# Lecture 6 (week 4)

Tests of population variance Two population variances

## Section 7.3 Inference for variances

Inference for population spread
The *F* test for equality of variance
The power of the two sample t-test

## Inference for population spread

It is possible to compare two population standard deviations  $\sigma_1$  and  $\sigma_2$  by comparing the standard deviations of two SRSs. However, these procedures are **not robust at all against deviations from normality.** 

When  $s_1^2$  and  $s_2^2$  are sample variances from independent SRSs of sizes  $n_1$  and  $n_2$  drawn from normal populations, the *F* statistic

$$F = s_1^2 / s_2^2$$

has the *F* distribution with  $n_1 - 1$  and  $n_2 - 1$  degrees of freedom when  $H_0$ :  $\sigma_1 = \sigma_2$  is true.

- The *F* distributions are right-skewed and cannot take negative values.
  The peak of the *F* density curve is near 1 when both population standard deviations are equal.
  - Values of *F* far from 1 in either direction provide evidence against the hypothesis of equal standard deviations.

Table E in the back of the book gives critical *F*-values for upper p of 0.10, 0.05, 0.025, 0.01, and 0.001. We compare the *F* statistic calculated from our data set with these critical values for a one-side alternative; the *p*-value is doubled for a two-sided alternative.

$$F has \frac{Df_{numerator}: n_1 - 1}{Df_{denom}: n_2 - I}$$



| Tabl              | eE 1              | f distrib | oution criti                        | ical values |        |        |                       | df <sub>num</sub> | $= n_1 - 1$ |        |  |  |
|-------------------|-------------------|-----------|-------------------------------------|-------------|--------|--------|-----------------------|-------------------|-------------|--------|--|--|
|                   |                   |           | Degrees of freedom in the numerator |             |        |        |                       |                   |             |        |  |  |
|                   |                   | Р         |                                     | 2           | 3      | 4      | 5                     | 6                 | 7           | 8      |  |  |
|                   | $\frown$          | 0.100     | 39.86                               | 49.50       | 53.59  | 55.83  | 57.24                 | 58.20             | 58.91       | 59.44  |  |  |
| /                 | $\langle \rangle$ | 0.050     | 161.45                              | 199.50      | 215.71 | 224.58 | 230.16                | 233.99            | 236.77      | 238.8  |  |  |
|                   | 1                 | 0.025     | 647.79                              | 799.50      | 864.16 | 899.58 | 921.85                | 937.11            | 948.22      | 956.6  |  |  |
|                   |                   | 0.010     | 4052.2                              | 4999.5      | 5403.4 | 5624.6 | 5763.6                | 5859              | 5928.4      | 5981.1 |  |  |
|                   |                   | 0.001     | 405284                              | 500000      | 540379 | 562500 | 576 <b>4</b> 05       | 585937            | 592873      | 59814  |  |  |
|                   |                   | 0.100     | 8.53                                | 9.00        | 9.16   | 9.24   | 9.29                  | 9.33              | 9.35        | 9.3    |  |  |
|                   | 2                 | 0.050     | 18.51                               | 19.00       | 19.16  | 19.25  | 19.30                 | 19.33             | 19.35       | 19.3   |  |  |
|                   |                   | 0.025     | 38.51                               | 39.00       | 39.17  | 39.25  | 39.30                 | 39.33             | 39.36       | 39.3   |  |  |
|                   |                   | 0.010     | 98.50                               | 99.00       | 99.17  | 99.25  | 99.30                 | 99.33             | 99.36       | 99.3   |  |  |
|                   |                   | 0.001     | 998.50                              | 999.00      | 999.17 | 999.25 | 99 <mark>9</mark> .30 | 999.33            | 999.36      | 999.3  |  |  |
|                   |                   | 0.100     | 5.54                                | 5.46        | 5.39   | 5.34   | 5.31                  | 5.28              | 5.27        | 5.2    |  |  |
|                   | 2<br>Z            | 0.050     | 10.13                               | 9.55        | 9.28   | 9.12   | 9.01                  | 8.94              | 8.89        | 8.8    |  |  |
|                   |                   | 0.025     | 17.44                               | 16.04       | 15.44  | 15.10  | 14.88                 | 14.73             | 14.62       | 14.5   |  |  |
| tor               |                   | 0.010     | 34.12                               | 30.82       | 29.46  | 28.71  | 28.24                 | 27.91             | 27.67       | 27.4   |  |  |
| E C               | L K               | 0.001     | 167.03                              | 148.50      | 141.11 | 137.10 | 134.58                | 132.85            | 131.58      | 130.6  |  |  |
| . E               | Ē.                | 0.100     | 4.54                                | 4.32        | 4.19   | 4.11   | 4.05                  | 4.01              | 3.98        | 3.9    |  |  |
| ené               | $\cap$            | 0.050     | 7.71                                | 6.94        | 6.59   | 6.39   | 6.26                  | 6.16              | 6.09        | 6.0    |  |  |
| e q               | 2 ( 4 )           | 0.025     | 12.22                               | 10.65       | 9.98   | 9.60   | 9.36                  | 9.20              | 9.07        | 8.9    |  |  |
| ÷                 | $\sim$            | 0.010     | 21.20                               | 18.00       | 16.69  | 15.98  | 15.52                 | 15.21             | 14.98       | 14.8   |  |  |
|                   |                   | 0.001     | 74.14                               | 61.25       | 56.18  | 53.44  | 51.71                 | 50.53             | 49.66       | 49.0   |  |  |
| E C               |                   | 0.100     | 4.06                                | 3.78        | 3.62   | 3.52   | 3.45                  | 3.40              | 3.37        | 3.3    |  |  |
| 1 egrees of freed | _                 | 0.050     | 6.61                                | 5.79        | 5.41   | 5.19   | 5.05                  | 4.95              | 4.88        | 4.8    |  |  |
|                   | 5                 | 0.025     | 10.01                               | 8.43        | 7.76   | 7.39   | 7.15                  | 6.98              | 6.85        | 6.7    |  |  |
|                   |                   | 0.010     | 16.26                               | 13.27       | 12.06  | 11.39  | 10.97                 | 10.67             | 10.46       | 10.2   |  |  |
|                   |                   | 0.001     | 47.18                               | 37.12       | 33.20  | 31.09  | 29.75                 | 28.83             | 28.16       | 27.6   |  |  |
|                   | 6                 | 0.100     | 3.78                                | 3.46        | 3.29   | 3.18   | 3.11                  | 3.05              | 3.01        | 2.9    |  |  |
| D                 |                   | 0.050     | 5.99                                | 5.14        | 4.76   | 4.53   | 4.39                  | 4.28              | 4.21        | 4.1    |  |  |
|                   | 6                 | 0.025     | 8.81                                | 7.26        | 6.60   | 6.23   | 5.99                  | 5.82              | 5.70        | 5.6    |  |  |
| $\setminus$       | $\bigcirc$        | 0.010     | 13.75                               | 10.92       | 9.78   | 9.15   | 8.75                  | 8.47              | 8.26        | 8.1    |  |  |
|                   | -                 | 0.001     | 35.51                               | 27.00       | 23.70  | 21.92  | 20.80                 | 20.03             | 19.46       | 19.0   |  |  |

 Table E
 F distribution critical values

### Does parental smoking damage the lungs of children?

Forced vital capacity (FVC) was obtained for a sample of children not exposed to parental smoking and a group of children exposed to parental smoking.

| Parental smoking | FVC $\overline{x}$ | S    | n  |
|------------------|--------------------|------|----|
| Yes              | 75.5               | 9.3  | 30 |
| No               | 88.2               | 15.1 | 30 |

$$H_0: \sigma_{\text{smoke}}^2 = \sigma_{\text{no}}^2$$
$$H_a: \sigma_{\text{smoke}}^2 \neq \sigma_{\text{no}}^2 \text{ (two sided)}$$

$$F = \frac{\text{larger } s^2}{\text{smaller } s^2} = \frac{15.1^2}{9.3^2} \approx 2.6$$

The degrees of freedom are 29 and 29, which can be rounded to the closest values in Table E: 30 for the numerator and 25 for the denominator.

$$2.54 < F(30,25) = 2.64 < 3.52$$

→ 0.01 > 1-sided p > 0.001 → 0.02 > 2-sided p > 0.002

| F* |       | Degrees | of freed | lom (Df) i | n the nu | merator | r    |      |      |      |      |      |      |      |
|----|-------|---------|----------|------------|----------|---------|------|------|------|------|------|------|------|------|
|    | Proba | 1       | 2        | 3          | 4        | 5       | 6    | 7    | 8    | 9    | 10   | 15   | 20   | 30   |
| 25 | 0.100 | 2.92    | 2.53     | 2.32       | 2.18     | 2.09    | 2.02 | 1.97 | 1.93 | 1.89 | 1.87 | 1.77 | 1.72 | 1.66 |
|    | 0.050 | 4.24    | 3.39     | 2.99       | 2.76     | 2.6     | 2.49 | 2.4  | 2.34 | 2.28 | 2.24 | 2.09 | 2.01 | 1.92 |
|    | 0.025 | 5.69    | 4.29     | 3.69       | 3.35     | 3.13    | 2.97 | 2.85 | 2.75 | 2.68 | 2.61 | 2.41 | 2.3  | 2.18 |
|    | 0.010 | 7.77    | 5.57     | 4.68       | 4.18     | 3.85    | 3.63 | 3.46 | 3.32 | 3.22 | 3.13 | 2.85 | 2.7  | 2.54 |
|    | 0.001 | 13.88   | 9.22     | 7.45       | 6.49     | 5.89    | 5.46 | 5.15 | 4.91 | 4.71 | 4.56 | 4.06 | 3.79 | 3.52 |
| 50 | 0.100 | 2.81    | 2.41     | 2.2        | 2.06     | 1.97    | 1.9  | 1.84 | 1.8  | 1.76 | 1.73 | 1.63 | 1.57 | 1.5  |
|    | 0.050 | 4.03    | 3.18     | 2.79       | 2.56     | 2.4     | 2.29 | 2.2  | 2.13 | 2.07 | 2.03 | 1.87 | 1.78 | 1.69 |
|    | 0.025 | 5.34    | 3.97     | 3.39       | 3.05     | 2.83    | 2.67 | 2.55 | 2.46 | 2.38 | 2.32 | 2.11 | 1.99 | 1.87 |
|    | 0.010 | 7.17    | 5.06     | 4.2        | 3.72     | 3.41    | 3.19 | 3.02 | 2.89 | 2.78 | 2.7  | 2.42 | 2.27 | 2.1  |
|    | 0.001 | 12 22   | 7 96     | 6 34       | 5.46     | 49      | 4.51 | 4 22 | 4    | 3.82 | 3 67 | 3.2  | 2.95 | 2.68 |

## Power of the two-sample *t*-test

The power of the two-sample *t*-test against a specific alternative value of the difference in population means  $(\mu_1 - \mu_2)$  assuming a fixed significance level  $\alpha$  is the probability that the test will reject the null hypothesis when the alternative is true.

The basic concept is similar to that for the one-sample *t*-test. The exact method involves the **noncentral** *t* **distribution**. Calculations are carried out with software.

You need information from a pilot study or previous research to calculate an expected power for your *t*-test and this allows you to plan your study smartly.

## Power calculations using a noncentral *t* distribution

For the pooled two-sample *t*-test, with parameters  $\mu_1$ ,  $\mu_2$ , and the common standard deviation  $\sigma$  we need to specify:

- An alternative that would be important to detect (i.e., a value for  $\mu_1 \mu_2$ )
- $\bigcirc$  The sample sizes,  $n_1$  and  $n_2$
- $\bigcirc$  The Type I error for a fixed significance level,  $\alpha$
- $\bigcirc$  A guess for the standard deviation  $\sigma$

We find the degrees of freedom df =  $n_1 + n_2 - 2$  and the value of  $t^*$  that will lead to rejection of  $H_0$ :  $\mu_1 - \mu_2 = 0$ 

Then we calculate the **noncentrality parameter**  $\delta$ 

$$\delta = \frac{|\mu_1 - \mu_2|}{\sigma \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Finally, we find the power as the probability that a noncentral *t* random variable with degrees of freedom df and noncentrality parameter  $\delta$  will

be greater than *t*\*:

- In R this is 1-pt(tstar, df, delta). There are also several free online tools that calculate power.
- Without access to software, we can approximate the power as the probability that a standard normal random variable is greater than  $t^* \delta$ , that is,  $P(z > t^* \delta)$ , and use Table A.

For a *test with unequal variances* we can simply use the conservative degrees of freedom, but we need to guess both standard deviations and combine them for the guessed standard error:  $\sqrt{\frac{\sigma_1^2}{1} + \frac{\sigma_2^2}{2}}$ 

### Online tools: Mttp://www.stat.uiowa.edu/~rlenth/Power/

Normal Power Calculations

Russ Lenth's power and sample-size ...

# UNE IS

# **S** Java applets for power and **sample size**



#### **Power Calculator**

Choose a Model and Push a Button. Disclaimer.

| NORMAL                      |                                                                                                                                                                                                                           | Power for a given Sample Size | Sample Size for a given Power   |                           |                                          |  |  |  |  |  |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|---------------------------|------------------------------------------|--|--|--|--|--|
| 1 Sample                    |                                                                                                                                                                                                                           | <b>9</b>                      | •                               |                           |                                          |  |  |  |  |  |
| 2 Sample, Equal Variances   |                                                                                                                                                                                                                           | <b>e</b>                      | •                               |                           |                                          |  |  |  |  |  |
| 2 Sample, Unequal Variances |                                                                                                                                                                                                                           | <b>e</b>                      | •                               |                           |                                          |  |  |  |  |  |
| Lognormal                   |                                                                                                                                                                                                                           | <b>e</b>                      | •                               |                           |                                          |  |  |  |  |  |
| EXPONENTIAL                 |                                                                                                                                                                                                                           | Power for a given Sample Size | Sample Size for a given Power   |                           |                                          |  |  |  |  |  |
| 1 Sample                    |                                                                                                                                                                                                                           | <u> </u>                      | •                               |                           |                                          |  |  |  |  |  |
| 2 Sample                    |                                                                                                                                                                                                                           |                               | <b>_</b>                        |                           |                                          |  |  |  |  |  |
| BINO                        | -                                                                                                                                                                                                                         | Enter a '                     | '?" for the item to be calculat | ed.                       |                                          |  |  |  |  |  |
| 1 Sample                    |                                                                                                                                                                                                                           | ntering ? S in positions 3 ar | id 4 will calculate equal sam   | ple sizes for both groups |                                          |  |  |  |  |  |
| 1 Sample Arcsir             | μ <sub>1</sub><br>The Mann of Deputation 1                                                                                                                                                                                |                               |                                 |                           |                                          |  |  |  |  |  |
| 2 Sample Arcsir             | me Mean o                                                                                                                                                                                                                 |                               |                                 |                           |                                          |  |  |  |  |  |
| 2 Sample Media              | μ 2<br>The Mean of Population 2                                                                                                                                                                                           |                               |                                 |                           |                                          |  |  |  |  |  |
| Fisher's Exact T            | N.                                                                                                                                                                                                                        |                               |                                 |                           |                                          |  |  |  |  |  |
| Proportion Res              | The Sample Size from Population 1                                                                                                                                                                                         |                               |                                 |                           |                                          |  |  |  |  |  |
| Case Control                | N <sub>2</sub>                                                                                                                                                                                                            |                               |                                 |                           |                                          |  |  |  |  |  |
| POIS                        | The Sample Size from Population 2                                                                                                                                                                                         |                               |                                 |                           |                                          |  |  |  |  |  |
| 1 Sample                    | Sigma 1                                                                                                                                                                                                                   |                               |                                 |                           |                                          |  |  |  |  |  |
| 2 Sample                    | Standard Deviation of Group 1                                                                                                                                                                                             |                               |                                 |                           |                                          |  |  |  |  |  |
| CORRELATION                 | Sigma <sub>2</sub>                                                                                                                                                                                                        |                               |                                 |                           |                                          |  |  |  |  |  |
| 1 Sample                    | Standard Deviation of Group 2                                                                                                                                                                                             |                               |                                 |                           |                                          |  |  |  |  |  |
|                             | Significance Level<br>The Significance Level of the test or Prob (reject null hypothesis (H $_0$ : $\mu_1 = \mu_2$ ) given it is true)                                                                                    |                               |                                 |                           |                                          |  |  |  |  |  |
|                             | Power<br>The Power desired for the test or Prob (reject H <sub>0</sub> given that H <sub>a</sub> is true)                                                                                                                 |                               |                                 |                           |                                          |  |  |  |  |  |
|                             | Number of Sides<br>Specifies Alternative Hypothesis.<br>One sided and $\mu_1 > \mu_2 => H_1 : \mu_1 > \mu_2$<br>One sided and $\mu_1 < \mu_2 => H_1 : \mu_1 < \mu_2$<br>Two sided $=> H_1 : \mu_2 => H_1 : \mu_1 < \mu_2$ |                               |                                 |                           | <ul><li>1 Side</li><li>2 Sides</li></ul> |  |  |  |  |  |
|                             | I WO SIGED                                                                                                                                                                                                                | 2 H I P I Hot equal p 2       | Calculate                       |                           |                                          |  |  |  |  |  |
|                             | Constitute                                                                                                                                                                                                                |                               |                                 |                           |                                          |  |  |  |  |  |