
Homework 6
Math 611 Probability

This assignment is not going to be graded. It serves as Final
test training exercise.

(1) Let X1, X2, . . . be iid Cauchy distributed random variables with density
f(x) = 1

π(1+x2)
and characteristic function φ(t) = e−|t|. Prove that the

weak law of large numbers does not hold (i.e., (X1 +X2 + . . .+Xn)/n
does not converge to E[X1] in probability as n→∞).

(2) The weak law may hold sometimes even if the mean does not exist.
If we dampen the tails of the Cauchy ever so slightly for example by
taking the density f(x) = c

(1+x2)log(1+x2)
, show that the weak law of

large numbers holds.

(3) Consider the case of the Binomial distribution with p = 1/2. Use
Stirlings formula: n! '

√
2πnnne−n to estimate the probability:∑

r≥nx

(
n

r

)
1

2n

and show that it decays geometrically in n. Can you calculate the
geometric ratio

ρ(x) = lim
n→∞

[∑
r≥nx

(
n

r

)
1

2n

] 1
n

explicitly as a function of x for x > 1/2?

(4) Prove the inequality 1− cos 2t ≤ 4(1− cos t) for all real t. Deduce the
inequality 1−Real φ(2t) ≤ 4[1−Real φ(t)], valid for any characteristic
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function. Conclude that if a sequence of characteristic functions con-
verges to 1 in an interval around 0, then it converges to 1 for all real
t.

(5) Let X1, X2, . . . be independent random variables each of which is uni-
formly distributed on (0, 1). Let Nn be the number of X1, X2, . . . , Xn

which are less than or equal 1/2. Show that:

√
n

(
2
Nn

n
− 1

)
d−→N(0, 1),

where
d−→ denotes convergence in distribution.

(6) A model for the count of tumors detected in rats exposed to a carcino-
gen in an experiment assumes:

i. The number M of tumors initiated is a random variable with
mean µ and standard deviation σ.

ii. All tumors start at time t = 0. The times T1, T2, . . . , TM at
which the tumors are detected are iid random variables with cdf
F (t).

Please solve the following problems:

(a) Let Jt be the number of tumors detected by time t. Give the
mean and variance of Jt in terms of µ, σ, and F .

(b) Show that if M has the Poisson distribution P(λ) with mean
λ, then Jt has the P(λF (t)) distribution.

(7) Let ν be the total number of spots which are obtained in 1000 inde-
pendent rolls of an unbiased die.

(a) Find E[ν]

(b) Estimate the probability P (3450 < ν < 3550)

(8) Let Sn be the number of successes in a series of independent trials
whose probability of success at the kth trial is pk. Suppose p1, p2, . . . , pn
depend on n in such a way that:

p1 + p2 + · · ·+ pn = λ, for all n,
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while max{p1, p2, . . . , pn} → 0 when n → ∞. Prove that Sn has a
Poisson distribution with parameter λ in the limit as n→∞.

(9) Let {Xi}i≥1 be a sequence of independent identically distributed ran-
dom variables with EX1 > 0. Let Sn =

∑n
i=1Xi. Given an a > 0, show

that Eτ <∞, where τ = inf{n ≥ 1 : Sn ≥ a}.

SRW problems:

(10) A compulsive gambler is never satisfied. At each stage he wins $1 with
probability p and loses $1 otherwise. Find the probability that he is
ultimately bankrupt having started with an initial fortune of $k.

(11) Consider a symmetric random walk S with S0 = 0. Let T = min{n ≥
1 : Sn = 0} be the time of the first return of the walk to its starting
point. Show that:

P(T = 2n) =
1

2n− 1

(
2n

n

)
2−2n,

and deduce that ETα <∞ if and only if α < 1
2
.

(Stirling’s formula: n! '
√

2πnnne−n).

(12) Consider a symmetric random walk with an absorbing barrier at N and
a reflecting barrier at 0 (when the random walk reaches 0 it moves to
1 at the next step with probability one). Let αk(j) be the probability
that the particle having start at k, visits 0 exactly j times before being
absorbed at N . By convention, if k = 0 then the starting point counts
as one visit already. Show that:

αk(j) =
N − k
N2

(
1− 1

N

)j−1

, ∀j ≥ 1, 0 ≤ k ≤ N

(13) Let Y (t) = tB(1/t), for t > 0 and Y (0) = 0, with B(t) a standard
Brownian motion started at 0.

(a) What is the distribution of Y(t)?

(b) Calculate Cov(Y (s), Y (t)) for s, t ≥ 0.

3



(c) Argue that {Y (t)}t≥0 is a standard Brownian motion.
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