Review Final MA221 Summer 2009

I. Solve:
(a)

$$
y^{\prime \prime}-y^{\prime}+y=0
$$

(b)

$$
x^{2} y^{\prime \prime}-5 x y^{\prime}+25 y=0
$$

II. (a) Find the general solution of

$$
y^{\prime \prime}-4 y^{\prime}+3 y=2 e^{3 x}+\sin x
$$

by using the method of undetermined coefficients.
(b) Assuming that $y_{1}=e^{x}$ and $y_{2}=e^{x} \ln x$ are linearly independent, find the general solution of:

$$
x y^{\prime \prime}+(1-2 x) y^{\prime}+(x-1) y=x e^{x}
$$

III. Solve
(a)

$$
\begin{gathered}
\frac{d y}{d x}+2 y=y^{2} \\
2 x y d x+\left(3 x^{2}+3\right) d y=0
\end{gathered}
$$

(b)
IV. Find the following:
(a)

$$
\mathcal{L}\{f(t)\}(s) \quad \text { where } f(t)= \begin{cases}2 & 0 \leq t \leq 5 \\ 0 & t>5\end{cases}
$$

$$
\begin{equation*}
\mathcal{L}\left\{t e^{2 t} \sin 3 t\right\}(s) \tag{b}
\end{equation*}
$$

V. Find:
(a)

$$
\mathcal{L}^{-1}\left\{\frac{7 s^{2}-11 s-5}{(s-1)^{2}(s+2)}\right\}(t)
$$

(b) Solve, using Laplace transforms

$$
y^{\prime \prime}+4 y^{\prime}+20 y=0 \quad y(0)=2 \quad y^{\prime}(0)=1
$$

VI. (a) Find the $1^{\text {st }}$ six non-zero terms of a power series expansion of the solution of
(a) $\left(x^{2}+4\right) y^{\prime \prime}+(x-1) y^{\prime}+3 y=0$
$y(2)=1$
$y^{\prime}(2)=3$
(b) Find a general expression for the solution of the following equation in terms of power series about $x=0$.

$$
\left(1+x^{2}\right) y^{\prime \prime}+3 y=0
$$

VII. Find the first four non-zero terms of the Fourier cosine series of

$$
f(x)= \begin{cases}0 & \text { if } 0<x<2 \\ 2 & \text { if } 2<x<4\end{cases}
$$

VIII. Find all eigenvalues and eigenfunctions of

$$
y^{\prime \prime}-4 y^{\prime}+\lambda y=0 \quad y(0)=0 \quad y(1)=0
$$

IX. Solve

$$
\begin{array}{lr}
u_{t t}=4 u_{x x} & 0<x<3, t>0 \\
u_{x}(0, t)=u_{x}(3, t)=0 & t>0 \\
u(x, 0)=5 \cos \frac{7 \pi x}{3}-11 \cos \frac{13 \pi x}{3} & 0<x<3 \\
u_{t}(x, 0)=2 \cos \frac{5 \pi x}{3}-3 \cos \frac{11 \pi x}{3} & 0<x<3
\end{array}
$$

Assume eigenvalues are not positive.
X. Find a formal solution to the given PDE:

$$
\begin{array}{lr}
u_{x x}+u_{y y}=0, & 0<x<\pi, 0<y<\pi \\
u(0, y)=u(\pi, y)=0, & 0<y<\pi \\
u(x, 0)=\sin x+\sin 4 x, & 0<x<\pi \\
u(x, \pi)=0, & 0<x<\pi
\end{array}
$$

XI. Find a formal solution to the given PDE:

$$
\begin{array}{lr}
\frac{\partial u}{\partial t}=7 \frac{\partial^{2} u}{\partial x^{2}}, & 0<x<\pi, 0<t \\
\frac{\partial u}{\partial x}(0, t)=\frac{\partial u}{\partial x}(\pi, t)=0, & 0<t \\
u(x, 0)=1-\sin x, & 0<x<\pi
\end{array}
$$

XII. Use a method learned in this class to find at least the first nonzero terms in the series expansion about $x=0$ for the solution of the equation:

$$
x y^{\prime \prime}+y^{\prime}-4 y=0, \quad x>0
$$

XIII. Determine an inverse Laplace transformation of the function:

$$
\frac{e^{-s}\left(3 s^{2}-s+2\right)}{(s-1)\left(s^{2}+1\right)}
$$

