Review Test 2-MA221 Summer 2009

1. Find the Laplace transform $\mathcal{L}\{f\}$ when:

$$
f(t)= \begin{cases}3 & 0 \leq t \leq 2 \\ 6-t & 2<t\end{cases}
$$

2. Determine the Laplace transform of the given function:

$$
f(t)=7 e^{2 t} \cos 3 t-2 e^{7 t} \sin 5 t
$$

3. Solve the given initial value problem using the method of Laplace transforms.

$$
y^{\prime \prime}+2 y^{\prime}+2 y=u(t-2 \pi)-u(t-4 \pi) \quad y(0)=1 \quad y^{\prime}(0)=1
$$

4. Determine the inverse Laplace transform of the given function:

$$
\frac{e^{-2 s}(4 s+2)}{(s-1)(s+2)}
$$

5. Determine all the singular points of the given equation and classify them as regular or irregular.

$$
(\sin x) y^{\prime \prime}+y=0
$$

6. Find a minimum value for the radius of convergence of a power series solution about x_{0}.

$$
y^{\prime \prime}-(\tan x) y^{\prime}+y=0 \quad x_{0}=0
$$

7. Determine the convergence set of the given power series

$$
\sum_{n=1}^{\infty} \frac{3}{n^{3}}(x-2)^{n}
$$

8. Find a power-series expansion about $x=0$ for a general solution to the given differential equation. Your answer should include a general formula for the coefficients.

$$
y^{\prime \prime}-x y^{\prime}+4 y=0
$$

