Section 2.6 problems:

Problems 1-8: Please see the answers to the odd numbered problems at the end of the book. For the even numbers here are the answers:
2. We can write the equation in the form

$$
\frac{d x}{d t}=\frac{x^{2}-t^{2}}{2 t x}=\frac{1}{2}\left(\frac{x}{t}-\frac{t}{x}\right),
$$

which shows that it is homogeneous. At the same time, it is a Bernoulli equation because it can be written as

$$
\frac{d x}{d t}-\frac{1}{2 t} x=-\frac{t}{2} x^{-1}
$$

4. This is a Bernoulli equation.
5. Dividing this equation by $\theta d \theta$, we obtain

$$
\frac{d y}{d \theta}-\frac{1}{\theta} y=\frac{1}{\sqrt{\theta}} y^{1 / 2} .
$$

Therefore, it is a Bernoulli equation. It can also be written in the form

$$
\frac{d y}{d \theta}=\frac{y}{\theta}+\sqrt{\frac{y}{\theta}},
$$

and so it is homogeneous too.
8. We can rewrite the equation in the form

$$
\frac{d y}{d x}=\frac{\sin (x+y)}{\cos (x+y)}=\tan (x+y) .
$$

Thus, it is of the form $d y / d x=G(a x+b y)$ with $G(t)=\tan t$.

Problem 12 solution:
From

$$
\frac{d y}{d x}=-\frac{x^{2}+y^{2}}{2 x y}=-\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}\right)
$$

making the substitution $v=y / x$, we obtain

$$
\begin{aligned}
& v+x \frac{d v}{d x}=-\frac{1}{2}\left(\frac{1}{v}+v\right)=-\frac{1+v^{2}}{2 v} \quad \Rightarrow \quad x \frac{d v}{d x}=-\frac{1+v^{2}}{2 v}-v=-\frac{1+3 v^{2}}{2 v} \\
& \Rightarrow \quad \frac{2 v d v}{1+3 v^{2}}=-\frac{d x}{x} \quad \Rightarrow \quad \int \frac{2 v d v}{1+3 v^{2}}=-\int \frac{d x}{x} \\
& \Rightarrow \quad \frac{1}{3} \ln \left(1+3 v^{2}\right)=-\ln |x|+C_{2} \quad \Rightarrow \quad 1+3 v^{2}=C_{1}|x|^{-3},
\end{aligned}
$$

where $C_{1}=e^{3 C_{2}}$ is any positive constant. Making the back substitution, we finally get

$$
\begin{aligned}
& 1+3\left(\frac{y}{x}\right)^{2}=\frac{C_{1}}{|x|^{3}} \quad \Rightarrow \quad 3\left(\frac{y}{x}\right)^{2}=\frac{C_{1}}{|x|^{3}}-1=\frac{C_{1}-|x|^{3}}{|x|^{3}} \\
& \Rightarrow 3|x| y^{2}=C_{1}-|x|^{3} \quad \Rightarrow \quad 3|x| y^{2}+|x|^{3}=C_{1} \quad \Rightarrow \quad 3 x y^{2}+x^{3}=C,
\end{aligned}
$$

where $C= \pm C_{1}$ is any nonzero constant.

Problem 20 solution:
Substitution $z=x-y$ yields

$$
\begin{aligned}
& 1-\frac{d z}{d x}=\sin z \quad \Rightarrow \quad \frac{d z}{d x}=1-\sin z \quad \Rightarrow \quad \frac{d z}{1-\sin z}=d x \\
& \Rightarrow \quad \int \frac{d z}{1-\sin z}=\int d x=x+C
\end{aligned}
$$

The left-hand side integral can be found as follows.

$$
\begin{aligned}
\int \frac{d z}{1-\sin z} & =\int \frac{(1+\sin z) d z}{1-\sin ^{2} z}=\int \frac{(1+\sin z) d z}{\cos ^{2} z} \\
& =\int \sec ^{2} z+\int \tan z \sec z d z=\tan z+\sec z
\end{aligned}
$$

Thus, a general solution is given implicitly by

$$
\tan (x-y)+\sec (x-y)=x+C
$$

Problem 24 solution:

We divide this Bernoulli equation by $y^{1 / 2}$ and make a substitution $v=y^{1 / 2}$.

$$
\begin{aligned}
& y^{-1 / 2} \frac{d y}{d x}+\frac{1}{x-2} y^{1 / 2}=5(x-2) \\
& \Rightarrow \quad 2 \frac{d v}{d x}+\frac{1}{x-2} v=5(x-2) \quad \Rightarrow \quad \frac{d v}{d x}+\frac{1}{2(x-2)} v=\frac{5(x-2)}{2} .
\end{aligned}
$$

An integrating factor for this linear equation is

$$
\mu(x)=\exp \left[\int \frac{d x}{2(x-2)}\right]=\sqrt{|x-2|} .
$$

Therefore,

$$
\begin{aligned}
v(x) & =\frac{1}{\sqrt{|x-2|}} \int \frac{5(x-2) \sqrt{|x-2|}}{2} d x \\
& =\frac{1}{\sqrt{|x-2|}}\left(|x-2|^{5 / 2}+C\right)=(x-2)^{2}+C|x-2|^{-1 / 2}
\end{aligned}
$$

Since $y=v^{2}$, we finally get

$$
y=\left[(x-2)^{2}+C|x-2|^{-1 / 2}\right]^{2}
$$

In addition, $y \equiv 0$ is a (lost) solution.
Problem 30 solution:
We make a substitution

$$
x=u+h, \quad y=v+k
$$

where h and k satisfy the system (14) in the text, i.e.,

$$
\left\{\begin{array}{l}
h+k-1=0 \\
k-h-5=0 .
\end{array}\right.
$$

Solving yields $h=-2, k=3$. Thus, $x=u-2$ and $y=v+3$. Since $d x=d u, d y=d v$, this substitution leads to the equation

$$
(u+v) d u+(v-u) d v=0 \quad \Rightarrow \quad \frac{d v}{d u}=\frac{u+v}{u-v}=\frac{1+(v / u)}{1-(v / u)}
$$

This is a homogeneous equation, and a substitution $z=v / u\left(v^{\prime}=z+u z^{\prime}\right)$ yields

$$
\begin{aligned}
& z+u \frac{d z}{d u}=\frac{1+z}{1-z} \quad \Rightarrow \quad u \frac{d z}{d u}=\frac{1+z}{1-z}-z=\frac{1+z^{2}}{1-z} \\
& \Rightarrow \quad \frac{(1-z) d z}{1+z^{2}}=\frac{d u}{u} \\
& \Rightarrow \quad \arctan z-\frac{1}{2} \ln \left(1+z^{2}\right)=\ln |u|+C_{1} \\
& \Rightarrow \quad 2 \arctan \frac{v}{u}-\ln \left[u^{2}\left(1+z^{2}\right)\right]=2 C_{1} \\
& \Rightarrow \quad 2 \arctan \frac{v}{u}-\ln \left(u^{2}+v^{2}\right)=C .
\end{aligned}
$$

The back substitution yields

$$
2 \arctan \left(\frac{y-3}{x+2}\right)-\ln \left[(x+2)^{2}+(y-3)^{2}\right]=C .
$$

