Problem 1 solution:

In this problem, the independent variable is t, the dependent variable is y. Writing the equation in the form

$$
\frac{d y}{d t}=t y+\sin ^{2} t
$$

we conclude that $f(t, y)=t y+\sin ^{2} t, \partial f(t, y) / \partial y=t$. Both functions, f and $\partial f / \partial y$, are continuous on the whole $t y$-plane. So, Theorem 1 applies for any initial condition, in particular, for $y(\pi)=5$.

Problem 2 solution: not given
Problem 3 solution:

We have

$$
\begin{aligned}
& \frac{3 v d v}{1-4 v^{2}}=\frac{d x}{x} \quad \Rightarrow \quad \int \frac{3 v d v}{1-4 v^{2}}=\int \frac{d x}{x} \\
& \Rightarrow \quad-\frac{3}{8} \int \frac{d u}{u}=\int \frac{d x}{x} \quad\left(u=1-4 v^{2}, d u=-8 v d v\right) \\
& \Rightarrow \quad-\frac{3}{8} \ln \left|1-4 v^{2}\right|=\ln |x|+C_{1} \\
& \Rightarrow \quad 1-4 v^{2}= \pm \exp \left[-\frac{8}{3} \ln |x|+C_{1}\right]=C x^{-8 / 3},
\end{aligned}
$$

where $C= \pm e^{C_{1}}$ is any nonzero constant. Separating variables, we lost constant solutions satisfying

$$
1-4 v^{2}=0 \quad \Rightarrow \quad v= \pm \frac{1}{2}
$$

which can be included in the above formula by letting $C=0$. Thus,

$$
v= \pm \frac{\sqrt{1-C x^{-8 / 3}}}{2}, \quad C \text { arbitrary }
$$

is a general solution to the given equation.

Problem 4 solution: In the order presented they are:
Linear
Neither
Neither

Linear

Both

Linear

Problem 5 solution:
Since $\mu(x)=\exp \left(\int 4 d x\right)=e^{4 x}$, we have

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{4 x} y\right)=e^{4 x} e^{-x}=e^{3 x} \\
& \Rightarrow \quad y=e^{-4 x} \int e^{3 x} d x=\frac{e^{-x}}{3}+C e^{-4 x} .
\end{aligned}
$$

Substituting the initial condition, $y=4 / 3$ at $x=0$, yields

$$
\frac{4}{3}=\frac{1}{3}+C \quad \Rightarrow \quad C=1,
$$

and so $y=e^{-x} / 3+e^{-4 x}$ is the solution to the given initial value problem.

