Lecture 7

Simple Linear Regression



Least squares regression. Review of the
basics: Sections 2.3-2.5

The regression line

Making predictions

Coefficient of determination R?
Transforming relationships
Residuals

Outliers and influential points
Lurking variables

The question of causation
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Correlation tells us about
strength (scatter) and direction
of the linear relationship
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1
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between two quantitative

Abundance per 10,000 kg of prey

variables.
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Carnivore body mass (kilograms)

In addition, we would like to have a numerical description of how both
variables vary together. For instance, is one variable increasing faster
than the other one? And we would like to make predictions based on that

numerical description.

But which line best
describes our data?



Blood Alcohol Content in mg/ml

The regression line

The least-squares regression line is the unique line such that the sum
of the squared vertical (y) distances between the data points and the
line is the smallest possible.
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Number of Beers (Pythagoras).



Average amount of gas consumed

Properties

The least-squares regression line can be shown to have this equation:
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How to:

First we calculate the slope of the line, b; Sy
from statistics we already know: b — r 7
SX

r is the correlation.
S, is the standard deviation of the response variable y.
S, is the the standard deviation of the explanatory variable x.

Once we know b, the slope, we can calculate a, the y-intercept:

a = \/__ b)—( where X and y are the sample
T y means of the x and y variables

This means that we don't have to calculate a lot of squared distances to find the least-
squares regression line for a data set. We can instead rely on the equation.

But typically, we use a 2-var stats calculator or stats software.




BEWARE!!!

Not all calculators and software use the same convention:
\/ b

Some use instead:
\/ b

Texas Instruments TI-83 Plus

Make sure you know what YOUR Li hﬁfg
calculator gives you for a and b before a=§1 93425919

you answer homework or exam questions. E?;. gggg%ggggé

= ". 748467 3834



Software output

intercept
slope

R2

- R Console
File Edit Misc Packages Help

> lmi egz.09%9%fat~egZ.093inea)

Call:
lm(formala = egi.09%fat ~ egz.093nea)

Coefficients:
(Intercept] ez .095nea
3.5051:23 -0.0034941

= sumtnary (lmlegs . 095 fat~egz . 095 nea) )

Call:
lmiformula = eg2.09%fat ~ egl.0%inea)

Fesiduals:
Min 12 Median 3 Max
-1.1091 -0.3%904 -0.1039 0O.41286 1.6439

Coefficients:

Eztimate 3td. Error € walue Pri>|t]|]
| Intercept) FeroiiSdeZals) AL 303 eled 11545 1:53e—03 #%=*
egZ.0%9%nea |-0.0034415 |0.0007414 -—-4.642 0.0003831 ++%

pignifs padess @ et EEbil Gteesst ERDd e OEESs ek DRl ok oa

Fesidual standard error: 0. 73299 on 14 degrees of freedom
Multiple B-3cuared:| 0.80681, Adjusted RB-scquared: 0.578
F-ztatistic: 21.55 on 1 and 14 DF, p-wvalus: 0.0003210




Software output (cont)

intercept
slope

R2

£ Simple Linear Regression

Export I ?Edi{il

& Session M [=]
j‘

Regression Analysis: Fat gain versus NEA

The regression equation 1is

Fat gain = 3.51 - 0.00344 NEA

Predictor Coet SE Coet K P
Constant 3. 0051 0.3036 11.54 0.000
NEA | -0.0034415 | 0.0007414 -4.64 0,000
S = 0.739853 B-3¢g = A0.6% B-Sqiadj) = 57.8%

Close I e Practice of Statistics, Fifth Edition

Simple linear regression results:

Dependent Variahle: Fat gain
Independent WYariable: NEA

Fatgain=3.505123- 0.003441487 NEA
Sample size: 16

R {correlation coefficienty = -0.7786
R-sq+ 0.6061492
Estimate of errar standard deviation: 0.73985285
Parameter estimates:

nan and Company
-

Parameter | Estimate Std.Err.  |DF| T-Stat | P-Value

Intercept 3.505123 || 0.3036164 |14 [11.544577 [<0.0001

Slope -0.003441487 |[7 414096E-4 (14 | -4 641816 | 0.0004 -
4] [ »
[Java Applet Window

Figure 2-14a

Intraduction to the Practice of Statistics, Fifth Edition
© 2005 W.H. Freeman and Company



Minitab

= Session

Software output

(anOthef example) The regression equation is
New birds = 31.9 - 0.304 Pct return

_ Predictor Coef SE Coet T P
intercept Constant 31.934 4.838 6.60  0.000
slope Pct retu ~-0.30402 0.08122 -3.74  0.003 .
R2 S = 3.667 R-Sq = 56.0% R-Sgf{adj) = 52.0%

Tl d

Excel
* Microsoft Excel -ex04-04 _dat
] A B C D E F G | o
1 SUNMMARY QUTPUT
2 I
3 Regreaslon Statistics
4 |Mu|tlgle R | 0.7485 r
5 |R Square 0. &R02 = o
6 |Adjusted R Square 05202 R
T |Standard Error J.66E9
8 |Observations 13
9
10 Coefficients | Standard Error | t Siat P-value .
11 [Intercepi 31.593426 4 837621 B.60124| 3.86E-05 Intercept
12 |Pct retum -0.30402 0081221 -3.7432 D.0032% SlOpe
1 -
W 4 b [ W\ Sheet1 { ex04-04 / |4 | Dl




The equation completely describes the regression line.

To plot the regression line you only need to plug two x values into the
equation, get y, and draw the line that goes through those those points.

Hint: The regression line always passes through the mean of x and y.
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y=0.0144(8) +0.0008 = 0.116
=

Number of Beers

The points you use for
drawing the regression
line are derived from the
equation.

They are NOT points from
your sample data (except
by pure coincidence).



The distinction between explanatory and response variables is crucial in
regression. If you exchange y for x in calculating the regression line, you
will get the wrong line.

Regression examines the distance of all points from the line in the y
direction only.

L=
=
S 8004
Hubble telescope data about a
galaxies moving away from earth: 8. 600
g
o 400 4
These two lines are the two =
regression lines calculated either i 2001
correctly (x = distance, y = velocity, 2z o-
. . . J
solid line) or incorrectly (x = - 500
velocity, y = distance, dotted line). >
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Distance (in millions of parsecs)



Correlation versus regression

Pulse z-scores

2
Time z-scores

The correlation is a measure
of spread (scatter) in both the
x and y directions in the linear
relationship.

Blood Alcohol Content in mg./ml
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0.02

0.00

Number of Beers
In regression we examine
the variation in the response
variable (y) given change in
the explanatory variable (x).



Blood Alcohol Content in mg./mil

Making predictions: interpolation

The equation of the least-squares regression allows to predict y for
any x within the range studied. This is called interpolating.

Blood Alcohol Content as a function of Number of Beers

014 — ‘
y =0.0144 x + 0.0008 Nobody in the study drank 6.5

beers, but by finding the value

0.12

0.10

of ¥ from the regression line for
0.08 X = 6.5 we would expect a
blood alcohol content of 0.094

mg/ml.

0.06

0.04
y=0.0144*6.5+0.0008

y =0.936+0.0008=0.0944mg/ml

0.02

0.00

Number of Beers



(in 1000’s)

1\(:751*7 Pow::r;oats Dead l\ﬁnatees Elj—: y — 0125 X — 41 4

1978 460 21 n -

1979 481 24 @ 40

1980 498 16 =

1981 513 24 E a4

1982 512 20 % .

1983 526 15 7

1984 559 34 g - ] .

1985 585 33 = .|,:|_: *

1986 614 33 N

1987 645 39 -

1988 675 43 crTTETrTTET T T T T T T T T T T
1989 711 50 A0) 450 500 550 &00 650 VOO0
1990 719 47 Boats (thousands)

There is a positive linear relationship between the number of powerboats
registered and the number of manatee deaths.

The least squares regression line has the equation: y = 0.125 x — 41 .4

Thus if we were to limit the number of powerboat registrations to 500,000, what
could we expect for the number of manatee deaths?

y=0.125(500)-41.4 = y=625-41.4=21.1

Roughly 21 manatees.



Height of Boys Over Time
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Example: Bacterial growth rate over time in closed cultures

Log no.
viahle
cells

] Few cells

it = Live cells

. Dead cells

If you only observed bacterial growth in test-tube during a small subset of the

time shown here, you could get almost any regression line imaginable.
Extrapolation = big mistake.



The y intercept
Sometimes the y-intercept is not biologically possible. Here we have

negative blood alcohol content, which makes no sense...

0.14

0.12
y-intercept shows

0.10 | negative blood alcohol ® @

But the negative value is

appropriate for the equation 0.08

of the regression line. 0.06

0.04

There is a lot of scatter in the 0.0?

data, and the line is just an 0.00

Blood Alcohol Content in mg/ml

estimate.

-0.02

Number of Beers



Coefficient of determination, r2

r?, the coefficient of determination, is the square of the correlation

coefficient.

r’ represents the percentage of
the variance in y (vertical scatter
from the regression line) that can
be explained by the linear

relationship with x.
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Blood Alcohol Content as a function of Number of Beers
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Number of Beers



Presenter
Presentation Notes
Go over point that missing zero is OK - this is messy data, a prediction based on messy data. 

Residuals should be scattered randomly around the line, or there is something wrong with your data - not linear, outliers, etc.
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Negative Linear Relationship
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&
&
.
&
@
*

No Relationship

r=0
rr=0

* ¢ ¢ 4 ¢ ¢ ¢ ¢

Changes in x
explain 100% of
the variations in y.

Y can be entirely
predicted for any
given value of x.

Changes in x
explain 0% of the
variations in y.

The value(s) y
takes is (are)
entirely
independent of
what value x
takes.

Blood Alcohol Content in ma./ml

0.04

0.02

0.00

r=0.87

Blood Alcohol Content as a function of Number of Beers

r2=0.76

Number of Beers

Here the change in x only
explains 76% of the change in
y. The rest of the change in y
(the vertical scatter, shown as
red arrows) must be explained
by something other than x.




@ Blood Alcohol Lontent as a function of Number of Beers

Blood Alcohol Content (mg/ml blood)

Blood Alcohol (mg/ml blood)

0.20

0.18 -

r=0.7
r2 =0.49

Number of Beers

Blood Alcohol Content as a function of Number of Beers/Wt

003 004 005 006 007
Number of Beers/ Weight

0.08

0.09

There is quite some variation in BAC for the same
number of beers drunk. A person’s blood volume is
a factor in the equation that was overlooked here.

——__ 7¥__&AP Kevork Djansezian

o

We changed number
of beers to number of
beers/weight of
person in Ib.

In the first plot, number of beers only explains
49% of the variation in blood alcohol content.

But number of beers / weight explains 81% of
the variation in blood alcohol content.

Additional factors contribute to variations in
BAC among individuals (like maybe some
genetic ability to process alcohol).



Presenter
Presentation Notes
So let’s look at this scatterplot.  Overall pattern:  in general, the BAC increases with the number of beers you drink. 


Grade performance

If class attendance explains 16% of the variation in grades, what is
the correlation between percent of classes attended and grade?

1. We need to make an assumption: attendance and grades are
positively correlated. So r will be positive too.

2.2=0.16, so r=+J0.16=+0.4

A weak correlation.




Transforming relationships

A scatterplot might show a clear relationship between two quantitative
variables, but issues of influential points or non linearity prevent us from
using correlation and regression tools.

Transforming the data — changing the scale in which one or both of the
variables are expressed — can make the shape of the relationship linear
INn some cases.

Example: Patterns of growth are often exponential, at least in their initial
phase. Changing the response variable y into log(y) or In(y) will transform
the pattern from an upward-curved exponential to a straight line.



Exponential bacterial growth
In ideal environments, bacteria multiply through binary fission. The

number of bacteria can double every 20 minutes in that way.

5000 4
4000 + — £ 3|
£ == g
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91
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0O 30 60 90 120 150 180 210 240 0 30 60 90 120 150 180 210 240
Time (min) Time (min)
1-2-4-8-16-32-64-... log(2") = n*log(2) = 0.3n
Exponential growth 27, Taking the log changes the growth

not suitable for regression. pattern into a straight line.



Logarithm of brain weight

Body weight and brain weight
In 96 mammal species

The elephant is an influential point. Most

r = 0.86, but this is misleading.

mammals are very small in comparison.

w
1

Without this point, r = 0.50 only.

-1 0 1 2 3
Logarithm of body weight

Elephar'1t

+Dolphin
* Human

Brain weight, grams

« Hippo

| | ] | Ll Ll | I | | L L L |
0 200 400 600 800 100012001400160018002000 2200 24002600 2800
Body weight, kilograms

Now we plot the log of brain weight
against the log of body weight.

The pattern is linear, with r = 0.96.
The vertical scatter is homogenous

— good for predictions of brain weight
from body weight (in the log scale).



Caution about regression 2.4, 2.5
Correlation/regression using averages

Many regression or correlation studies use average data.

While this is sometimes appropriate, you should know that
correlations based on averages are usually quite higher than when
made on the raw data.

The correlation is a measure of spread
9 (scatter) in a linear relationship. Using

averages greatly reduces the scatter.

Pulse z-scores

S Therefore r and r2 are typically greatly
0 increased when averages are used.

Time z-scores
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Each dot represents an average. The These histograms illustrate that each

variation among boys per age class is mean represents a distribution of

not shown. boys of a particular age.

Should parents be worried if their son does not match the point for his age?
If the raw values were used in the correlation instead of the mean there would be

a lot of spread in the y-direction, and thus the correlation would be smaller.
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charts show a range of values
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Presenter
Presentation Notes
So, any individual 

boy  may be well  within the range of height for his age, but 

also be within the distributions for boys year or two older 

or younger as well. Two possible size distributions are shown.


Residuals

The distances from each point to the least-squares regression line give
us potentially useful information about the contribution of individual data
points to the overall pattern of scatter.

These distances are

Blood Alcohol Content as a function of Number of Beers @ - ”
called “residuals.

Points above the The sum of these

line have a positive - :
residual. residuals is always 0.

Points below the line have a
negative residual.

0.06

0.04 Predicted y |

} dist. (y—§) = residual

0.02 Observed y.

Blood Alcohol Content in mg/mil

0.00

Number of Beers


Presenter
Presentation Notes
So where does this line come from? 


Residual plots

Residuals are the distances between y-observed and y-predicted. We
plot them in a residual plot.

If residuals are scattered randomly around O, chances are your data will
fit a linear model, were normally distributed, and you didn’t have outliers.

Residual Plot
0.03
® ®
0.02 |
@001 | ¢ o ¢
S o
= 0.00 * ; | |
Q 0 ® 2 4 6 8 10
o ®
-0.01 A4 : o
-0.02 |
¢ ®
-0.03
Number of Beers
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Only the y-axis is different.

= The x-axis in a residual plot is
the same as on the scatterplot.

= The line on both plots is the

regression line.
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Residyal
1

Residuals are randomly scattered—good!

lal

Curved pattern—means the relationship
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Outliers and influential points

QOutlier: observation that lies outside the overall pattern of observations.

“Influential individual”: observation that markedly changes the
regression if removed. This is often an outlier on the x-axis.

Gesell Adaptive Score

120 = S

100 =

30 =

60 -

4o ~

| | I T
0 10 20 30

Age at first word (months)

Child 19 is an outlier
of the relationship.

Child 18 is only an
outlier in the x
direction and thus
might be an
influential point.



Are these
points
influential?

Gesell Adaptive Score

outlier in

— All data

Child 14 Without child 18

y-direction —— Without child 19

: . Child 18
influential

|
20

Age at first word (months)




Always plot your data

A correlation coefficient and a regression line can be calculated for any
relationship between two quantitative variables. However, outliers
greatly influence the results and running a linear regression on a
nonlinear association is not only meaningless but misleading.

Positive Linear Relationship Non-Linear Relationship

10 & | 1200
il i P ' So make sure to
¢ 800 { alwayS pIOt your data

: ¢ before you run a
4 \ - —+— , correlation or
400 4

regression analysis.

200 4




Always plot your data!

The correlations all give r= 0.816, and the regression lines are all approximately
y =3 + 0.5x. For all four sets, we would predict y = 8 when x = 10.

Table 2.8 Four data sets for exploring correlation and regression
Data Set A

X 10 8 13 9 11 14 6 4 12 7 5

y B.04 695 TAE58 RBEl B33 096 724 426 1084 482 568
Data 5et B
X 10 B 13 9 11 14 6 4 12 7 5

¥ 914 814 874 877 926 BI10 6.13 310 913 726 474
Data Set C

x i 10 8 13 9 11 14 6 4 12 7 5

y | 746 677 1274 711 7.81 884 608 539 B8I15 642 573
Data Set D
x: 8 8 8 8& & 8 8 8 8 8 19

srrsndhs

y | 658 576 7.71 884 847 7.04 525 556 791 689 12.50

Source: Frank 1. soseombe, “Craphs in sotigion] anabysis,” The Amerioom Storistician, X7 (19735, pp. 17-21.



However, making the scatterplots shows us that the correlation/

regression analysis is not appropriate for all data sets.

Set A . |19 setm . o] setc o | 131 setp
<7 * * =7 =
8- . o | 11 114
. . 10+ 10
- g- 9-
61 8- 3] &
1. 7- 7
4- - f
34 = ] 54 I
2 1t rtr1r1 4 1t rtr1r1 4""I""I""I
4 6 8 10 12 14 4 & 8 101214 5 10 15 20
Moderate linear Obvious One point deviates Just one very
association; nonlinear from the highly influential point; all
regression OK. relationship; linear pattern; this other points have
regression outlier must be the same x value;
not OK. examined closely a redesign is due

before proceeding.

here.



Lurking variables

A lurking variable is a variable not included

in the study design that does have an effect
on the variables studied.

Lurking variables can falsely_
relatiurighpg positive associati

number of firefighters at a {§

WHATRYAL A A9 3SR Abie ] s 2
Ho?)uld you answer if you didn’t know anything

aboit the topic?

Negative association between



Blood Alcohol Content (mg/ml blood)
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There is quite some variation in BAC for the
same number of beers drunk. A person’s
blood volume is a factor in the equation that
we have overlooked.

‘--..._____:l ——ar AP Kevork Diansezion

.
=

Now we change
number of beers
to number of
beers/weight of
person in |b.

The scatter is much smaller now. One’s
weight was indeed influencing the
response variable “blood alcohol content.”


Presenter
Presentation Notes
So let’s look at this scatterplot.  Overall pattern:  in general, the BAC increases with the number of beers you drink. 


Vocabulary: lurking vs. confounding

A lurking variable is a variable that is not among the explanatory or
response variables in a study and yet may influence the

interpretation of relationships among those variables.

Two variables are confounded when their effects on a response
variable cannot be distinguished from each other. The confounded

variables may be either explanatory variables or lurking variables.

But you often see them used interchangeably ...



Association and causation

Association, however strong, does NOT imply causation.

Only careful experimentation can show causation.

Strong Negalive Linear Association Strong positive linear relationship

. , . Children reading skills with shoe size
Change in Infant Mortality Over Time

30 1

0.9 1 *
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0.3 1

0.2 - *

0.1 1
0

20 1 [
0
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reading index

Mortality per 1000 live births

0 1 2 3 4 5 6 7

1960 1962 1964 1866 1968 1970 1972 1974 1976 1978 1980

Year

shoe size

Not all examples are so obvious...



Establishing causation

It appears that lung cancer is associated with smoking.

How do we know that both of these variables are not being affected by an
unobserved third (lurking) variable?

For instance, what if there is a genetic predisposition that causes people to

both get lung cancer and become addicted to smoking, but the smoking itself
doesn’t CAUSE lung cancer?

We can evaluate the association using the
following criteria:

1) The association is strong.
2) The association is consistent.

3) Higher doses are associated with stronger
responses.

4) Alleged cause precedes the effect.
5) The alleged cause is plausible.




Caution before rushing into a correlation or a
regression analysis

Do not use a regression on inappropriate data.

Pattern in the residuals
Presence of large outliers Use residual plots for help.

Clumped data falsely appearing linear

Beware of lurking variables.
Avoid extrapolating (going beyond interpolation).
Recognize when the correlation/regression is performed on averages.

A relationship, however strong, does not itself imply causation.
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