## Section 2.4 problems:

Problem 4 solution:
First we note that $M(x, y)=\sqrt{-2 y-y^{2}}$ depends only on $y$ and $N(x, y)=3+2 x-x^{2}$ depends only on $x$. So, the equation is separable. It is not linear with $x$ as independent variable because $M(x, y)$ is not a linear function of $y$. Similarly, it is not linear with $y$ as independent variable because $N(x, y)$ is not a linear function of $x$. Computing

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=\frac{1}{2}\left(-2 y-y^{2}\right)^{-1 / 2}(-2-2 y)=-\frac{1+y}{\sqrt{-2 y-y^{2}}} \\
& \frac{\partial N}{\partial x}=2-2 x
\end{aligned}
$$

we see that the equation (5) in Theorem 2 is not satisfied. Therefore, the equation is not exact.

Problem 6 solution:
It is separable, linear with $x$ as independent variable, and not exact because

$$
\frac{\partial M}{\partial y}=x \neq \frac{\partial N}{\partial x}=0 .
$$

## Problem 8 solution:

Here, $M(x, y)=2 x+y \cos (x y), N(x, y)=x \cos (x y)-2 y$. Since $M(x, y) / N(x, y)$ cannot be expressed as a product $f(x) g(y)$, the equation is not separable. We also conclude that it is not linear because $M(x, y) / N(x, y)$ is not a linear function of $y$ and $N(x, y) / M(x, y)$ is not a linear function of $x$. Taking partial derivatives

$$
\frac{\partial M}{\partial y}=\cos (x y)-x y \sin (x y)=\frac{\partial N}{\partial x}
$$

we see that the equation is exact.

Problem 16 solution:
Computing

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=\frac{\partial}{\partial y}\left(y e^{x y}-y^{-1}\right)=e^{x y}+x y e^{x y}+y^{-2} \\
& \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}\left(x e^{x y}+x y^{-2}\right)=e^{x y}+x y e^{x y}+y^{-2},
\end{aligned}
$$

we see that the equation is exact. Therefore,

$$
F(x, y)=\int\left(y e^{x y}-y^{-1}\right) d x=e^{x y}-x y^{-1}+g(y) .
$$

So,

$$
\frac{\partial F}{\partial y}=x e^{x y}+x y^{-2}+g^{\prime}(y)=N(x, y) \quad \Rightarrow \quad g^{\prime}(y)=0 .
$$

Thus, $g(y)=0$, and the answer is $e^{x y}-x y^{-1}=C$.

Problem 20 solution:
We find

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=\frac{\partial}{\partial y}[y \cos (x y)]=\cos (x y)-x y \sin (x y) \\
& \frac{\partial N}{\partial x}=\frac{\partial}{\partial x}[x \cos (x y)]=\cos (x y)-x y \sin (x y)
\end{aligned}
$$

Therefore, the equation is exact and

$$
\begin{aligned}
& F(x, y)=\int\left(x \cos (x y)-y^{-1 / 3}\right) d y=\sin (x y)-\frac{3}{2} y^{2 / 3}+h(x) \\
& \frac{\partial F}{\partial x}=y \cos (x y)+h^{\prime}(x)=\frac{2}{\sqrt{1-x^{2}}}+y \cos (x y) \\
& \Rightarrow \quad h^{\prime}(x)=\frac{2}{\sqrt{1-x^{2}}} \quad \Rightarrow \quad h(x)=2 \arcsin x,
\end{aligned}
$$

and a general solution is given by

$$
\sin (x y)-\frac{3}{2} y^{2 / 3}+2 \arcsin x=C .
$$

## Problem 26 solution:

Taking partial derivatives $M_{y}$ and $N_{x}$, we find that the equation is exact. So,

$$
\begin{aligned}
& F(x, y)=\int(\tan y-2) d x=x(\tan y-2)+g(y), \\
& \frac{\partial F}{\partial y}=x \sec ^{2} y+g^{\prime}(y)=x \sec ^{2} y+y^{-1} \\
& \Rightarrow \quad g^{\prime}(y)=y^{-1} \quad \Rightarrow \quad g(y)=\ln |y|
\end{aligned}
$$

and

$$
x(\tan y-2)+\ln |y|=C
$$

is a general solution. Substituting $y(0)=1$ yields $C=0$. Therefore, the answer is

$$
x(\tan y-2)+\ln y=0
$$

(We removed the absolute value sign in the logarithmic function because $y(0)>0$.)

## Problem 30 solution:

(a) Differentiating, we find that

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=5 x^{2}+12 x^{3} y+8 x y \\
& \frac{\partial N}{\partial x}=6 x^{2}+12 x^{3} y+6 x y
\end{aligned}
$$

Since $M_{y} \neq N_{x}$, the equation is not exact.
(b) Multiplying given equation by $x^{n} y^{m}$ and taking partial derivatives of new coefficients yields

$$
\begin{aligned}
\frac{d}{d y}\left(5 x^{n+2} y^{m+1}\right. & \left.+6 x^{n+3} y^{m+2}+4 x^{n+1} y^{m+2}\right) \\
& =5(m+1) x^{n+2} y^{m}+6(m+2) x^{n+3} y^{m+1}+4(m+2) x^{n+1} y^{m+1} \\
\frac{d}{d x}\left(2 x^{n+3} y^{m}+\right. & \left.3 x^{n+4} y^{m+1}+3 x^{n+2} y^{m+1}\right) \\
& =2(n+3) x^{n+2} y^{m}+3(n+4) x^{n+3} y^{m+1}+3(n+2) x^{n+1} y^{m+1}
\end{aligned}
$$

In order that these polynomials are equal, we must have equal coefficients at similar monomials. Thus, $n$ and $m$ must satisfy the system

$$
\left\{\begin{array}{l}
5(m+1)=2(n+3) \\
6(m+2)=3(n+4) \\
4(m+2)=3(n+2)
\end{array}\right.
$$

Solving, we obtain $n=2$ and $m=1$. Therefore, multiplying the given equation by $x^{2} y$ yields an exact equation.
(c) We find

$$
\begin{aligned}
F(x, y) & =\int\left(5 x^{4} y^{2}+6 x^{5} y^{3}+4 x^{3} y^{3}\right) d x \\
& =x^{5} y^{2}+x^{6} y^{3}+x^{4} y^{3}+g(y)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{\partial F}{\partial y} & =2 x^{5} y+3 x^{6} y^{2}+3 x^{4} y^{2}+g^{\prime}(y) \\
& =2 x^{5} y+3 x^{6} y^{2}+3 x^{4} y^{2} \quad \Rightarrow \quad g(y)=0
\end{aligned}
$$

and a general solution to the given equation is

$$
x^{5} y^{2}+x^{6} y^{3}+x^{4} y^{3}=C .
$$

## Section 2.5 problems

Problem 10 solution:

Since

$$
\frac{\partial M}{\partial y}=1, \quad \frac{\partial N}{\partial x}=-1, \quad \text { and } \quad \frac{M_{y}-N_{x}}{N}=\frac{2}{-x}
$$

the equation has an integrating factor

$$
\mu(x)=\exp \left[\int\left(-\frac{2}{x}\right) d x\right]=\exp (-2 \ln x)=x^{-2}
$$

Therefore, the equation

$$
x^{-2}\left[\left(x^{4}-x+y\right) d x-x d y\right]=\left(x^{2}-x^{-1}+x^{-2} y\right) d x-x^{-1} d y=0
$$

is exact. Therefore,

$$
\begin{aligned}
& F(x, y)=\int\left(-x^{-1}\right) d y=-x^{-1} y+h(x) \\
& \frac{\partial F}{\partial x}=x^{-2} y+h^{\prime}(x)=x^{2}-x^{-1}+x^{-2} y \\
& \Rightarrow \quad h^{\prime}(x)=x^{2}-x^{-1} \quad \Rightarrow \quad h(x)=\frac{x^{3}}{3}-\ln |x| \\
& \Rightarrow \quad-\frac{y}{x}+\frac{x^{3}}{3}-\ln |x|=C \quad \Rightarrow \quad y=\frac{x^{4}}{3}-x \ln |x|-C x .
\end{aligned}
$$

Together with the lost solution, $x \equiv 0$, this gives a general solution to the problem.

Problem 14 solution:

Multiplying the given equation by $x^{n} y^{m}$ yields

$$
\left(12 x^{n} y^{m}+5 x^{n+1} y^{m+1}\right) d x+\left(6 x^{n+1} y^{m-1}+3 x^{n+2} y^{m}\right) d y=0
$$

Therefore,

$$
\begin{aligned}
& \frac{\partial M}{\partial y}=12 m x^{n} y^{m-1}+5(m+1) x^{n+1} y^{m} \\
& \frac{\partial N}{\partial x}=6(n+1) x^{n} y^{m-1}+3(n+2) x^{n+1} y^{m}
\end{aligned}
$$

Matching the coefficients, we get a system

$$
\left\{\begin{array}{l}
12 m=6(n+1) \\
5(m+1)=3(n+2)
\end{array}\right.
$$

to determine $n$ and $m$. This system has the solution $n=3, m=2$. Thus, the given equation multiplied by $x^{3} y^{2}$, that is,

$$
\left(12 x^{3} y^{2}+5 x^{4} y^{3}\right) d x+\left(6 x^{4} y+3 x^{5} y^{2}\right) d y=0
$$

is exact. We compute

$$
\begin{aligned}
& F(x, y)=\int\left(12 x^{3} y^{2}+5 x^{4} y^{3}\right) d x=3 x^{4} y^{2}+x^{5} y^{3}+g(y) \\
& \frac{\partial F}{\partial y}=6 x^{4} y+3 x^{5} y^{2}+g^{\prime}(y)=6 x^{4} y+3 x^{5} y^{2} \\
& \Rightarrow \quad g^{\prime}(y)=0 \quad \Rightarrow \quad g(y)=0
\end{aligned}
$$

and so $3 x^{4} y^{2}+x^{5} y^{3}=C$ is a general solution to the given equation.

## Problem 20 solution:

For the equation

$$
e^{\int P(x) d x}[P(x) y-Q(x)] d x+e^{\int P(x) d x} d y=0
$$

we compute

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(e^{\int P(x) d x}[P(x) y-Q(x)]\right)=e^{\int P(x) d x} P(x) \\
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(e^{\int P(x) d x}\right)=e^{\int P(x) d x} \frac{d}{d x}\left(\int P(x) d x\right)=e^{\int P(x) d x} P(x)
\end{aligned}
$$

Therefore, $\partial M / \partial y=\partial N / \partial x$, and the equation is exact.

