Lecture 9

Simple Linear Regression ANOVA for regression (10.2)

Analysis of variance for regression

The regression model is:

Data = fit + residual
$$y_i = (\beta_0 + \beta_1 x_i) + (\varepsilon_i)$$

where the ε_i are **independent** and **normally** distributed $N(0, \sigma)$, and σ is the same for all values of *x*.

For any fixed x, the responses y follow a Normal distribution with standard deviation σ .

$$y$$

$$\mu_y = \beta_0 + \beta_1 x$$

$$x$$

Sums of squares measure the variation present in responses. It can be partitioned as:

For a simple linear relationship, the ANOVA tests the hypotheses

 $H_0: \beta_1 = 0$ versus $H_a: \beta_1 \neq 0$

by comparing MSM (model) to MSE (error): F = MSM/MSE

When H_0 is true, F follows the F(1, n - 2) distribution. The p-value is P(> F).

The ANOVA test and the two-sided t-test for H_0 : $\beta_1 = 0$ yield the same p-value. Software output for regression may provide t, F, or both, along with the p-value.

ANOVA table

Source	Sum of squares SS	DF	Mean square MS	F	P-value
Model	$\sum (\hat{y}_i - \overline{y})^2$	1	SSG/DFG	MSG/MSE	Tail area above F
Error	$\sum (y_i - \hat{y}_i)^2$	n – 2	SSE/DFE		
Total	$\sum (y_i - \overline{y})^2$	<i>n</i> – 1			

SST = SSM + SSE

DFT = DFM + DFE

The standard deviation of the sampling distribution, *s*, for *n* sample data points is calculated from the residuals $e_i = y_i - \hat{y}_i$

$$s^{2} = \frac{\sum e_{i}^{2}}{n-2} = \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{n-2} = \frac{SSE}{DFE} = MSE$$

s is an unbiased estimate of the regression standard deviation σ .

Coefficient of determination, r^2

The coefficient of determination, *r*², square of the correlation coefficient, **is the percentage of the variance in** *y* **(vertical scatter from the regression line) that can be explained by changes in** *x***.**

 r^{2} = variation in y caused by x (i.e., the regression line) total variation in observed y values around the mean

$$r^{2} = \frac{\sum (\hat{y}_{i} - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}} = \frac{\text{SSM}}{\text{SST}}$$

What is the relationship between the average speed a car is driven and its fuel efficiency?

We plot fuel efficiency (in miles per gallon, MPG) against average speed (in miles per hour, MPH) for a random sample of 60 cars. The relationship is curved.

When speed is log transformed (log of miles per hour, LOGMPH) the new scatterplot shows a positive, **linear** relationship.

Calculations for regression inference

To estimate the parameters of the regression, we calculate the standard errors for the estimated regression coefficients.

The standard error of the least-squares slope β_1 is:

$$SE_{b1} = \frac{S}{\sqrt{\sum \left(x_i - \overline{x}_i\right)^2}}$$

The standard error of the intercept β_0 is:

$$SE_{b0} = s \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{\sum (x_i - \overline{x}_i)^2}}$$

To estimate or predict future responses, we calculate the following standard errors

The standard error of the mean response μ_v is:

$$SE_{\hat{\mu}} = s \sqrt{\frac{1}{n} + \frac{(x^* - \overline{x})^2}{\sum (x - \overline{x})^2}}$$

The standard error for predicting an individual response \hat{y} is:

$$SE_{\hat{y}} = s\sqrt{1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{\sum (x - \overline{x})^2}}$$

1918 flu epidemics

1918 influenza epidemic						
Date	# Cases	# Deaths				
week 1	36	0				
week 2	531	0				
week 3	4233	130				
week 4	8682	552				
week 5	7164	738				
week 6	2229	414				
week 7	600	198				
week 8	164	90				
week 9	57	56				
week 10	722	50				
week 11	1517	71				
week 12	1828	137				
week 13	1539	178				
week 14	2416	194				
week 15	3148	290				
week 16	3465	310				
week 17	1440	149				

1918 influenza epidemic

The line graph suggests that about 7 to 8% of those diagnosed with the flu died within about a week of diagnosis. We look at the relationship between the number of deaths in a given week and the number of new diagnosed cases one week earlier.

Inference for correlation

To test for the null hypothesis of no linear association, we have the choice of also using the correlation parameter ρ .

O When *x* is clearly the explanatory variable, this test is equivalent to testing the hypothesis H_0 : $\beta = 0$.

$$b_1 = r \frac{s_y}{s_x}$$

- When there is no clear explanatory variable (e.g., arm length vs. leg length), a regression of x on y is not any more legitimate than one of y on x. In that case, the correlation test of significance should be used.
- When both *x* and *y* are normally distributed H_0 : $\rho = 0$ tests for no association of any kind between *x* and *y*—not just linear associations.

The test of significance for ρ uses the one-sample *t*-test for: H_0 : $\rho = 0$.

We compute the *t* statistics for sample size *n* and correlation coefficient *r*.

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

$$H_a: \rho > 0 \text{ is } P(T \ge t)$$

The p-value is the area

under t(n-2) for values of

T as extreme as t or more

in the direction of H_a :

 $H_a: \rho < 0$ is $P(T \le t)$

 $H_a: \rho \neq 0$ is $2P(T \geq |t|)$

Relationship between average car speed and fuel efficiency

Correlations					
	LOGMPH	MPG			
Pearson Correlation	1	.946**	r		
Sig. (2-tailed)	•	.000	p-value		
Ν	60	60	n		
Pearson Correlation	.946**	1			
Sig. (2-tailed)	.000	•			
Ν	60	60			
	Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N	LOGMPHPearson Correlation1Sig. (2-tailed).N60Pearson Correlation.946**Sig. (2-tailed).000N60	LOGMPHMPGPearson Correlation1.946**Sig. (2-tailed)000N6060Pearson Correlation.946**1Sig. (2-tailed).000.N6060		

******. Correlation is significant at the 0.01 level (2-tailed).

There is a significant correlation (*r* is not 0) between fuel efficiency (MPG) and the logarithm of average speed (LOGMPH).

