Lecture 8

Simple Linear Regression (cont.)

Section 10.1. Objectives:

Statistical model for linear regression

- Data for simple linear regression
- Estimation of the parameters
- Confidence intervals and significance tests
- Confidence intervals for mean response

VS.

Prediction intervals (for future observation)

Settings of Simple Linear Regression

Now we will think of the least squares regression line computed from the sample as an estimate of the true regression line for the population.

 \checkmark Different Notations than Ch. 2.Think b₀=a, b₁=b.

Type of line	Least Squares Regression equation of line	slope	y-intercept
Ch. 2 General	$\hat{y} = a + bx$	b	a
Ch. 10 Sample	$\mu_{\hat{y}} = b_0 + b_1 x$	b ₁	b ₀
Ch. 10 Population	$\mu_{y} = \beta_{0} + \beta_{1} x$	β_1	β_0

The statistical model for simple linear regression:

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- Data: n observations in the form (x_1, y_1) , (x_2, y_2) , ... (x_n, y_n) .
- The **deviations** \mathcal{E}_i are assumed to be independent and normally distributed with mean 0 and constant standard deviation σ .

The parameters of the model are: β_0 , β_1 , and σ .

ANOVA: groups with same SD and different means:

Figure 10-1 *Introduction to the Practice of Statistics, Fifth Edition* © 2005 W. H. Freeman and Company Linear regression: many groups with means depending linearly on quantitative x

Figure 10-2 Introduction to the Practice of Statistics, Fifth Edition © 2005 W. H. Freeman and Company

Example: 10.1 page 636

• See R code.

Figure 10-3 *Introduction to the Practice of Statistics, Fifth Edition* © 2005 W.H.Freeman and Company

Figure 10-4 *Introduction to the Practice of Statistics, Fifth Edition* © 2005 W.H.Freeman and Company

Model Summary

Model	R	R Square	Std. Error of the Estimate
1	.946	.895	.9995

a Predictors: (Constant), LOGMPH

		Coefficients		t	Sig.	95% Confidence	Interval for B
Model		В	Std. Error			Lower Bound	Upper Bound
1	(Constant)	-7.796	1.155	-6.750	.000	-10.108	-5.484
	LOGMPH	7.874	.354	22.237	.000	7.165	8.583

a Dependent Variable: MPG

Figure 10-5a *Introduction to the Practice of Statistics, Fifth Edition* © 2005 W.H.Freeman and Company

The regression MPG = - 7.80 +	equation is 7.87 logmph			
Predictor	Coef	StDev	т	Р
Constant	-7.796	1.155	-6.75	0.000
logmph	7.8742	0.3541	22.24	0.000
S = 0.9995	R-Sq = 89.5	5% R-Sq(a	adj) = 89.	3%

Figure 10-5b Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H.Freeman and Company Simple linear regression results: Dependent Variable: MPG Independent Variable: logmph MPG = 7.7962503 + 7.874219 logmph Sample size: 60 R (correlation coefficient) = 0.9461 Rñsq = 0.8950163 Estimate of error standard deviation: 0.99951637

Parameter estimates:

Parameter	Estimate	Std. Err.	DF	T -Stat	P-Value
Intercept	-7.7962503	1.1549443	58	-6.7503257	<0.0001
Slope	7.874219	0.3541106	58	22.236609	<0.0001

⊠ n	npgmph60.xls							
	A	В	С	D	Е	F	G	F
1	SUMMARY OUTPUT							
2								
3	Regression Statistics							
4	Multiple R	0.946053015						
5	R Square	0.895016308						
6	Adjusted R Square	0.893206244						
7	Standard Error	0.999516364						
8	Observations	60						
9								
10	ANOVA							
11		df	SS	MS	F	Significance F		
12	Regression	1	493.9885883	493.9886	494.4668	4.50949E-30		
13	Residual	58	57.94391174	0.999033				
14	Total	59	551.9325					
15								
16		Coefficients	Standard Error	tStet	P-value	Lower 95%	Upper 95%	
17	intercept	-7.796250129	1.154944262	-6.75033	7.69E-09	-10.10812052	-5.48437974	
18	logmph	7.874219013	0.354110611	22.23661	4.51E-30	7.165390143	8583047883	Ţ
H 4	Sheet1 Sheet2	2 <u>/</u> Sheet3 /			•		Þ	Γ/

Figure 10-5d Introduction to the Practice of Statistics, Fifth Edition

© 2005 W.H. Freeman and Company

	Root MSE			0.99952	R-9	Square (0.8950	
	Dependent Mean			17.72500	Ad	jR-Sq C).8932	
	Coeff Var			5.63902				
		Parameter	Standard					
Variable	DF	Estimate	Error	t Value	Pr > t	95% Confid	ence Limits	
Intercept	1	-7.79625	1.15494	-6.75	<.0001	-10.10812	-5.48438	
logmph	1	7.87422	0.35411	22.24	<.0001	7.16539	8.58305	

Figure 10-5e Introduction to the Practice of Statistics, Fifth Edition © 2005 W.H.Freeman and Company

Verifying the Conditions for inference:

- Look to the errors. They are supposed to be: -independent, normal and have the same variance.
- The errors are estimated using residuals: $(y \hat{y})$

Normal quantile plot for residuals:

The plot is fairly straight, supporting the assumption of normally distributed

residuals.

Residual plot:

The spread of the residuals is

reasonably random—no clear pattern.

The relationship is indeed linear.

But we see one low residual (3.8, -4)and one potentially influential point (2.5, 0.5).

→ Data okay for inference.

Residuals are randomly scattered → good!

Curved pattern

 \rightarrow the relationship is **not linear**.

Change in variability across plot $\rightarrow \sigma$ not equal for all values of *x*.

CONFIDENCE INTERVAL FOR REGRESSION PARAMETERS

Estimating the regression parameters β_0 , β_1 is a case of one-sample inference with unknown population variance.

 \rightarrow We rely on the *t* distribution, with *n* – 2 degrees of freedom.

A level *C* confidence interval for the slope, β_1 , is proportional to the standard error of the least-squares slope:

 $b_1 \pm t^* SE_{b1}$

A level C confidence interval for the intercept, β_0 , is proportional to the standard error of the least-squares intercept:

 $b_0 \pm t^* SE_{b0}$

t* is the critical value for the t (n-2) distribution with area C between $-t^*$ and $+t^*$.

Significance test for the slope

We can test the hypothesis H_0 : $\beta_1 = 0$ versus a 1 or 2 sided alternative.

We calculate

 $H_a: \beta_1 > 0$ is $P(T \ge t)$

which has the t(n-2)

distribution to find the

p-value of the test.

 $H_a: \beta_1 < 0$ is $P(T \le t)$

<u>Note</u>: Software typically provides $H_a: \beta_1 \neq 0$ is $2P(T \geq |t|)$ two-sided p-values.

Testing the hypothesis of no relationship

We may look for evidence of a **significant relationship** between variables *x* and *y* in the population from which our data were drawn.

For that, we can test the hypothesis that the regression slope parameter β is equal to zero.

 $H_0: \beta_1 = 0$ vs. $H_0: \beta_1 \neq 0$

slope $b_1 = r \frac{s_y}{s_x}$ Testing H_0 : $\beta_1 = 0$ also allows to test the **hypothesis of no correlation** between *x* and *y* in the population.

<u>Note</u>: A test of hypothesis for β_0 is irrelevant (β_0 is often not even achievable).

Using technology

Computer software runs all the computations for regression analysis.

Here is software output for the car speed/gas efficiency example.

```
R R Console
File Edit Misc Packages Help
> summary(model.2 logmodel)
Call:
lm(formula = MPG ~ LOGMPH, data = eg10.1)
Residuals:
    Min
            10 Median
                            30
                                   Max
-3.7172 -0.5187 0.1121 0.6593 2.1490
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.7963 1.1549 -6.751 7.68e-09 ***
                    0.3541 22.237 < 2e-16 ***
LOGMPH
             7.8742
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9995 on 58 degrees of freedom
Multiple R-Squared: 0.895,
                             Adjusted R-squared: 0.8932
F-statistic: 494.5 on 1 and 58 DF, p-value: < 2 2e-16
      Slope
                                 p-values for tests
Intercept
                                     of significance
```


The *t*-test for regression slope is highly significant (p < 0.001). There is a significant relationship between average car speed and gas efficiency. To obtain confidence intervals use the function confint()

Exercise: Calculate (manually) confidence intervals for the mean increase in gas consumption with every unit of (logmph) increase. Compare with software.

confint(model.2_logmodel) 2.5 % 97.5 % LOGMPH 7.165435 8.583055

Confidence interval for μ_v

Using inference, we can also calculate a **confidence interval for the population mean** μ_y of all responses *y* when *x* takes the value *x** (within the range of data tested):

This interval is centered on \hat{y} , the unbiased estimate of μ_{v} .

The true value of the population mean μ_y at a given value of *x*, will indeed be within our confidence interval in *C*% of all intervals calculated from many different random samples.

The level C confidence interval for the mean response μ_v at a given

value x* of x is centered on \hat{y} (unbiased estimate of μ_{v}):

$$\hat{y} \pm t_{n-2}^* SE_{\mu^*}$$

 t^* is the t critical for the t (n - 2) distribution with area C between $-t^*$ and $+t^*$.

A separate confidence interval is calculated for μ_y along all the values that *x* takes.

Graphically, the series of confidence intervals is shown as a continuous interval on either side of \hat{y} .

Inference for prediction

One use of regression is for **predicting** the value of *y*, \hat{y} , for any value of *x* within the range of data tested: $\hat{y} = b_0 + b_1 x$.

But the regression equation depends on the particular sample drawn. More reliable predictions require statistical inference:

To estimate an *individual* response *y* for a given value of *x*, we use a **prediction interval**.

If we randomly sampled many times, there would be many different values of *y* obtained for a particular *x* following $N(0, \sigma)$ around the mean response μ_y .

The level C prediction interval for a single observation on y when x

takes the value x* is:

$$C \pm t_{n-2}^* SE_{\hat{y}}$$

 t^* is the t critical for the t (n - 2)distribution with area C between $-t^*$ and $+t^*$.

The prediction interval represents mainly the error from the normal distribution of the residuals ε_{i} .

Graphically, the series confidence intervals is shown as a continuous interval on either side of \hat{y} .

■ The **confidence interval for** μ_y contains with C% confidence the population mean μ_y of all responses at a particular value of *x*.

The prediction interval contains C% of all the individual values taken by y at a particular value of x.

95% prediction interval for \hat{y} 95% confidence interval for μ_y

Estimating μ_y uses a smaller confidence interval than estimating an individual in the population (sampling distribution narrower

than population distribution).

1918 flu epidemics

1918 influenza epidemic					
Date	# Cases	# Deaths			
week 1	36	0			
week 2	531	0			
week 3	4233	130			
week 4	8682	552			
week 5	7164	738			
week 6	2229	414			
week 7	600	198			
week 8	164	90			
week 9	57	56			
week 10	722	50			
week 11	1517	71			
week 12	1828	137			
week 13	1539	178			
week 14	2416	194			
week 15	3148	290			
week 16	3465	310			
week 17	1440	149			

1918 influenza epidemic

We look at the relationship between the number of deaths in a given week and the number of new diagnosed cases one week earlier. 1918 flu epidemic: Relationship between the number of deaths in a given week and the number of new diagnosed cases one week earlier.

EXCEL

Regression Statistics	
Multiple R	0.911
R Square	0.830
Adjusted R Square	0.82
Standard Error	85.07
Observations	16.00

Coe	fficients	St. Error	t Stat	<i>P-value</i>	Lower 95%	Upper 95%
Intercept	49.292	29.845	1.652	0.1209	(14.720)	113.304
FluCases0	0.072	0.009	8.263	0.0000	0.053	0.091
	b ₁	SE_{b1}		P-value f	or	
				$H_0: \beta_1 =$	0	

P-value very small \rightarrow reject $H_0 \rightarrow \beta_1$ significantly different from 0 There is a **significant relationship** between the number of flu cases and the number of deaths from flu a week later.

Cl for mean weekly death count one week after 4000 flu cases are diagnosed: μ_y within about 300–380.

Prediction interval for a weekly death count one week after 4000 flu cases are diagnosed: \hat{y} within about 180–500 deaths.

Least squares regression line 95% prediction interval for \hat{y} 95% confidence interval for μ_y

What is this?

A 90% prediction interval for the height (above) and a 90% prediction interval for the weight (below) of male children, ages 3 to 18.

