continued)
Is there evidence that storage results in sweetness loss for the new cola
recipe at the 0.05 level of significance (a = 5%)?

Hy: 1= 0 versus H,: 12> 0 (one-sided test) jaster Sweetness Joss
2 0.4
Y — — 3 0.7
[ = * ILlO = 1.02-0 =2.70 4 2.0
s/Nin 1.196/4/10 : 04
7 -1.3
o The critical value t, = 1.833. : e
t >t thus the result is significant. 10 2.3
Average 1.02
o 2.398 <t=2.70 < 2.821 thus 0.02 > p > 0.01. Standard deviation 1.196
. . . Degrees of freedom n-1=9
p < a thus the result is significant.
........................................................................................................ - st i € AT .
df .25 .20 15 A0 .05 .025 .02 .01 .005 .0025 .001 .0005

...............................................................................................................................................................................................................................

9 i 0703 0883 1100 1383 1833 2262 3250  3.690 4.297 4.78i

The t-test has a significant p-value. We reject H,,.
There is a significant loss of sweetness, on average, following storage.



Sweetening colas (continued)

One-Sample T: Loss Minitab
Test of mu = 0 vsnmu> 0
X— U 1.02 —

Variable N Hean StDev SE Mean e =2.70
Loss 10  1.020  1.196  0.378 S/ﬂ/ ) 196/+/10

Variable 95.0% Lower Bound T P —_ 01—

Loss 0.327 2.70 0.012 df =n-1=9
e LA

In R, you can obtain the precise
p-value once you have calculated t

Using the function pt(2.7, 9)

which gives 0.9878032 and taking 1-
this value (WHY?) we obtain
0.01219685

t distribution,
9 degrees of freedom

P-value =0.0123

«——— Values of t —— 1



Matched pairs # procedures

Sometimes we want to compare treatments or conditions at the
individual level. These situations produce two samples that are not
independent — they are related to each other. The members of one
sample are identical to, or matched (paired) with, the members of the
other sample.

o Example: Pre-test and post-test studies look at data collected on the
same sample elements before and after some experiment is performed.

o Example: Twin studies often try to sort out the influence of genetic
factors by comparing a variable between sets of twins.

o Example: Using people matched for age, sex, and education in social
studies allows canceling out the effect of these potential lurking
variables.



In these cases, we use the paired data to test the difference in the two

population means. The variable studied becomes X .rence = (X1 — X5),

and

HO: :udifference= 0 : Ha: :udifference>O (Or <O, or ;éO)

Conceptually, this is not different from tests on one population.



Sweetening colas (revisited)

The sweetness loss due to storage was evaluated by 10 professional

tasters (comparing the sweetness before and after storage):

Taster Sweetness loss
2.0

0.4
0.7 We want to test if storage

2.0 results in a loss of
-0.4

29 sweetness, thus:
-1.3

1.2

1.1

2.3

Hy: u=0versus H: 4>0

© 00 NO O~ WDN -

RN
o

Although the text didn’t mention it explicitly, this is a pre-/post-test design and
the variable is the difference in cola sweetness before minus after storage.

A matched pairs test of significance is indeed just like a one-sample test.



Does lack of caffeine increase depression?

Individuals diagnosed as caffeine-dependent are
deprived of caffeine-rich foods and assigned

to receive daily pills. Sometimes, the pills
contain caffeine and other times they contain

a placebo. Depression was assessed.

Depression

Depression  Placebo -

Subject with Caffeine with Placebo = Cafeine

5

NOOUO1Loowhr~OO

TR0~V A WN
—
—

-_—

16
23
)
7
14
24
6
3
15
12
0

11

] — — —

o There are 2 data points for each subject, but we’ll only look at the difference.

o The sample distribution appears appropriate for a t-test.

J
4 11 “difference”’

data points. w
£3 z
3 L
0 2 i
I
1 a

0

<0 5 10, 15 1§

difference in depression

20

- -
(@) o (@)
| |

o

[
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-2 -1 0

1
Normal quantiles
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Does lack of caffeine increase depression?

For each individual in the sample, we have calculated a difference in depression
score (placebo minus caffeine).

There were 11 “difference” points, thus df =n -1 = 10.
We calculate that x = 7.36; s =6.92

Depression Depression Placebo -
Subject with Caffeine with Placebo Cafeine
1 5 16 11
2 5 23 18
. =0-: . 3 4 5 1
HO' Hyiference 0 ’ HO' Hyitference >0
4 3 7 4
5 8 14 6
x-0 736 6 5 24 19
= = =3.53 7 0 6 6
\/7 [ 8 0 3 3
S/ n 692/411 : ) > >
10 11 12 1
11 1 0 -1

Fordf =10, 3.169<t=3.53<3.581 = 0.005>p>0.0025

Caffeine deprivation causes a significant increase in depression.



SPSS statistical output for the caffeine study:
a) Conducting a paired sample t-test on the raw data (caffeine and placebo)

b) Conducting a one-sample t-test on difference (caffeine — placebo)

Paired Samples Test

Paired Differences

95% Confidence
Interval of the

Std. Error Difference
Mean Std. Deviation Mean Lower Upper t df Sig. (2-tailed)
Placebo - Caffeine 7.364 6.918 2.086 2.716 12.011 3.530 10 .005

One-Sample Test

Test Value =0
95% Confidence
Interval of the
Mean Difference
t df Sig. (2-tailed) | Difference | Lower Upper
Difference 3.530 10 .005 7.364 2.72 12.01

Our alternative hypothesis was one-sided, thus our p-value is half of the
two-tailed p-value provided in the software output (half of 0.005 =
0.0025).




Robustness

The t procedures are exactly correct when the population is distributed
exactly normally. However, most real data are not exactly normal.

The t procedures are robust to small deviations from normality — the
results will not be affected too much. Factors that strongly matter:

o Random sampling. The sample must be an SRS from the population.

o Outliers and skewness. They strongly influence the mean and
therefore the t procedures. However, their impact diminishes as the
sample size gets larger because of the Central Limit Theorem.

Specifically:
o When n < 15, the data must be close to normal and without outliers.
o When 15 > n > 40, mild skewness is acceptable but not outliers.
o When n > 40, the t-statistic will be valid even with strong skewness.




Power of the ~test

The power of the one sample t-test against a specific alternative value
of the population mean y assuming a fixed significance level a is the
probability that the test will reject the null hypothesis when the
alternative is true.

Calculation of the exact power of the t-test is a bit complex. But an
approximate calculation that acts as if o were known is almost always
adequate for planning a study. This calculation is very much like that for
the z-test.

When guessing g, it is always better to err on the side of a standard
deviation that is a little larger rather than smaller. We want to avoid a
failing to find an effect because we did not have enough data.



Does lack of caffeine increase depression?

Suppose that we wanted to perform a similar study but using subjects who
regularly drink caffeinated tea instead of coffee. For each individual in the
sample, we will calculate a difference in depression score (placebo minus

caffeine). How many patients should we include in our new study?

In the previous study, we found that the average difference in depression level
was /.36 and the standard deviation 6.92.

We will use y = 3.0 as the alternative of interest. We are confident that the effect was
larger than this in our previous study, and this amount of an increase in depression

would still be considered important.

We will use s = 7.0 for our guessed standard deviation.

We can choose a one-sided alternative because, like in the previous study, we

would expect caffeine deprivation to have negative psychological effects.



Does lack of caffeine increase depression?

How many subjects should we include in our new study? Would 16 subjects
be enough? Let's compute the power of the t-test for

HO: /udifference = O ; Ha: /udifference = O

against the alternative y = 3. For a significance level a 5%, the t-test with n
observations rejects H, if t exceeds the upper 5% significance point of

{(df:15) =1.729. Forn=16and s = 7:

i) >1.753 = x>1.06775

:S/\/; 7/f_

The power for n = 16 would be the probability that x = 1.068 when u = 3, using

o = 7. Since we have g, we can use the normal distribution here:

L068—3j

7/\/E The power would be
=P(zz2-1.10)=1-P(z<-1.10)=0.8643 about 86%.

P(x >21.068 when 11 =3) = P[z >



[ .
Inference for non-normal distributions

What if the population is clearly non-normal and your sample is small?

o If the data are skewed, you can attempt to transform the variable to
bring it closer to normality (e.g., logarithm transformation). The t-
procedures applied to transformed data are quite accurate for even
moderate sample sizes.

o A distribution other than a normal distribution might describe your
data well. Many non-normal models have been developed to provide
inference procedures too.

o You can always use a distribution-free (“nonparametric”)
inference procedure (see chapter 15) that does not assume any
specific distribution for the population. But it is usually less powerful
than distribution-driven tests (e.g., t test).



N
Transforming data

The most common transformation is the
logarithm (log), which tends to pull in
the right tail of a distribution.

Instead of analyzing the original variable

X, we first compute the logarithms and
analyze the values of log X.

However, we cannot simply use the
confidence interval for the mean of the
logs to deduce a confidence interval for
the mean y in the original scale.
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Nonparametric method: the sign test

A distribution-free test usually makes a statement of hypotheses about
the median rather than the mean (e.g., “are the medians different”).
This makes sense when the distribution may be skewed.

H,: population median = 0 VS. H.: population median >0

A simple distribution-free test is the sign test for matched pairs.

Calculate the matched difference for each individual in the sample.
Ignore pairs with difference 0.

The number of trials n is the count of the remaining pairs.

The test statistic is the count X of pairs with a positive difference.
P-values for X are based on the binomial B(n, 1/2) distribution.

Hy: p=1/2 VS. H,:p>1/2



I
Section 8.1

o Inference for a Single Proportion:

v confidence intervals, planning sample size for a
given margin of error

v test of significance for a single proportion

This will be very similar to what we did for means previously in 7.1



Sampling distribution of p” — reminder

The sampling distribution of a sample proportion 5 is approximately
normal (normal approximation of a binomial distribution) when the

sample size is large enough.

=
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Conditions for inference on p

Assumptions:

The data used for the estimate are an SRS from the population
studied.

The population is at least 10 times as large as the sample used for
inference. This ensures that the standard deviation off? IS close to

\p(1-p)/n

The sample size n is large enough that the sampling distribution can
be approximated with a normal distribution. How large a sample
size is required depends in part on the value of p and the test
conducted. Otherwise, rely on the binomial distribution.



Large-sample contfidence interval for p

Confidence intervals contain the population proportion p in C% of
samples. For an SRS of size n drawn from a large population and with

sample proportion p calculated from the data, an approximate level C
confidence interval for p is:

p £ m, mis the margin of error

m=z*SE =z*,/p(1-p)/n

Use this method when the number
of successes and the number of —Z* Z*
failures are both at least 15.

C is the area under the standard

normal curve between —z* and z*.



Medication side effects

Arthritis is a painful, chronic inflammation of the joints.
An experiment on the side effects of pain relievers
examined arthritis patients to find the proportion of
patients who suffer side effects.

What are some side effects of ibuprofen?
Serious side effects (seek medical attention immediately):
Allergic reaction (difficulty breathing, swelling, or hives),
Muscle cramps, numbness, or tingling,
Ulcers (open sores) in the mouth,
Rapid weight gain (fluid retention),
Seizures,
Black, bloody, or tarry stools,
Blood in your urine or vomit,
Decreased hearing or ringing in the ears,
Jaundice (yellowing of the skin or eyes), or
Abdominal cramping, indigestion, or heartburn,
Less serious side effects (discuss with your doctor):
Dizziness or headache,
Nausea, gaseousness, diarrhea, or constipation,
Depression,
Fatigue or weakness,
Dry mouth, or
Irregular menstrual periods




Let’s calculate a 90% confidence interval for the population proportion of
arthritis patients who suffer some “adverse symptoms.”

.. . 23
What is the sample proportion p? p= 290 ~ 0.052

What is the sampling distribution for the proportion of arthritis patients with

adverse symptoms for samples of 440? p=~ N(p,+ p(1-p)/n)

For a 90% confidence level, z* = 1.645. [z* 067 0.841 1.036 1.282 1.645 1.960 2.054 2.326
50% 60% 70% 80% 90% 95% 96% 98%

Confidence level C

Using the large sample method, we
calculate a margin of error m:

—zx [p(- 7
m=z*\|p(1-p)/n 90%  Clfor p:p+tm
m =1.645%/0.052(1—0.052)/ 440 0r0.052 40,023
m=1.645%0.014 ~ 0.023

= With 90% confidence level, between 2.9% and 7.5% of arthritis patients
taking this pain medication experience some adverse symptoms.



Because we have to use an estimate of p to compute the margin of
error, confidence intervals for a population proportion are not very

accurate. _ _
I \/ p(-p)
n

Sampling
/distribution

of p

Probability C Specifically, we tend to be

incorrect more often than
the confidence level would

indicate. But there is no

f t t systematic amount
_Zol—o p +Z'\[p(1 - ,
P=z\pd—p) (unknown) g P —p) (because it depends on p).

n n

Use with caution!



Software gives you summary data (sample size and proportion) as well as the
actual p-value.

Minitab

Test and Confidence Interval for One Proportion
Test of p = 0.75 v8 p not = 0.75

Sample X N Sample p 95.0 % CI Z-Value P-Value
L 68 100 0.680000 (0.588572, 0.771428) -1.62 0.106
Crunch It!

Hypothesis test results:

p = proportion of successes for population
Parameter: p

HO : Parameter = 0.75

HA : Parameter not = 0.75

Proportion | Count | Total | Sample Prop. Std. Err. Z-Stat P-value
P 68 100 0.68 0.04330127 | -1.6165807 0.106



Interpretation: magnitude vs. reliability of effects

The reliability of an interpretation is related to the strength of the
evidence. The smaller the p-value, the stronger the evidence against
the null hypothesis and the more confident you can be about your
interpretation.

The magnitude or size of an effect relates to the real-life relevance of
the phenomenon uncovered. The p-value does NOT assess the
relevance of the effect, nor its magnitude.

A confidence interval will assess the magnitude of the effect.
However, magnitude is not necessarily equivalent to how theoretically
or practically relevant an effect is.



Sample size for a desired margin of error

You may need to choose a sample size large enough to achieve a
specified margin of error. However, because the sampling distribution
of p is a function of the population proportion p, this process requires

that you guess a likely value for p: p*.

p~N(p,\/p(1—p)/n) - m=(z—*j p*(1—p*)

m

The margin of error will be less than or equal to m if p*is chosen to be 0.5.

Remember, though, that sample size is not always stretchable at will. There are

typically costs and constraints associated with large samples.



What sample size would we need in order to achieve a margin of error no
more than 0.01 (1%) for a 90% confidence interval for the population
proportion of arthritis patients who suffer some “adverse symptoms.”

We could use 0.5 for our guessed p*. However, since the drug has been
approved for sale over the counter, we can safely assume that no more than

10% of patients should suffer “adverse symptoms” (a better guess than 50%).

For a 90% confidence level, z* = 1.645. |z2 0.67 0.841 1.036 1.282 1.645 1.960 2.054 2.326
50% 60% 70% 80% 90% 95% 96% 98%
Confidence level C

z¥Y . (1.645Y ~
n—(mj p*(l-p )_(Omj (0.1)(0.9) ~ 2434.4

=» To obtain a margin of error no more than 1%, we would need a sample
size n of at least 2435 arthritis patients.
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