Section 7.5 problems.

Problem 8 solution:
Applying the Laplace transform to both sides of the given equation and using Theorem 5 in Section 7.3 to express $\mathcal{L}\left\{y^{\prime \prime}\right\}$ and $\mathcal{L}\left\{y^{\prime}\right\}$ in terms of Y, we obtain

$$
\begin{aligned}
& \left(s^{2} Y-3\right)+4 Y=\frac{8}{s^{3}}-\frac{4}{s^{2}}+\frac{10}{s} \\
& \Rightarrow \quad Y \\
& \Rightarrow \quad \frac{1}{s^{2}+4}\left(3+\frac{8}{s^{3}}-\frac{4}{s^{2}}+\frac{10}{s}\right) \\
& \\
& =\frac{3 s^{3}+10 s^{2}-4 s+8}{s^{3}\left(s^{2}+2^{2}\right)}=\frac{2}{s^{3}}-\frac{1}{s^{2}}+\frac{2}{s}-2 \frac{s}{s^{2}+2^{2}}+2 \frac{2}{s^{2}+2^{2}} .
\end{aligned}
$$

Taking now the inverse Laplace transform and using its linearity and Table 7.1 from Section 7.2 yields

$$
y(t)=\mathcal{L}^{-1}\left\{\frac{2}{s^{3}}-\frac{1}{s^{2}}+\frac{2}{s}-2 \frac{s}{s^{2}+2^{2}}+2 \frac{2}{s^{2}+2^{2}}\right\}(t)=t^{2}-t+2-2 \cos 2 t+2 \sin 2 t
$$

Problem 22 solution:
Applying the Laplace transform to both sides of the given equation and using Theorem 5 in Section 7.3 to express $\mathcal{L}\left\{y^{\prime \prime}\right\}$ and $\mathcal{L}\left\{y^{\prime}\right\}$ in terms of Y, we obtain

$$
\left(s^{2} Y-2 s+1\right)-6(s Y-2)+5 Y=\frac{1}{(s-1)^{2}}
$$

Solving for $Y(s)$ yields

$$
\begin{aligned}
Y(s) & =\frac{1}{s^{2}-6 s+5}\left[2 s-13+\frac{1}{(s-1)^{2}}\right] \\
& =\frac{2 s^{3}-17 s^{2}+28 s-12}{(s-1)^{2}\left(s^{2}-6 s+5\right)}=\frac{2 s^{3}-17 s^{2}+28 s-12}{(s-1)^{3}(s-5)}
\end{aligned}
$$

Problem 26 solution:

Applying the Laplace transform to both sides of the given equation and using Theorem 5 in Section 7.3 to express $\mathcal{L}\left\{y^{\prime \prime \prime}\right\}, \mathcal{L}\left\{y^{\prime \prime}\right\}$ and $\mathcal{L}\left\{y^{\prime}\right\}$ in terms of Y, we obtain

$$
\left(s^{3} Y-s^{2}-4 s+2\right)+4\left(s^{2} Y-s-4\right)+(s Y-1)+Y=-\frac{12}{s}
$$

Solving for $Y(s)$ yields

$$
\begin{aligned}
Y(s) & =\frac{1}{s^{3}+4 s^{2}+s-6}\left(s^{2}+8 s+15-\frac{12}{s}\right) \\
& =\frac{s^{3}+8 s^{2}+15 s-12}{s\left(s^{3}+4 s^{2}+s-6\right)}=\frac{s^{3}+8 s^{2}+15 s-12}{s(s-1)(s+2)(s+3)} \\
& =\frac{1}{s-1}+\frac{1}{s+3}-\frac{3}{s+2}+\frac{2}{s}
\end{aligned}
$$

Taking now the inverse Laplace transform leads to the solution

$$
y(t)=e^{t}+e^{-3 t}-3 e^{-2 t}+2
$$

Section 7.6 problems.

Problem 6 solution:
The function $g(t)$ equals zero until t reaches 2 , at which point $g(t)$ jumps to $t+1$. We can express this jump by $(t+1) u(t-2)$. Hence,

$$
g(t)=(t+1) u(t-2)
$$

and, by formula (8),

$$
\mathcal{L}\{g(t)\}(s)=e^{-2 s} \mathcal{L}\{u[(t+1)+2]\}(s)=e^{-2 s}\left(\frac{1}{s^{2}}+\frac{3}{s}\right)=\frac{e^{-2 s}(3 s+1)}{s^{2}} .
$$

Problem 8 solution:
Observe from the graph that $g(t)$ is given by

$$
\begin{cases}0, & t<\pi / 2 \\ \sin t, & t>\pi / 2\end{cases}
$$

The function $g(t)$ equals zero until t reaches the point $\pi / 2$, at which $g(t)$ jumps to the function $\sin t$. We can express this jump by $(\sin t) u(t-1)$. Hence

$$
g(t)=(\sin t) u\left(t-\frac{\pi}{2}\right) .
$$

Taking the Laplace transform of both sides and using formula (8), we find that the Laplace transform of the function $g(t)$ is given by

$$
\begin{aligned}
\mathcal{L}\{g(t)\}(s) & =\mathcal{L}\left\{(\sin t) u\left(t-\frac{\pi}{2}\right)\right\}(s) \\
& =e^{-\pi s / 2} \mathcal{L}\left\{\sin \left(t+\frac{\pi}{2}\right)\right\}(s)=e^{-\pi s / 2} \mathcal{L}\{\cos t\}(s)=\frac{e^{-\pi s / 2} s}{s^{2}+1}
\end{aligned}
$$

Problem 9 solution:

Not given.

Problem 36 solution:

We take the Laplace transform of the both sides of the given equation and use the initial conditions, $y(0)=0$ and $y^{\prime}(0)=1$ to obtain

$$
\begin{aligned}
{\left[s^{2} Y(s)-1\right]+5 s Y(s)+6 Y(s) } & =\mathcal{L}\{t u(t-2)\}(s) \\
& =\mathcal{L}\{(t-2) u(t-2)\}(s)+2 \mathcal{L}\{u(t-2)\}(s) \\
& =\frac{e^{-2 s}}{s^{2}}+2 \frac{e^{-2 s}}{s}=\frac{e^{-2 s}(2 s+1)}{s^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \left(s^{2}+5 s+6\right) Y(s)=1+\frac{e^{-2 s}(2 s+1)}{s^{2}} \\
& \Rightarrow \quad Y(s)=\frac{1}{(s+2)(s+3)}+\frac{e^{-2 s}(2 s+1)}{s^{2}(s+2)(s+3)}
\end{aligned}
$$

Using partial fractions decomposition yields

$$
\begin{gathered}
Y(s)=\frac{1}{s+2}-\frac{1}{s+3}+e^{-2 s}\left[\frac{1}{6 s^{2}}+\frac{7}{36 s}-\frac{3}{4(s+2)}+\frac{5}{9(s+3)}\right] \\
\Rightarrow \quad y(t)=\mathcal{L}^{-1}\left\{\frac{1}{s+2}-\frac{1}{s+3}+e^{-2 s}\left[\frac{1}{6 s^{2}}+\frac{7}{36 s}-\frac{3}{4(s+2)}+\frac{5}{9(s+3)}\right]\right\}(t) \\
=e^{-2 t}-e^{-3 t}+\left[\frac{7}{36}+\frac{t-2}{6}-\frac{3 e^{-2(t-2)}}{4}+\frac{5 e^{-3(t-2)}}{9}\right] u(t-2) .
\end{gathered}
$$

