Section 6.1 problems:
Problem 10 solution:
Linearly independent; $-2 \tan ^{3} x-\sin x \cos x-\sin ^{2} x \tan x-2 \tan x$ Problem 14 solution:

Linearly independent; $(x+2) e^{x}$
Problem 18 solution:
$c_{1} e^{x}+c_{2} e^{-x}+c_{3} \cos x+c_{4} \sin x$
Problem 20 solution:
(a) $c_{1}+c_{2} x+c_{3} x^{3}+x^{2}$
(b) $2-x^{3}+x^{2}$

Problem 32 solution: not provided.

Section 4.2 problems:

Problem 10 solution:
Solving the auxiliary equation, $4 r^{2}-4 r+1=(2 r-1)^{2}=0$, we conclude that $r=1 / 2$ is its double root. Therefore, a general solution to the given differential equation is

$$
y(t)=c_{1} e^{t / 2}+c_{2} t e^{t / 2}
$$

Problem 16 solution:

The auxiliary equation for this problem, $r^{2}-4 r+3=0$, has roots $r=1,3$. Therefore, a general solution is given by

$$
y(t)=c_{1} e^{t}+c_{2} e^{3 t} \quad \Rightarrow \quad y^{\prime}(t)=c_{1} e^{t}+3 c_{2} e^{3 t}
$$

Substitution of $y(t)$ and $y^{\prime}(t)$ into the initial conditions yields the system

$$
\begin{aligned}
& y(0)=c_{1}+c_{2}=1 \\
& y^{\prime}(0)=c_{1}+3 c_{2}=1 / 3
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& c_{1}=4 / 3 \\
& c_{2}=-1 / 3
\end{aligned}
$$

Thus, the solution satisfying the given initial conditions is

$$
y(t)=\frac{4}{3} e^{t}-\frac{1}{3} e^{3 t} .
$$

Problem 30 solution:
These functions are linearly independent, because the equality $y_{1}(t) \equiv c y_{2}(t)$ would imply that

$$
t^{2} \cos (\ln t) \equiv c t^{2} \sin (\ln t) \quad \Rightarrow \quad \cot (\ln t) \equiv c
$$

on $(0,1)$, which is false.

Problem 44 solution:

First we find a general solution to the equation $y^{\prime \prime \prime}-2 y^{\prime \prime}-y^{\prime}+2 y=0$. Its characteristic equation, $r^{3}-2 r^{2}-r+2=0$, has roots $r=2,1$, and -1 , and so a general solution is given by

$$
y(t)=c_{1} e^{2 t}+c_{2} e^{t}+c_{3} e^{-t}
$$

Differentiating $y(t)$ twice yields

$$
y^{\prime}(t)=2 c_{1} e^{2 t}+c_{2} e^{t}-c_{3} e^{-t}, \quad y^{\prime \prime}(t)=4 c_{1} e^{2 t}+c_{2} e^{t}+c_{3} e^{-t}
$$

Now we substitute y, y^{\prime}, and $y^{\prime \prime}$ into the initial conditions and find c_{1}, c_{2}, and c_{3}.

$$
\begin{aligned}
& y(0)=c_{1}+c_{2}+c_{3}=2 \\
& y^{\prime}(0)=2 c_{1}+c_{2}-c_{3}=3 \\
& y^{\prime \prime}(0)=4 c_{1}+c_{2}+c_{3}=5
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& c_{1}=1 \\
& c_{2}=1 \\
& c_{3}=0 .
\end{aligned}
$$

Therefore, the solution to the given initial value problem is

$$
y(t)=e^{2 t}+e^{t}
$$

