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CHAPTER 1

Probability Review.

1.1. Probability spaces. Sigma algebras.

We will use the notation from the measure theory (Ω, F ,P)1 for
a probability space. Let us look to the constituent elements one at a
time.

Let Ω is an abstract set. It is a set containing all the possible
outcomes or results of a random experiment or phenomenon. I called
it abstract because it could contain anything. For example if the ex-
periment consists in tossing a coin once the space Ω could be repre-
sented as {Head, Tail}. However, it could just as well be represented
as {Cap, Pajura}, these being the romanian equivalents of Head and
Tail. The space Ω could as well contain an infinite number of elements.
For example measuring the diameter of a doughnut could result in pos-
sible numbers inside a whole range. Furthermore, measuring in inches
or in centimeters would produce different albeit equivalent spaces.

We will use ω ∈ Ω to denote a generic outcome or a sample point.
We will use capital letters from the beginning of the alphabet A, B, C
to denote events (any collection of outcomes).

We need to measure these events so we come to the next notion.
The collection of events F represents the domain of definition for the
function P. We will need to provide internal consistencies when we
define F to make sure that we are able to measure the information
resulting from the experiment and any other event of possible interest
to us. The mathematical structure for this purpose is the notion of
σ-algebra (or σ-field). Before we define a σ-algebra, we will introduce
a special collection of events:

(1.1) P(Ω) = The collection of all possible subsets of Ω = 2Ω

Exercise 1. Roll a die. Then Ω = {1, 2, 3, 4, 5, 6}. An example of a
event is A = { Roll an even number} = {2, 4, 6}. Find the cardinality
(number of elements of P(Ω) in this case.

1Sometimes (specially in statistics) the whole setup is denoted with (S, Σ,P)

1
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Having defined sets we can now define operations with them: union,
intersection, complement and slightly less important difference and
symmetric difference.






A ∪ B = set of elements that are either in A or in B

A ∩ B = AB = set of elements that are both in A and in B

Ac = Ā = set of elements that are in Ω but not in A

(1.2)

{
A \B = set of elements that are in A but not in B

A△B = (A \B) ∪ (B \ A)

We can of course express every operation in terms of union and
intersection. There are important relations between these operations,
I will stop here with the mention of the De Morgan laws:

(1.3)

{
(A ∪ B)c = Ac ∩Bc

(A ∩ B)c = Ac ∪Bc

Definition 1.1 (Algebra on Ω). A collection F of events in Ω is called
an algebra (or field) on Ω iff:

a) Ω ∈ F

b) Closed under complementarity: If A ⊆ F then Ac ⊆ F

c) Closed under finite union: If A, B ⊆ F then A ∪B ⊆ F

Remark 1.2. The first two properties imply that ∅ ∈ F . The third
is equivalent by de Morgan laws (1.3) with A ∩ B ⊆ F

Definition 1.3 (σ-Algebra on Ω). If F is an algebra on Ω and in
addition it is closed under countable unions then it is a σ-algebra (or
σ-field) on Ω

Note: Closed under countable unions means that the property c)
in Definition 1.1 is replaced with: If n ∈ N is a natural number and
An ⊆ F for all n then ⋃

n∈N

An ⊆ F .

From b) and c) it of course follows that the σ-algebra is also closed
under countable intersection. (via De Morgan’s laws)

The σ-algebra provides an appropriate domain of definition for the
probability function. However, it is such an abstract thing that it will
be hard to work with it. This is the reason for the next definition, it
will be much easier to work with the generators of a σ-algebra. This
will be a recurring theme in probability, in order to show a property for
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a big class we show the property for a small generating set of the class
and then use standard arguments to extend to the whole class.

Definition 1.4 (σ algebra generated by a class of Ω). Let C be a
collection (class) of subsets of Ω. Then σ(C ) is the smallest σ-algebra
on Ω that contains C . The class C is called the generator of the σ-
algebra.

Mathematically:

(a) C ⊆ σ(C )
(b) σ(C ) is a σ-field
(c) If C ⊆ G and G is a σ-field then σ(C ) ⊆ G

Remark 1.5 (Properties of σ-algebras:). • P(Ω) is a σ-algebra,
the largest possible σ-algebra on Ω
• If F is already a σ-algebra then σ(F ) = F

• If F = {∅} or F = {Ω} then σ(F ) = {∅, Ω}, the smallest
possible σ-algebra on Ω
• If F ⊆ F ′ then σ(F ) ⊆ σ(F ′)
• If F ⊆ F ′ ⊆ σ(F ) then σ(F ′) = σ(F )

Remark 1.6 (Finite space Ω). When the sample space is finite, we
can and typically will take the sigma algebra to be P(Ω). Indeed, any
event of a finite space can be trivially expressed in terms of individual
outcomes. In fact, if the finite space Ω contains M possible outcomes,
then the number of possible events is finite and is equal with 2M .

1.2. An Example: Borel σ-algebra.

Let Ω be a topological space (think geometry exists in this space
this assures us that the open subsets exist in this space).

Definition 1.7. We define:

B(Ω) = The Borel σ-algebra(1.4)

= σ-algebra generated by the class of open subsets of Ω

In the special case when Ω = R we denote B = B(R). B is the most
important σ-algebra. The reason for that is: most experiments can be
brought to equivalence with R. Thus, if we define a probability measure
on B, we have a way to calculate probabilities for most experiments.

Most subsets of R are in B. However, it is possible (though very
difficult) to construct a subset of R explicitly which is not in B. See
[Bil95] page 45 for such a construction in the case Ω = (0, 1].

There is nothing special about the open sets, except for the fact
that they can be defined in any topological space. In R we have the
alternate definition which you will have to prove:
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Exercise 2. Show that the following classes all generate the Borel σ-
algebra, or put differently show the equality of the following collections
of sets:

σ ((a, b) : a < b ∈ R) = σ ([a, b] : a < b ∈ R) = σ ((−∞, b) : b ∈ R)

= σ ((−∞, b) : b ∈ Q) ,

where Q is the set of rational numbers.

1.3. Probability Measure

We are finally in the position to define a space on which we can
introduce the probability measure.

Definition 1.8 (Measurable Space.). A pair (Ω, F ), where Ω is a set
and F is a σ-algebra on Ω is called a Measurable Space.

Definition 1.9 (Probability measure. Probability space). Given a
measurable space (Ω, F ), a probability measure is any function P :
F → [0, 1] with the following properties:

i) P(Ω) = 1
ii) (countable additivity) For any sequence {An}n∈N of disjoint
events in F (i.e. Ai ∩ Aj = ∅, for all i 6= j):

P
( ∞⋃

n=1

An

)
=

∞∑

n=1

P(An)

The triple (Ω, F ,P) is called a Probability Space.

The next two definitions are given for completeness, however we
will use them later in this class. They are both defining more general
notions than a probability measure and they will be used later in hy-
potheses of some theorems to show that the results apply to even more
general measures than probability measures.

Definition 1.10 (Finite Measure). Given a measurable space (Ω, F ),
a finite measure is a set function µ : F → [0, 1] with the same countable
additivity property as defined above and the measure of the space finite
instead of one. More specifically the first property above is replaced
with:

µ(Ω) <∞
Definition 1.11 (σ-finite Measure). A measure µ defined on a mea-
surable space (Ω, F ) is called σ-finite if it is countably additive and
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there exist a partition2 of the space Ω, {Ωi}i∈I , and µ(Ωi) <∞ for all
i ∈ I. Note that the index set I is allowed to be countable.

Example 1.12 (Uniform Distribution on (0,1)). As an example let
Ω = (0, 1) and F = B((0, 1)). Define a probability measure U as
follows: for any open interval (a, b) ⊆ (0, 1) let U((a, b)) = b − a the
length of the interval. For any other open interval O define U(O) =
U(O ∩ (0, 1)).

Note that we did not specify U(A) for all Borel sets A, rather only
for the generators of the Borel σ-field. This illustrates the probabilistic
concept presented above. In our specific situation, under very mild
conditions on the generators of the σ-algebra any probability measure
defined only on the generators can be uniquely extended to a probabil-
ity measure on the whole σ-algebra (Carathèodory extension theorem).
In particular when the generators are open sets these conditions are
true and we can restrict the definition to the open sets only.

Proposition 1.13 (Elementary properties of Probability Measure).
Let (Ω, F ,P) be a Probability Space. Then:

(1) ∀A, B ∈ F with A ⊆ B then P(A) ≤ P(B)
(2) P(A ∪ B) = P(A) + P(B)−P(A ∩B), ∀A, B ∈ F

(3) (General Inclusion-Exclusion formula, also named Poincaré
formula):

P(A1 ∪A2 ∪ · · · ∪An) =
n∑

i=1

P(Ai)−
∑

i<j≤n

P(Ai ∩ Aj)(1.5)

+
∑

i<j<k≤n

P(Ai ∩ Aj ∩Ak)− · · ·+ (−1)nP(A1 ∩A2 · · · ∩An)

Successive partial sums are alternating between over-and-under
estimating.

(4) (Finite subadditivity, sometimes called Boole’s inequality):

P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P(Ai), ∀A1, A2, . . . , An ∈ F

1.3.1. Conditional Probability. Independence. Borel-Cantelli
lemmas. Let (Ω, F ,P) be a Probability Space. Then for A, B ∈ F ,
with P(B) 6= 0 we define the conditional probability of A given B as

2a partition of the set A is a collection of sets Ai, disjoint (Ai∩Aj = ∅, if i 6= j)
such that ∪iAi = A
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usual by:

P(A|B) =
P(A ∩B)

P(B)
.

We of course also have the chain rule formulas:

P(A ∩B) = P(A|B)P(B),

P(A ∩B ∩ C) = P(A|B ∩ C)P(B|C)P(C), etc.

Total probability formula: Given A1, A2, . . . , An a partition of Ω
(i.e. the sets Ai are disjoint and Ω =

⋃n
i=1 Ai), then:

(1.6) P(B) =

n∑

i=1

P(B|Ai)P(Ai), ∀B ∈ F

Bayes Formula: If A1, A2, . . . , An form a partition of Ω:

(1.7) P(Aj |B) =
P(B|Aj)P(Aj)∑n
i=1 P(B|Ai)P(Ai)

, ∀B ∈ F .

Definition 1.14 (Independence). The events A1, A2, A3, . . . are called
mutually independent (or sometimes simply independent) if for every
subset J of {1, 2, 3, . . .} we have:

P

(
⋃

j∈J

Aj

)
=
∏

j∈J

P(Aj)

The events A1, A2, A3, . . . are called pairwise independent (some-
times jointly independent) if:

P (Ai ∪ Aj) = P(Ai)P(Aj), ∀i, j.
Note that jointly independent does not imply independence.
Two sigma fields G , H ∈ F are P–independent if:

P(G ∩H) = P(G)P(H), ∀G ∈ G , ∀H ∈H .

See [Bil95] for the definition of independence of k ≥ 2 sigma-algebras.

1.3.2. Monotone Convergence properties of probability. Let
(Ω, F ,P) be a Probability Space.

Lemma 1.15. The following are true:

(i) If An, A ∈ F and An ↑ A (i.e., A1 ⊆ A2 ⊆ . . . An ⊆ . . . and
A =

⋃
n≥1 An), then: P(An) ↑ P(A) as a sequence of numbers.
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(ii) If An, A ∈ F and An ↓ A (i.e., A1 ⊇ A2 ⊇ . . . An ⊇ . . .
and A =

⋂
n≥1 An), then: P(An) ↓ P(A) as a sequence of

numbers.
(iii) (Countable subadditivity) If A1, A2, . . . , and

⋃∞
i=1 An ∈ F ,

with Ai’s not necessarily disjoint then:

P

( ∞⋃

n=1

An

)
≤

∞∑

n=1

P(An)

Proof. (i) Let B1 = A1, B2 = A2 \ A1, . . . , Bn = An \ An−1. Be-
cause the sequence is increasing we have that the Bi’s are disjoint thus
from Proposition 1.13 we obtain:

P(An) = P(B1 ∪B2 ∪ · · · ∪ Bn) =

n∑

i=1

P(Bi).

Thus using countable additivity:

P

(
⋃

n≥1

An

)
= P

(
⋃

n≥1

Bn

)
=

∞∑

i=1

P(Bi) = lim
n→∞

n∑

i=1

P(Bi) = lim
n→∞

P(An)

(ii) Note that An ↓ A ⇔ An
c ↑ Ac which from part (i) implies that

1−P(An) ↑ 1−P(A).
(iii) Let B1 = A1, B2 = A1 ∪A2, . . . , Bn = A1 ∪ · · · ∪An, . . . . From

the finite subadditivity we have that P(Bn) = P(A1 ∪ · · · ∪ An) ≤
P(A1) + · · ·+ P(An).
{Bn}n≥1 is an increasing sequence of events, thus from (i) we get

that P(
⋃∞

n=1 Bn) = limn→∞ P(Bn). Combining the two relations above
we obtain:

P(

∞⋃

n=1

An) = P(

∞⋃

n=1

Bn) ≤ lim
n→∞

(P(A1) + · · ·+ P(An)) =

∞∑

n=1

P(An)

�

Lemma 1.16. The union of a countable number of P-null sets is a
P-null set

Exercise 3. Prove the above Lemma 1.16

Next we state one of the most fundamental (and useful) results in
probability theory the Borel-Cantelli lemmas:

Lemma 1.17. [The Borel-Cantelli lemmas] Let (Ω, F ,P) be a Proba-
bility Space. Let A1, A2, . . . , An, . . . a sequence of events.
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First Lemma: If
∑

i≥1 P(Ai) <∞ then:

P

( ∞⋂

n=1

⋃

i≥n

Ai

)
= P (Ai’s are true infinitely often) = 0

Second Lemma: If
∑

i≥1 P(Ai) =∞, and in addition the events
A1, A2, . . . , An, . . . are independent then:

P

( ∞⋂

n=1

⋃

i≥n

Ai

)
= P (Ai’s are true infinitely often) = 1

Let us clarify the notion of “infinitely often” and “eventually” a
bit more. We say that an outcome ω happens infinitely often for the
sequence A1, A2, . . . , An, . . . if ω is in the set

⋂∞
n=1

⋃
i≥n Ai. This means

that for any n (no matter how big) there exist an m ≥ n and ω ∈ Am.
We say that an outcome ω happens eventually for the sequence

A1, A2, . . . , An, . . . if ω is in the set
⋃∞

n=1

⋂
i≥n Ai. This means that

there exist an n such that for any m ≥ n, ω ∈ Am, so for an n on ω is
in all such sets.

Why so complicate definitions? The basic intuition is obvious: say
you roll a die infinitely many times, then it is obvious what it means
for the outcome 1 to appear infinitely often. Also say the average of
the rolls will eventually be arbitrarily close to 3.5. It is not so clear
cut in general. The framework above provides a generalization to these
notions.

Exercise 4. Show using the Cantelli lemma that when you roll a die
the outcome {1} will appear infinitely often. Also show that eventually
the average of all rolls up to roll n will be within ε of 3.5 where ε > 0
is any arbitrary real number.

1.4. Measurable Functions. Random Variables

All of these definitions with sets are consistent, however if we wish
to calculate and compute numerical values related to abstract spaces
we need to standardize the spaces. The first step is to give the following
definitions:

Definition 1.18 (Measurable function (m.f.)). Let (Ω, F ) and (S, Σ)
be two measurable spaces. A function f is called measurable (function
or m.f.) if and only if (notation iff) for every set A ∈ Σ we have
f−1(A) ∈ F .
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1.4.1. Reduction to R. Random variables.

Definition 1.19 (Random variable (r.v.)). Any measurable function
with codomain (R, B(R)) is called a random variable.

Traditionally, the random variables are denoted with capital letters
from the end of the alphabet X, Y, Z, . . . and their values are denoted
with corresponding small letters x, y, z, . . . .

Definition 1.20 (The distribution of a random variable). Assume that
on the measurable space (Ω, F ) we define a probability measure so
that it becomes a probability space (Ω, F ,P). If a random variable
X : Ω → R is defined then we call its distribution, the set function µ
defined on the Borel sets of R: B(R), with values in [0, 1]:

µ(B) = P ({ω : X(ω) ∈ B}) = P
(
X−1(B)

)
= P ◦X−1(B)

Remark 1.21. First note that the measure µ is defined on sets in R

and takes values in the interval [0, 1]. Therefore, the random variable
X allowed us to apparently eliminate the abstract space Ω. However,
this is not the case since we still have to calculate probabilities using
P in the definition of µ above.

There is one more simplification we can make. If we use the result
of the exercise 2, we see that all borel sets are generated by the same
type of sets. Using the same idea as before it is enough to describe how
to calculate µ for the generators. We could of course specify any type
of generating sets we wish (open sets, closed sets, etc) but it turns out
the simplest way is to use sets of the form (−∞, x], since we only need
to specify one end of the interval (the other is always −∞).

Definition 1.22. [The distribution function of a random variable] The
distribution function of a random variable X is F : R→ [0, 1] with:

F (x) = µ(−∞, x] = P ({ω : X(ω) ∈ (−∞, x]}) = P ({ω : X(ω) ≤ x})
But wait a minute, this is exactly the definition of the cumulative

distribution function (cdf) you see in any lower level probability classes.
It is exactly the same thing except that in an effort to dumb down (in
whomever opinion it was to teach the class that way) the meaning is
lost and we cannot proceed with more complicated things. From the
definition above we can deduce all the elementary properties of the
cdf that you have learned (right-continuity, increasing, taking values
between 0 and 1). In fact let me ask you to prove this.

Exercise 5. Show that the function F in Definition 1.22 is increasing,
right continuous and taking values in the interval [0, 1], using proposi-
tion 1.13.
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Definition 1.23 (PDF, PMF). In general the distribution function F
is not necessarily derivable. If it is, we call its derivative f(x) the prob-
ability density function (pdf) and notice that we have in this situation:

F (x) =

∫ x

−∞
f(z)dz

Traditionally, a variable X with this property is called a continuous
random variable.

Furthermore if F is piecewise constant (i.e., constant almost every-
where, or in other words there exist a countable sequence {a1, a2, . . . }
such that the function F is constant for every point except these ai’s)
and we denote pi = F (ai)−F (ai−), then the collection of pi’s is the tra-
ditional probability mass function (pmf) that characterizes a discrete
random variable. (F (x−) is a notation for the left limit of function F
at x or in a more traditional notation limz→x,z<x F (z)).

Also notice that traditional undergraduate textbooks segregate be-
tween discrete and continuous random variables. In fact there are many
more and the definitions we used here cover all of them, likewise the
treatment of random variables should be the same, which is now pos-
sible.

Important. So what is the point of all this? What did we just ac-
complish here? The answer is moving from the abstract space (Ω, F , P )
to something perfectly equivalent but defined on (R, B(R)). Because
of this fact we only need to define probability measures on R and show
that things coming from our original abstract space are equivalent with
these distributions on R. We just constructed the first model for our
problem.

Next we will define the simplest and one of the most important
random variables.

Definition 1.24 (Indicator Function). We define the indicator func-
tion of an event A as the function 1A : Ω→ {0, 1},

1A(ω) =

{
1 , if ω ∈ A

0 , if ω /∈ A

Remember this definition, it is one of the most important ones in
probability. We can build on it in the following way:

Furthermore, this variable is also called the Bernoulli random vari-
able. Notice that the variable only takes values 0 and 1 and the prob-
ability that the variable is 1 we can calculate easily using the previous
definitions as being:
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P ◦ 1−1
A ({1}) = P{ω : 1A(ω) = 1} = P(A).

Therefore the variable is distributed as a Bernoulli random variable
with parameter p = P(A).

Definition 1.25 (Elementary (Simple) Function). An elementary func-
tion g is any linear combination of the indicator functions just intro-
duced. More specifically, there exist sets A1, A2, . . . , An all in F and
constants a1, a2, . . . , an in R such that:

g(ω) =
n∑

i=1

ai1Ai
(ω).

Note that the sets Ai do not have to be disjoint but an easy exercise
shows that g could be written in terms of disjoint sets.

Exercise 6. Show that any simple function g can be written as
∑

i bi1Bi

with Bi disjoint sets (i.e. Bi ∩ Bj = ∅, if i 6= j).

Exercise 7. Let f : (Ω, F )→ [0,∞] be a non-negative and measurable
function. For all n ≥ 1, we define:

(1.8) gn(ω) :=
n2n−1∑

k=0

k

2n
1{ k

2n ≤f(ω)<} + n1{f(ω)≥n}

(1) Show that gn is a simple function on (Ω, F ), for all n ≥ 1.
(2) Show that equation (1.8) gives a partition, for all n ≥ 1.
(3) Show that gn ≤ gn+1 ≤ f , for all n ≥ 1.
(4) Show that gn ↑ f as n→∞3.

1.4.2. Null element of F . Almost sure (a.s.) statements.
An event N ∈ F is called a null event if P (N) = 0.

Definition 1.26. A statement S about points ω ∈ Ω is said to be
true almost surely (a.s.), almost everywhere (a.e.) or with probability
1 (w.p.1) if the set N defined as:

N := {ω ∈ Ω| S(ω) is true} ,
is in F and P(N) = 1, (or N c is a null set).

We will use the notions a.s., a.e., and w.p.1. interchangeably to
denote the same thing – the definition above. For example we will
say X ≥ 0 a.s. and mean: P{ω|X(ω) ≥ 0} = 1 or equivalently
P{ω|X(ω) < 0} = 0. The notion of almost sure is a fundamental
one in probability. Unlike in deterministic cases where something has

3This is not a.s., it is for all ω
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to always be true no matter what, in probability we care about “the
majority of the truth”. In other words probability recognizes that
some events may have extreme outcomes, but if they are extremely
improbable then we do not care about them. Fundamentally, it is
mathematics applied to reality.

1.4.3. Joint distribution, Random vectors. We talked about
σ-algebras in the beginning and they kind of faded away after that.
We will come back to them. It turns out, if there is any hope of
rigorous introduction into probability and stochastic processes, they
are unavoidable. Later, when we will talk about stochastic processes
we will find out the crucial role they play in quantifying the information
available up to a certain time. For now let us play a bit with them.

Definition 1.27 (σ-algebra generated by a random variable). For a r.v.
X we call the σ-algebra generated by X, denoted σ(X) or sometime
FX , the smallest σ-field G such that X is measurable on (Ω, G ). It
is the σ-algebra generated by the pre-images of Borel sets through X.
Because of this we can easily show (remember that the Borel sets are
generated by intervals of the type (−∞, α]):

σ(X) = σ({ω|X(ω) ≤ α}, as α varies in R).

Similarly, given X1, X2, . . . , Xn random variables, we call the sigma
algebra generated by them the smallest sigma algebra such that all are
measurable with respect to it. It turns out we can show easily that
it is the sigma algebra generated by the union of the individual sigma
algebras or put more specifically σ(Xi, i ≤ n) is the smallest sigma
algebra containing all σ(Xi), for i = 1, 2, . . . , n.

In the previous subsection we defined a random variable as a mea-
surable function with codomain (R, B(R)). A more specific case is
when the random variable has also the domain equal to (R, B(R)). In
this case we talk about Borel functions.

Definition 1.28 (Borel measurable function). A function g : R → R

is called Borel (measurable) function if g is a measurable function from
(R, B(R)) into (R, B(R)).

Exercise 8. Show that any continuous function g : R → R is Borel
measurable.

Hint: Look to what happens to the preimage of sets through a
continuous function.

Exercise 9. Show that any piecewise constant function is Borel mea-
surable. (see description of piecewise constant functions in Definition
1.22
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In Section 1.2 we defined Borel sigma algebras corresponding to any
space Ω. We presented the special case when Ω = R. It really is no
big deal to consider Ω = Rn, for some integer n, and the Borel sigma
algebra generated by it. This allows us to define a random vector on
(Rn, B(Rn),P) as (X1, X2, . . . , Xn) where each Xi is a random variable.
The probability P is defined on B(Rn).

We can talk about its distribution (the ”joint distribution” of the
variables (X1, X2, . . . , Xn)) as the function:

F (x1, x2, . . . , xn) = P ◦ (X1, X2, . . . , Xn)
−1 ((−∞, x1]× · · · × (−∞, xn])

= P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn)

We can introduce the notions of independence and joint indepen-
dence using the definition in subsection 1.3.1, the probability measure
= P◦ (X1, X2, . . . , Xn)−1 and any Borel sets. Writing more specifically
it is transformed to:

Definition 1.29. The variables (X1, X2, . . . , Xn, . . . ) are independent
if for every subset J = {j1, j2, . . . , jk} of {1, 2, 3, . . .} we have:

P (Xj1 ≤ xj1 , Xj2 ≤ xj2 , . . . , Xjk
≤ xjk

) =
∏

j∈J

P(Xj ≤ xj)

1.5. Expectations of random variables.

We note that the distribution function F (x) exists for any random
variable. We can construct the integral with respect to F using the
integration theory (details are omitted in this class) starting from in-
dicators for which we have:

E [1A] =

∫

Ω

1A(ω)dP (ω) = P(A)

In general we can construct the expectation of an integrable (E|X| <
∞) random variable X as:

E [X] =

∫

Ω

X(ω)dP (ω) =

∫ ∞

−∞
xdP ◦X−1(x) =

∫ ∞

−∞
xdF (x),

where we have used the transport formula (change of variable)
which you can find in any graduate probability textbook. Further-
more, for any function h : R→ R we of course can further define:

E [h(X)] =

∫

Ω

h(X(ω))dP (ω) =

∫ ∞

−∞
h(x)dF (x).
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In the case when F is derivable with derivative f(x) we can of
course write: dF (x) = f(x)dx, therefore the formula reduces to the
more familiar one from elementary probability classes. If F is piecewise
constant then its derivative is zero a.e. and the integral reduces to a
sum bringing back the formula for the expectation of a discrete random
variable.

Exercise 10. Write the probability space (Ω, F ,P) for a random ex-
periment which records the result of n independent rolls of a balanced
six-sided die (including the order). Compute the expectation of the
random variable D(ω) which counts the number of different sides of
the die recorded during these n rolls.

The variance of a random variable X is the expectation of the
function h(x) = (x − µ)2 where µ is a notation for EX. The covari-
ance of random variables X and Y is the expectation of the function
h(x, y) = (x− µX)(y − µY ) where again µ is a notation for the expec-
tations of the respective random variables. The correlation is the ratio
of covariance to the product of the square root of variations. More
specifically:

V(X) = E[(x− µ)2] = EX2 − (EX)2

Cov(X, Y ) = E [(X − µX)(Y − µY )] = EXY − EXEY

Corr(X, Y ) =
Cov(X, Y )√
V(X)V(Y )

The variable X and Y are called uncorrelated if the covariance
(or equivalently the correlation) between them is zero. Note that
this is not the same as the variables X and Y being independent.
Independence implies that the variables are uncorrelated, however the
converse is not true.

Exercise 11. Give an example of two variables X and Y which are
uncorrelated but not independent.

Proposition 1.30 (Elementary properties of the expectation). The
expectation has the following properties:

(i) E [1A] = P(A) for any A ∈ F

(ii) If g(ω) =
∑n

i=1 ai1Ai
(ω) is an elementary function then

E [g] =
∑n

i=1 aiP(Ai).
(iii) If X and Y are integrable r.v.’s then for any constants α
and β the r.v. αX + βY is integrable and E[αX + βY ] =
αEX + βEY .

(iv) If X(ω) = c with probability 1 then EX = c.
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(v) If X ≥ Y a.s. then EX ≥ EY . Furthermore, if X ≥ Y a.s.
and EX = EY then X = Y a.s.

We use the notation L1(Ω) or sometimes just L1 to denote the space
of integrable random variables. In general:

Lp(Ω) = {X random variable s.t. E |X|p <∞} , ∀p ≥ 1

We can make Lp = Lp(Ω) = Lp(Ω, F ,P) a normed (metric) space
by introducing the p-norm of an element (random variable) in Lp as:

‖X‖p = p
√

E [Xp]

1.6. Conditional Probability. Conditional Expectation.

Please read pages 5 to 9 for the definitions of conditional probabil-
ity and expectation conditioned by the sigma algebra generated by a
random variable.

Why do we need conditional expectation?
Conditional expectation is a fundamental concept in the theory of

stochastic processes. The simple idea is the following: suppose we have
no information about a certain variable then our best guess of it most
of the time would be some sort of regular expectation. However, in real
life it often happens that we have some partial information about the
random variable (or in time we come to know more about it). Then
what we should do is every time there is new information the sample
space Ω or the σ-algebra F is changing so they need to be recalculated.
That will in turn change the probability P which will change the expec-
tation of the variable. The conditional expectation provides a way to
recalculate the expectation of the random variable given any new “con-
sistent” information without going through the trouble of recalculating
(Ω, F ,P) every time.

It is also easy to reason that since we calculate with respect to
more precise information it will be depending on this more precise
information, thus it is going to be a random variable itself, “adapted”
to this information.

Going back, to summarize the book notation, if X and Y are two
random variables the authors define in the pages mentioned the expec-
tation of X conditioned by the sigma-algebra generated by Y , σ(Y )
and they use the notation:

E[X|Y ] = E[X|σ(Y )].

Note that the conditional expectation, unlike the regular expecta-
tion is a random variable measurable with respect to the sigma algebra
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under which is conditioned, (in the above case with respect to σ(Y )). In
general I will give you the following more general definition / theorem.
We will skip the proof.

Theorem 1.31. Let (Ω, F ,P) be a probability space, and let K ⊆ F

a sub-σ-algebra. Let X be a random variable on (Ω, F ,P) such that
either X is positive or X ∈ L1(Ω). Then there exist a random variable
Y , measurable with respect to K with the property:

∫

A

Y dP =

∫

A

XdP , ∀A ∈ K

This Y is defined to be the conditional expectation of X with respect
to K or using the notation E[X|K ].

Note that by construction Y is a K -measurable random variable.

Proposition 1.32 (Properties of the Conditional Expectation). Let
(Ω, F ,P) a probability space, and let K , K1, K2 sub-σ-algebras. Let
X and Y be random variables of the probability space. Then we have:

(1) If K = {∅, Ω} then E[X|K ] = EX = const.
(2) E[αX + βY |K ] = αE[X|K ] + βE[Y |K ] for α, β real con-
stants.

(3) If X ≤ Y a.s. then E[X|K ] ≤ E[Y |K ]
(4) E [E[X|K ]] = EX
(5) If K1 ⊆ K2 then

E [E[X|K1]|K2] = E [E[X|K2]|K1] = E[X|K1]

(6) If X is independent of K then

E[X|K ] = E[X]

(7) If Y is measurable with respect to K then

E[XY |K ] = Y E[X|K ]

Exercise 12. Using the Theorem-Definition 1.31 prove the seven prop-
erties of the conditional expectation in Proposition 1.32.

1.7. Generating Functions. Moment generating functions
(Laplace Transform). Characteristic Function (Fourier

transform)

Please read at a minimum the information in your textbook (pages
10-14) and supplement it with information from any probability text-
book (including those referenced in the syllabus).
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1.8. Identities. Inequalities. General Theorems

Proposition 1.33 (Jensen’s Inequality). Suppose f(·) is a convex
function, that means:

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y) , ∀x, y ∈ R, ∀α ∈ [0, 1].

Then for any integrable variable X such that f(X) ∈ L1 we have:

f (EX) ≤ E [f(X)]

Proof. skipped. The classical approach indicators→ simple func-
tions→ positive measurable → measurable is a standard way to prove
Jensen. �

Proposition 1.34 (Markov Inequality). Suppose that g(·) is a non-
decreasing, positive measurable function. Then for any random variable
X and any ε > 0 we have:

P (|X(ω)| > ε) ≤ E [g (|X|)]
g(ε)

.

Proof. Let A = {ω : |X(ω)| > ε}. We want to get to probability
of A. We have using the fact that g is nonnegative:

E [g (|X|)] = E [g (|X|)1A] + E [g (|X|)1Ac ] ≥ E [g (|X|)1A] .

On the set A the argument of g is greater than ε. Using this fact
and that g is nondecreasing we have on A, g (|X|) > g(ε). Thus we
can continue:

E [g (|X|)1A] ≥ E [g (ε)1A] = g(ε)P(A).

Dividing with g(ε) yields the desired result. �

Example 1.35 (Special cases of Markov Inequality). These are the
most common cases of the use of Markov’s inequality.

(i) Take X > 0 a.s. and g(x) = x. Then we get:

P (|X(ω)| > ε) ≤ EX

ε

(ii) Take g(x) = x2 and X = Y − EY , we then obtain:

P (|Y − EY | > ε) ≤ E|Y − EY |2
ε2

=
Var(Y )

ε2
.

A even more particular case of this is the Chebyshev’s Inequal-
ity (taking ε = k

√
Var(Y ) = kσ).
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(iii) Take g(x) = eθx for some θ > 0. We get then

P (X(ω) > ε) ≤ e−θεE
[
eθX
]
.

This inequality states that the tail of the distribution de-
cays exponentially in ε if X has finite exponential moments.
With simple manipulations one can obtain Chernoff’s inequal-
ity using it.

Lemma 1.36 (Cauchy-Bunyakovski-Schwarz inequality). If X, Y ∈
L2(Ω), then XY ∈ L1(Ω) and:

|E[XY ]| ≤ E|XY | ≤ ‖X‖2‖Y ‖2
More general we have:

Lemma 1.37 (Hölder inequality). If 1/p + 1/q = 1, X ∈ Lp(Ω) and
Y ∈ Lq(Ω) then XY ∈ L1(Ω) and:

E|XY | ≤ ‖X‖p‖Y ‖q = (E|X|p) 1
p (E|Y |q) 1

q

1.9. Convergence of random variables.

Asymptotic behavior is a key issue in probability theory and in
the study of the stochastic processes. Why do we even need to look
at the asymptotic behavior? Most of the times we cannot work with
the perfect variants of the variable under study. Most of the time we
will construct an approximation of the random variables (the so called
model) thus it is absolutely crucial to study the conditions under which
the approximation converges to the real thing. In this section we will
explore the varied notions of convergence characteristic to probability
theory.

1.9.1. Almost sure (a.s.) convergence. Convergence in
probability. The basic notion of convergence from analysis can be
translated here as a everywhere convergence. That is a sequence Xn

which converges to X everywhere on the Ω or Xn(ω) → X(ω) for all
ω ∈ Ω. For example take Xn(ω) = (1− 1/n)X(ω). This sequence con-
verges to X for every omega. In general this notion is not very useful.
Note that in order to have everywhere convergence we need everywhere
convergence. It is entirely possible that the sequence Xn will converge
for almost all ω ∈ Ω but not for some small subset N . The point is that
if this subset N has a very small probability of happening we really do
not care about it. The question is how small is the probability of N
and that is what differentiate the a.s. convergence from convergence in
probability.
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Definition 1.38 (a.s. convergence). We say that Xn converges to X

almost surely denoted Xn
a.s.−−→ X, if there exist N ∈ F with P(N) = 0

such that Xn(ω) → X(ω) as n → ∞ for all ω ∈ N c, (where N c is a
notation for the complement of the set N).

Thus here the set of omega’s for which we do not have convergence
have to have probability zero. Similarly with the pointwise (every-
where) convergence, the a.s. convergence is invariant with respect to
continuous functionals.

Exercise 13. Show that if f : R → R is a continuous function and
Xn

a.s.−−→ X, then f(Xn)
a.s.−−→ f(X) as well.

A technical point here is that starting with a sequence of random
variables Xn, the limiting variable may not be a random variable itself
(B(R)-measurable). To avoid this technical problem if one assumes
that the probability space is complete (as defined next) one will always
obtain random variables as the limit of random sequences (if the limit
exist of course). Throughout this course we will always assume that
the probability space we work with is complete.

Definition 1.39 (Complete probability space). We say that the prob-
ability space (Ω, F ,P) is complete if any subset of a probability zero
set in F is also in F . Mathematically: if N ∈ F with P(N) = 0,
then ∀M ⊂ N we have M ∈ F .

We can easily “complete” any probability space (Ω, F ,P) by adding
to its sigma-algebra all the sets of probability zero.

So that was one type of convergence (a.s.). We can make it less
restrictive by looking at the measure of N and requiring that this mea-
sure instead of being zero all the time to somehow converge to zero.
This is the next definition (convergence in probability).

Definition 1.40 (Convergence in probability). We say that Xn con-

verges in probability to X denoted Xn
p−→ X, if the sets Nε(n) = {ω :

|Xn(ω)−X(ω)| > ε} have the property P (Nε(n)) → 0 as n→∞, for
any fixed ε > 0.

Theorem 1.41 (Relation between a.s. convergence and convergence
in probability). We have the following relations:

(1) If Xn
a.s.−−→ X then Xn

p−→ X

(2) If Xn
p−→ X then there exist a subsequence nk such that

Xnk

a.s.−−→ X as k →∞
Proof. (a) Let N c = {ω : lim |Xn(ω) − X(ω)| = 0}. We know

form the definition of a.s. convergence that P (N) = 0.
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Fix an ε > 0 and consider Nε(n) = {ω : |Xn(ω)−X(ω)| ≥ ε}. Let
now:

(1.9) Mk =

(
⋃

n≥k

Nε(n)

)c

=
⋂

n≥k

Nε(n)c

- Mk’s are increasing sets (Mk = Nε(k)c∩Mk+1 which implies Mk ⊆
Mk+1).

- If ω ∈ Mk this means that for all n ≥ k, ω ∈ Nε(n)c, or
|Xn(ω)−X(ω)| < ε. By definition this means that the sequence is
convergent at ω, therefore Mk ⊆ N c, ∀k, thus ∪Mk ⊆ N c.

I leave it as an easy exercise to take an ω ∈ N c and to show that
it must exist an k0 such that ω ∈ Mk0 , therefore we will easily obtain
N c ⊆ ∪Mk. This will imply that ∪Mk = N c and so P(∪Mk) = 1, by
hypothesis.

Since the sets Mk are increasing this implies that p(Mk)→ 1 when
k → ∞. Looking at the definition of Mk in (1.9) this clearly implies
that

P

(
⋃

n≥k

Nε(n)

)
→ 0 , as k →∞,

therefore P (Nε(k)) → 0, as k → ∞, which is the definition of the
convergence in probability.

(b) For this part we will use the Borel-Cantelli lemmas (Lemma
1.17 on page 7). We will take ε in the definition of convergence in
probability of the form εk > 0 and make it to go to zero when k →∞.
By the definition of convergence in probability for every such εk we can
find an nk, such that P{ω : |Xn(ω)−X(ω)| > εk} < 2−k, for every
n ≥ nk. An easy process now will construct mk = min(mk−1, nk) so
that the subsequence is now increasing, while still having the above,
desired property. Call:

Nk = {ω : |Xmk
(ω)−X(ω)| > εk}.

Then from above P(Nk) < 2−k which implies that
∑

k P(Nk) <
∑

k 2−k <
∞. Then by the first Borel-Cantelli lemma, the probability that Nk

occurs infinitely often is zero. This means that with probability one N c
k

eventually. Or, the set of ω for which ∃k0 and |Xmk
(ω)−X(ω)| < εk}

for all k ≥ k0 has probability 1. Or the set N := {ω : Xmk
(ω)→ X(ω)}

has probability P(N) = 1. But this is exactly what we needed to
prove. �

In general convergence in probability does not imply a.s. conver-
gence.
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Exercise 14 (Counterexample.
p−→ implies

a.s.−−→ ). You can construct
your own counterexample. For instance take Ω = (0, 1) with the Borel
sets on it and the Lebesque measure (which is a probability measure
for this Ω). Take now for every n ∈ N and 1 ≤ m ≤ 2n:

Xn,m(ω) = 1[m−1
2n , m

2n ](ω).

Form a single subscript sequence by taking: Y1 = X0,1, Y2 =
X1,1, Y3 = X1,2, Y4 = X2,1, Y5 = X2,2, Y6 = X2,3, Y7 = X2,4, etc. Draw
these variables on a piece of paper for a better understanding of what
is going on.

Prove that this sequence {Yk} has the property that Yk
p−→ 0 but

Yk 9 Y a.s. In fact it does not converge for any ω ∈ Ω.

1.9.2. Lp convergence. Recall that we defined earlier the Lp spaces
and the norm in Lp, for p ≥ 1.

‖X‖p = p
√

E [Xp]

Definition 1.42. We say that the sequence Xn converges in Lp (or in

the p-mean, denoted Xn
Lp(Ω)−−−→ X if Xn, X ∈ Lp and ‖Xn − X‖p → 0

as n→∞ (or E(|Xn −X|p)→ 0 with n).

The particular case when p = 2 is detailed in your textbook and is
called convergence in quadratic mean.

These Lp spaces form a complete normed vector space. This is
interesting from the real analysis perspective. For our purposes the
following is important:

Proposition 1.43. Let X a random variable. Then the sequence of
norms ‖X‖p is non-decreasing (increasing) in p. This means that if a
variable is in Lq for some q fixed then it also is in any Lr with r ≤ q.
Therefore we have (as spaces): L1(Ω) ⊇ L2(Ω) ⊇ L3(Ω) . . . .

Proof. Let p1 > p2. Then the function f(x) = |x|p1/p2 is convex
(check this) and we can apply Jensen’s inequality to the non-negative
r.v. Y = |X|p2. The application immediately yields the desired result.

�

Corollary 1.44. If Xn
Lp(Ω)−−−→ X and p ≥ q then Xn

Lq(Ω)−−−→ X

Proof. Exercise. �

Exercise 15. Show that if Xn
Lp(Ω)−−−→ X then E|Xn|p → E|X|p.

HINT: The ‖ · ‖p is a proper norm (recall the properties of a norm).
Next we will look into relations between the forms of convergence

defined thus far.
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Proposition 1.45. If Xn
Lp(Ω)−−−→ X then Xn

p−→ X.

Proof. This is an easy application of the Markov Inequality (Propo-
sition 1.34). Take g(x) = |x|p, and the random variable Xn − X. We
obtain:

P (|Xn −X|p > ε) ≤ ε−pE|Xn −X|p.
Therefore, if Xn

Lp(Ω)−−−→ X then we necessarily have Xn
p−→ X as well. �

Exercise 16. The converse of the previous result is not true in general.
Consider the probability ensemble of Exercise 14.

Let Xn(ω) = n1[0, 1
n

](ω)

Show that Xn
p−→ X but Xn 9 X in any Lp with p ≥ 1.

What about convergence in Lp compared with convergence a.s.? It
turns out that neither imply the other one. It is possible (easy) to come
up with counterexamples for a.s. implies p-mean convergence and for
p-mean convergence implies convergence a.s. However, what is true is
that if both limits exist they must be the same.

Proposition 1.46. If Xn
Lp(Ω)−−−→ X and Xn

a.s.−−→ Y then X = Y a.s.

Proof. (Sketch) We have already proven that both types of con-
vergence imply convergence in probability. The proof then ends by
showing a.s. the uniqueness of a limit in probability. �

1.9.3. Weak Convergence or Convergence in Distribution.
All of the three modes of convergence discussed thus far are concerned
with the case when all the variables Xn as well as their limit X are
defined on the same probability space. In most applications the con-
vergence is necessary only from the point of view of the distributions
of Xn and X. I am going to stress this fact, though this is the weakest
form of convergence in the sense that it is implied by all the others we
are in fact discussing a totally different form of convergence.

Definition 1.47 (Convergence in Distribution – Convergence in Law –
Weak-Convergence). Consider a sequence of random variables Xn de-
fined on probability spaces (Ωn, Fn,Pn) (which might be all different)
and a random variable X, defined on (Ω, F ,P). Let Fn(t) and F (t)
be the corresponding distribution functions. Xn is said to converge to

X in distribution (written Xn
D−→ X or Fn ⇒ F ) if for every point t at

which F is continuous we have:

lim Fn(t) = F (t).
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Remark 1.48. There are many notations which are used interchange-

ably in various books, we mention Xn
L−→ X,Xn ⇒ X, Xn

Distrib.−−−−→ X,

Xn
d−→ Xetc.

Remark 1.49. Why do we require t to be a continuity point of F ?
The simple answer is that in the discontinuity points weird things may
happed even though we might have convergence everywhere else. I will
give you a simple example that may illustrate this fact.

Let Xn be a 1/nBernoulli(1/n) random variable. That is Xn takes
value 1/n with probability 1/n and value 0 with probability 1 − 1/n.
Then:

Fn(t) =

{
0 , if t < 1

n

1 , if t ≥ 1
n
.

Looking at this it makes sense to say that the limit is X = 0 with
probability 1 which has distribution function:

F (t) =

{
0 , if t < 0

1 , if t ≥ 0.

Yet, at the discontinuity point of F we have F (0) = 1 6= lim Fn(0) = 0.
This is why we exclude these points from the definition.

There is one quantity where we do not care about these isolated
points and that is the integral. That is why we have an alternate
definition for convergence in distribution given by the next theorem.
Note that it applies to random vectors Xn, X which are defined on Rd.

Theorem 1.50. Let Xn defined on probability spaces (Ωn, Fn,Pn) and

X, defined on (Ω, F ,P). Then Xn
D−→ X if and only if for any bounded,

continuous function on the range of X we have:

E[φ(Xn)]→ E[φ(X)], as n→∞,

or equivalently: ∫
φ(t)dFn(t)→

∫
φ(t)dF (t)

The following proposition states that (if possible to express) the
convergence in probability will imply convergence in distribution. That
is perhaps the reason for the name weak convergence.

Proposition 1.51. Suppose that the sequence of random variables Xn

and the random variable X are defined on the same probability space

(Ω, F ,P). If Xn
p−→ X then Xn

D−→ X.
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Because of the fact that we are talking about apples and oranges
when comparing weak convergence with anything else in general the
converse of the previous theorem is false. However, there is one case
where the converse is true, and that is when the limit X is a.s. a
constant (notice that constants live in any probability space).

Proposition 1.52. Let Xn
D−→ X and X is a non-random constant

(a.s.). Then Xn
p−→ X.

Furthermore, here is an interesting result:

Theorem 1.53 (Skorohod’s representation theorem). Suppose Xn
D−→

X. There exists a probability space (Ω′, F ′,P′) and a sequence of ran-
dom variables Y, Yn on this new probability space, such that Xn has
the same distribution as Yn, X has the same distribution as Y , and
Yn → Y a.s. In other words, there is a representation of Xn and X on
a single probability space, where the convergence occurs almost surely.

Exercise 17. Write a statement explaining why the Skorohod’s the-
orem does not contradict our earlier statement that convergence in
distribution does not imply convergence a.s.

Finally, we will finish this section with the two main limit theo-
rems from elementary probability: the law(s) of large numbers and the
central limit theorem.

Theorem 1.54 (The Weak law of large numbers). Let Xn be a se-
quence of r.v.’s defined on probability spaces (Ωn, Fn,Pn). Let us use
the notations Sn = X1 + X2 + · · · + Xn for the sum and Xn = Sn/n
for the average of the first n terms.

Assume that Xn’s are independent identically distributed (iid) with

mean µ. Then Xn
p−→ µ.

Note that the previous theorem says that this is equivalent with
convergence in distribution, that is the reason for calling this result
the weak law. The next result is stronger (it implies the weak law
when the prob spaces are the same).

Theorem 1.55 (The Strong law of large numbers). Let Xn be a se-
quence of r.v.’s defined on the same probability space (Ω, F ,P). We
will use the same notations from the Weak law.

Assume that Xn’s are independent identically distributed (iid) with
mean µ. Then Xn → µ a.s.
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The next theorem talks about how the convergence to µ occurs.

Theorem 1.56 (The Central Limit Theorem (CLT)). Let Xn be a
sequence of r.v.’s defined on probability spaces (Ωn, Fn,Pn). Assume
as before that Xn’s are iid and in addition that they have finite variance
σ2. We use the notations presented in the weak law and in addition we
define the standardized variables:

Zn =
Xn − µ

σ/
√

n
=

Sn − nµ

σ
√

n

Let Z be a N(0, 1) random variable. Then we have:

Zn
D−→ Z.

1.10. Uniform Integrability4

We have seen that convergence a.s. and convergence in Lp are
generally not compatible. However, we will give next an integrabil-
ity condition that together with convergence in probability will imply
convergence in p-mean.

Definition 1.57 (Uniform Integrability criterion). A collection of ran-
dom variables {Xα}α∈I is called uniform integrable (U.I.) if:

lim
M→∞

sup
α

E
[
|Xα|1{|Xα|>M}

]
= 0.

In other words the tails of the expectation converge to 0 uniformly for
all the family.

Theorem 1.58. If Xn
p−→ X and for a fixed p ≥ 1 the family {|Xn|p}n∈N

in U.I. then Xn
p−→ X

For the proof see [GS01, Theorem 7.10.3]
We will give a few more details about U.I.

Example 1.59. Examples of U.I. families:

• Any r.v. X ∈ L1 is U.I.
(E|X| <∞ implies immediately E

[
|X|1{|X|>M}

]
−−−−→
M→∞

0)

• Let the family Xα bounded by an integrable random variable
i.e., |Xα| ≤ Y and Y ∈ L1 then Xα is U.I.
Indeed, we have E

[
|Xα|1{|Xα|>M}

]
≤ E

[
Y 1{|Y |>M}

]
, which

does not depend on α and converges to 0 with M as in the
previous example.

4Not normally taught in Ma611
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• Any finite collection of r.v.’s in L1 is U.I.
This is just an application of the previous point. If {X1, X2, . . . , Xn}
is the collection of integrable r.v.’s take for example Y =
|X1|+ |X2|+ · · ·+ |Xn|.
• The family {aαY } with Y ∈ L1 and aα ∈ [−1, 1], non-random

constants is U.I.
• Any bounded collection of integrable r.v.’s is U.I.

Next we give a very useful criterion for U.I.

Proposition 1.60. A family of r.v.’s {Xα}α∈I is uniform integrable if
Ef(|Xα|) ≤ C for some finite C and all α, where f ≥ 0 is any function
such that f(x)/x→∞ as x→∞.

Here is an example of a family which is not U.I.

Example 1.61. Let us consider the probability space of all infinite
sequences of coin tosses (we will see this space later on in reference to
Bernoulli process). Assume that the coin is fair.

Let Xn = infi>n{toss i is a H}, the first toss after n where we ob-
tain a head. Then for any M we can find n ≥M therefore Xn > n ≥ M
thus E

[
|Xn|1{|Xn|>M}

]
= E[Xn] > n, implying that Xn is not U.I.

1.11. Exchanging the order of limits and expectations

This is an important question. In many cases we need to put the
limit under the integral sign, but are we doing it correctly?

There are 4 results that can help you with this question.
The first two results results basically require the sequence and the

limit to be integrable.

Theorem 1.62 (Dominated Convergence). If there exists a random
variable Y such that EY < ∞, Xn ≤ Y for all n and if we have

Xn
p−→ X, then EXn → EX as well.

In the particular case when Y is non-random we obtain:

Corollary 1.63 (Bounded Convergence). Suppose that Xn ≤ C, ∀n
for some finite constant C. If Xn

p−→ X, then EXn → EX as well.

In the case of monotone (increasing) convergence of non-negative
r.v.’s we can exchange the limit and the expectation even if X is non-
integrable.

Theorem 1.64 (Monotone Convergence). If Xn ≥ 0 and Xn(ω) ↑
X(ω) a.s. then EXn ↑ EX. This is true even if X(ω) = ∞ for some
ω ∈ Ω
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Remark 1.65. You may think that as we have increasing convergence
we must also have decreasing convergence. We indeed have but the
result is not that useful. It requires the extra assumption E[X1] <∞.
But, if we make this assumption the exchange of limit and integral
is true already from the dominated convergence theorem. If we wish
to drop the extra assumption the result is no longer true as the next
example demonstrates.

Example 1.66. Let Z be a random variable such that EZ = ∞.
Take X1 = Z, and in general Xn(ω) = n−1Z(ω). Then we have that
EXn =∞, for any n but Xn ↓ 0 wherever Z is finite.

Practice your understanding solving the following exercise:

Exercise 18. Let Yn a sequence of non-negative random variables. Use
the Monotone Convergence Theorem to show that:

E

[ ∞∑

n=1

Yn

]
=

∞∑

n=1

E[Yn].

Continue by showing that if X ≥ 0 a.s. and An are disjoint sets with
P(∪nAn) = 1 (partition of Ω), then:

E[X] =

∞∑

n=1

E(X1An
).

Furthermore, show that the result applies also when X ∈ L1.

The last result presented bellow is the most useful in practice; we
do not require the sequence or the limit to be integrable nor do we
require a special (monotone) form of convergence. We only require the
existence of a lower bound. However, the result is restrictive, it only
allows exchange of the lim inf with the expectation.

Lemma 1.67 (Fatou’s Lemma). Suppose that Xn is a sequence of
random variables such that there exist a Y ∈ L1 with Xn > Y for all
n. Then we have:

E

[
lim inf
n→∞

Xn

]
≤ lim inf

n→∞
E[Xn]

Here:

lim inf
n→∞

Xn = lim
n→∞

{
inf
k≥n

Xk

}
.





CHAPTER 2

Introduction to Stochastic Processes

What is a stochastic process?

Definition 2.1. Given a probability space (Ω, F ,P), a stochastic pro-
cess is any collection of random variables defined on this probability
space. More specifically the collection of random variables {X(t)}t∈I
or alternatively written {X(t) : t ∈ I}, where I is the index set. We
will alternately use Xt to denote X(t).

We will give here the famous R.A. Fisher quotation:

What is a stochastic process? Oh, it’s just one darn thing
after another.

We will next describe some characteristics important for all sto-
chastic processes.

2.1. General characteristics of Stochastic processes

2.1.1. The index parameter I. The parameter that indexes the
stochastic process determines the type of stochastic process we are
working with.

For example if I = {0, 1, 2 . . .} (or equivalent) we obtain the so-
called discrete-time stochastic processes. We will often write {Xn}n∈N

in this case.
If I = [0,∞] we obtain the continuous-time stochastic processes.
If I = Z × Z we may be describing a discrete random field. If

I = [0, 1]× [0, 1] we may be describing the structure of some random
material.

These are the most common cases encountered in practice but the
index set can be quite general.

2.1.2. The state space S. This is the space where the random
variables Xt which constitute our stochastic process take values. Again
we have several important examples. If S ⊆ Z we say that the process
is integer valued or a discrete state process. If S = R then we say that
Xt is a real-valued process. S = Rk then Xt is a k-vector process.

29
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2.1.3. The finite distribution of stochastic processes. As we
have seen a stochastic process is just a collection of random variables.
Thus we have to look into what quantities characterizes a random vari-
able. That is obviously its distribution. However, here we are working
with a lot of them. Depending on the index set I the stochastic process
may be finite or infinite. In either case we will be primarily concerned
with the joint distribution of a finite sample taken from the process.
This is due to practical consideration and the fact that in general we
cannot study jointly a continuum. The processes that have a con-
tinuum structure on the set I serves as subject for a later course in
Stochastic Differential equations. However, even in that case the finite
distribution of the process serves as a primary object of study.

More specifically, let {Xt}t∈I be a stochastic process. For any subset
{t1, t2, . . . , tn} of I we will write FXt1 ,Xt2 ,...,Xtn

for the joint distribution
function of the variables Xt1 , Xt2 , . . . , Xtn . The statistical properties of
the process Xt are completely described by the family of distribution
functions FXt1 ,Xt2 ,...,Xtn

indexed by the n and the ti’s. This is a famous
result due to Kolmogorov in the 1930’s, (the exact statement is omitted
– the consistency relations are very logical, you can look them up on
page 9 of [KT75]).

I will restate this result again: If we can describe these joint dis-
tributions we will completely characterize the stochastic process. In
general this is a complicated task. However, there are some proper-
ties of the stochastic processes that makes this calculation task much
easier. We will mention them next.

2.1.4. Independent components of the process. This is the
most desirable property and the the most useless. Let us explain.
This property implies that for any sample {t1, t2, . . . , tn} of I we get
Xt1 , Xt2 , . . . , Xtn independent. Notice that the joint distribution FXt1 ,Xt2 ,...,Xtn

is just the product of marginals in this case thus very easy to calculate.
However, no reasonable real life processes posses this property. In ef-
fect, every new component being random implies no structure of the
process so this is just a noise process. Generally speaking in practice
this is the component one wishes to eliminate to get to the real signal
process.

2.1.5. Stationary process. A stochastic process Xt is said to be
strictly stationary if the joint distribution functions of:

(Xt1 , Xt2 , . . . , Xtn) and (Xt1+h, Xt2+h, . . . , Xtn+h)

are the same for all h > 0 and any arbitrary selection {t1, t2, . . . , tn}
in I. In particular the distribution of Xt is the same for all t. Notice



2.1. GENERAL CHARACTERISTICS OF STOCHASTIC PROCESSES 31

that this property simplifies the calculation of the joint distribution
function. The condition implies that in essence the process is in equi-
librium and that the particular times at which we choose to examine
the process are of no relevance.

A stochastic process Xt is said to be wide sense stationary or co-
variance stationary if Xt has finite second moments for any t and if
the covariance function Cov(Xt, Xt+h) depends only on h for all t ∈ I.
This is a generalization of the notion of stationarity. A strictly station-
ary process with finite second moments is covariance stationary. There
are examples of processes which are covariance stationary but are not
strictly stationary. The notion arose from real life processes that are
covariance stationary but not stationary.

Many phenomena can be described by stationary processes. We
will discuss them later in this course. However, some of the most
common processes encountered in practice – the Poisson process and
the Brownian motion – are not stationary. Instead they have stationary
(and independent) increments.

2.1.6. Stationary and Independent Increments. A stochas-
tic process Xt is said to have independent increments if the random
variables

Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1

are independent for any choice of the sequence {t1, t2, . . . , tn} in I with
t1 < t2 < · · · < tn. Notice that we are talking about an order on the
set I so an ordering relation must be defined prior to talking about
increments.

A stochastic process Xt is said to have stationary increments if the
distribution of the random variable Xt+h − Xt depends only on the
length h of the increment and not on the time t. Notice that this
is not the same as stationarity of the process itself. In fact except
for the constant process there exist no process with stationary and
independent increments which is also stationary.

Proposition 2.2. If a process {Xt, t ∈ [0,∞)} has stationary inde-
pendent increments and Xt ∈ L1, ∀t then

{
E[Xt] = m0 + m1t

V ar[Xt −X0] = V ar[X1 −X0]t,

where m0 = E[X0], and m1 = E[X1]−m0.

Proof. We will indicate the proof only for the variances, the result
for means you can read in [KT75, page 28]. Also note the error in the
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statement in the book. Let f(t) = V ar[Xt −X0]. Then for any t, s we
have:

f(t + s) = V ar[Xt+s −X0] = V ar[Xt+s −Xs + Xs −X0]

= V ar[Xt+s −Xs] + V ar[Xs −X0] (indep. increments)

= V ar[Xt −X0] + V ar[Xs −X0] (stationary increments)

= f(t) + f(s)

Using the result in the textbook [KT75, page 28] we obtain the
solution f(t) = f(1)t and the result stated in the proposition. �

2.1.7. Other properties that characterize specific classes of
stochastic processes.

• Markov processes. In general terms this is a process with
the property that given Xs, the values of the process Xt with
t > s do not depend on any earlier Xr with r < s. Or, put
differently the behavior of the process at any future time when
its present state is known exactly is not modified by additional
knowledge concerning its past behavior. The study of Markov
processes constitutes a big part of this class. Note also that for
such a process the finite distribution of the process simplifies
greatly.
• Martingales. This is a process that has the property that

the expected value of the future given the information we have
today is going to be equal to the known value of the process
today. We will study Martingales later in this class.
• Point Processes. These are special processes that count rare

events. They are very useful in practice due to their frequent
occurrence. For example look at the process that gives at
any time t the number of busses passing on Washington street
and 6th starting from an initial time t = 0. This is a typical
rare event (“rare” here does not refer to the frequency of the
event, rather to the fact that there are gaps between event
occurrence). Or look at the process that counts the number of
defects in a given area of material. A particular case (and the
most important) is the Poisson process which we will study in
this class.

2.2. A Simple process – The Bernoulli process

We will start by studying a very simple process – tosses of a (not
necessarily fair) coin. More specifically let Y1, Y2, . . . be iid Bernoulli
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random variables with parameter p, i.e.,

Yi =

{
1 p

0 1− p

To simplify the language say a head appears when Yi = 1 and a tail is
obtained at the i-th toss if Yi = 0. Let

Nk =

k∑

i=1

Yi,

the number of heads up to the k-th toss, which you know is distributed
as a Binomial(k, p) random variable. We will use the notation Nk ∼
Binomial(k, p) from now on to denote distribution of random variables.

A sample outcome may look like this:

Table 1. Sample Outcome

Yi 0 0 1 0 0 1 0 0 0 0 1 1 1
Ni 0 0 1 1 1 2 2 2 2 2 3 4 5

Let Sn be the time at which n-th head (success) occurred. Mathe-
matically:

Sn = inf{k : Nk = n}
Let Xn = Sn − Sn−1 be the number of tosses to get the n-th head
starting from the (n− 1)-th head. We present a sample image below:

������ ������ ������ ������ ������	
�� 	
� 	
�� 	
�� 	
���
Figure 1. Failure and Waiting time

Proposition 2.3. We will give some simple results about these pro-
cesses.

1) ”Waiting times” X1, X2 . . . are iid ”trials” ∼Geometric(p)
r.v.’s.

2) The time at which the n-th head occurs is Negative Binomial,
Sn ∼ Negative Binomial(n, p).
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3) Given Nk = n the distribution of (S1, . . . , Sn) is the same
as the distribution of a random sample of n numbers chosen
without replacement from {1, 2, . . . , k}.

4) Given Sn = k the distribution of (S1, . . . , Sn−1) is the same
as the distribution of a random sample of n−1 numbers chosen
without replacement from {1, 2, . . . , k − 1}.

5) We have as sets:

{Sn > k} = {Nk < n}

6) Central Limit theorems:

Nk − E[Nk]√
V ar[Nk]

=
Nk − kp√
kp(1− p)

D−→ N(0, 1)

7)

Sn − E[Sn]√
V ar[Sn]

=
Sn − n/p√
n(1− p)/p

D−→ N(0, 1)

8) As p ↓ 0

X1

E[X1]
=

X1

1/p

D−→ Exponential(λ = 1)

9) As p ↓ 0

P{N[ t
p
] = j} → tj

j!
e−t

Exercise 19. Prove the previous properties. To make it a bit easier
in the parts 3 and 4, take n = 4 and k = 100 (The general proof is
identical).

I will give you some hints. For 1) there is nothing to prove for Xi’s
are Geometric(p) random variables. You need only to show that they
are independent. The solution for 3 I have already written so there it
is.

Proof for 3). A typical outcome of a Bernoulli process looks like:

ω : 00100101000101110000100

In the calculation of probability we have to have 1 ≤ s1 < s2 < s3 <
s4 ≤ 100. Using the definition of the conditional probability we can
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write:

P(S1 = s1 . . . S4 = s4|N4 = 100)

=
P(S1 = s1 . . . S4 = s4 and N100 = 4)

P(N100 = 4)

=

P




s1−1︷ ︸︸ ︷
0000 . . . 1

s2−1︷ ︸︸ ︷
0000 . . .1

s3−1︷ ︸︸ ︷
0000 . . .1

s4−1︷ ︸︸ ︷
0000 . . .1

100−s1−s2−s3−s4︷ ︸︸ ︷
0000 . . .




(
100
4

)
p4(1− p)96

=
(1− p)s1−1p(1− p)s2−1p(1− p)s3−1p(1− p)s4−1p(1− p)100−s1−s2−s3−s4

(
100
4

)
p4(1− p)96

=
(1− p)96p4

(
100
4

)
p4(1− p)96

=
1(

100
4

) .

�

Proof for 8).

P

(
X1

1/p
> t

)
= P

(
X1 >

t

p

)
= P

(
X1 >

[
t

p

])

= (1− p)[
t
p ] =

[
(1− p)−

1
p

]−p[ t
p ] → e−t,

since

lim
p→0
−p

[
t

p

]
= lim

p→0
−p

(
t

p
+

[
t

p

]
− t

p

)

= −t + lim
p→0

p

(
t

p
−
[

t

p

])

︸ ︷︷ ︸
∈[0,1]

= −t

�

We will finish this chapter with a more involved application of the
Borel-Cantelli lemma 1.17 to the Bernoulli process.

Exercise 20 (Due to Amir Dembo). Consider an infinite Bernoulli
process with p = 0.5 i.e., an infinite sequence of random variables
{Yi, i ∈ Z} with P(Yi = 0) = P(Yi = 1) = 0.5 for all i ∈ Z. We would
like to study the length of the maximum sequence of 1’s. To this end
let us define some quantities.

Let lm = max{i ≥ 1 : Xm−i+1 = · · · = Xm = 1}, be the length
of the run of 1’s up to the m-th toss and including it. Obviously lm
will be 0 if the m-th toss is a tail. We are interested in the asymptotic
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behavior of the longest such run from 1 to n for large n. That is the
behavior of Ln where:

Ln = max
m∈{1,...,n}

lm

= max{i ≥ 1 : Xm−i+1 = · · · = Xm = 1, for some m ∈ {1, . . . , n}}
(a) Explain why P(lm = i) = 2−(i+1), for i = 0, 1, 2, . . . and
any m.

(b) Applying the first Borel-Cantelli lemma 1.17 for An = {ln >
(1 + ε) log2 n} show that for eachε > 0, with probability one,
ln ≤ (1+ ε) log2 n for all n large enough. Considering a count-
able sequence εk ↓ 0 conclude that:

lim sup
n→∞

Ln

log2 n
≤ 1, a.s.

(c) Fix ε > 0. Let An = {Ln < kn} for kn = (1 − ε) log2 n.
Explain why

An ⊆
mn⋂

i=1

Bc
i ,

where mn = [n/kn] (integer part) and Bi = {X(i−1)kn+1 =
. . . = Xikn

= 1 are independent events. Deduce that P(An) ≤
P(Bc

i )
mn ≤ exp(−nε/(2 log2 n)), for all n large enough.

(d) Applying the first Borel-Cantelli for the events An of part
(c), followed by ε ↓ 0, conclude that:

lim inf
n→∞

Ln

log2 n
≥ 1 a.s.

(e) Putting (b) and (d) together we conclude that

Ln

log2 n
→ 1 a.s.

Therefore the length of the maximum sequence of Heads is
approximately equal to log2 n when n, the number of tosses,
is large enough.



CHAPTER 3

The Poisson process

I believe the treatment of the Poisson process is absolutely essen-
tial in modern stochastic processes treatment due to the vast array of
applications of this process. We will start with basic definitions first.

3.1. Definitions.

Definition 3.1 (Counting Process). Nt is a counting process if and
only if

(1) Nt ∈ {0, 1, 2 . . .}, ∀t
(2) Nt is non decreasing as a function of t

Here Nt is non-decreasing means that all the sample path Nt(w)
are non-decreasing as a function of t for every w ∈ Ω, w fixed.

Definition 3.2 (Poisson Process). N(t) is a Poisson(λ) process if it is
a counting process and in addition

(1) N(0) = 0.
(2) N(t) has stationary independent increments.
(3) P (N(h) = 1) = λh + o(h).
(4) P (N(h) ≥ 2) = o(h).

Facts:

1: f ∼ o(g) if and only if limx→0
f(x)
g(x)

= 0

2: f ∼ O(g) is and only if there exist c1, c2 constants, such that

c1 ≤ f(x)
g(x)
≤ c2, ∀x in a neighborhood of 0.

Theorem 3.3. If N(t) is a Poisson(λ) process then1

P (N(t) = n) =
(λt)n

n!
e−λt

Proof. A standard proof (presented in the notes handed in class)
derive and solves the Kolmogorov’s forward differential equations of the
Poisson(λ) process, a discrete state space Markov Chain. This method

1Note that P (N(t) = n) = P (N(s + t) − N(s)) by the stationarity of the
increments.

37
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will be seen later and it is worth your time to read and understand
that proof as well.

Here we will approach the proof a bit different. The idea is to
approximate a Poisson(λ) process with a Bernoulli process and then
pass to the limit.

Fix t > 0, cut [0, t] into 2k equally spaced intervals.

Let Ñk = the number of these 2k intervals with at least one event
in them. Note that we have the condition

Ñk ≤ Nt

{
= only when each interval contain at most 1 event

≤ always

In addition, let

Ek = {Nt > Ñk} =
2k−1⋃

i=0





N

(
i + 1

2k
t

)
−N

(
i

2k
t

)
≥ 2

︸ ︷︷ ︸
at least 1 interval with 2 events





Take probability on both sides

P (Ek) ≤
2k−1∑

i=0

P

(
N

(
i + 1

2k
t

)
−N

(
i

2k
t

)
≥ 2

)

=

2k−1∑

i=0

P

(
N

(
1

2k
t

)
≥ 2

)
(by stationarity)

= 2ko

(
t

2k

)
=

o(t/2k)

t/2k
t

k→∞−−−→ 0,

for every t fixed. So P(Ek)
k→∞−−−→ 0

Now Ñk ∼ Binomial(2k, λ t
2k + 2o( t

2k )) Note that λ t
2k + 2o( t

2k ) is
the probability that at least one event occurs in an interval, i.e., p =
P(N( t

2k ) = 1) + P(N( t
2k ) ≥ 2)

Exercise 21. If Wk ∼ Binomial(k, pk) and kpk → λ when k → ∞,
then

Wk
D−→ Poisson(λ)

,i.e.

P (Wk = n)→ λn

n!
e−λ

In our case

2k

(
λ

t

2k
+ 2o(

t

2k
)

)
= λt + 2

o(t/2k)

t/2k
t

k→∞−→ λt
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Therefore the Exercise 21 implies

(3.1) Ñk
D−→ Poisson(λt)

OR

P (Ñk = n)→ (λt)n

n!
e−λt

Furthermore, N(t) = Ñk + N(t)− Ñk︸ ︷︷ ︸ and we know P (Ñk 6= N(t)) =

P (Ek)→ 0 as k →∞. Therefore, we must have:

(3.2) Ñk
D−→ N(t)

From (3.1) and (3.2) the limits of Ñk must be the same thing.
Done. �

3.2. Inter-arrival and waiting time

Let:

X1 = time of the first event

X2 = time between 1st and 2nd event

:

Xn = time between (n-1)-th and n-th event

Let Si = time of the i-th event and notice that:

Si =

i∑

j=1

Xj

Sn = inf{t : N(t) ≥ n} = inf{t : N(t) = n}
Proposition 3.4. X1, X2 . . . are iid random variable, exponentially
distributed with mean 1

λ
.

We will not prove this proposition instead we will prove the follow-
ing claim:

Claim–Evidence: The distribution of Sn is Gamma(n, λ) or the
p.d.f. of Sn is given by:

fSn
(t) =

λe−λt(λt)n−1

(n− 1)!
t ≥ 0

We note that the exponential distribution is a special case of Gamma
distribution. In fact, Exponential(λ) = Gamma(1, λ). This is a useful
fact to know since the Gamma distribution has some nice property, one
of them being that if the two variables added are independent then:

Gamma(α1, β) + Gamma(α2, β)
D
= Gamma(α1 + α2, β)
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For this reason if the Proposition 3.4 is true then we must have the
distribution of the arrival times Sn as:

S1 = X1 ∼ Gamma(1, λ)

S2 = X1 + X2 ∼ Gamma(2, λ)

...

Sn = X1 + . . . + Xn ∼ Gamma(n, λ),

Therefore, proving the claim adds evidence in favor of the Proposi-
tion 3.4. In fact we will prove the Proposition using the claim.

Proof of the claim-evidence. We know that: {Sn ≤ t} =
{N(t) ≥ n} (convince yourself of the truth of this affirmation). Thus
the c.d.f

FSn
(t) = P{Sn ≤ t} = P{N(t) ≥ n} =

∞∑

j=n

(λt)j

j!
e−λt

Take the derivative with respect to t: ∂
∂t

fSn
(t) =

∞∑

j=n

[(
λj(λt)j−1

j!

)
e−λt +

(λt)j

j!
(−λ)e−λt

]

= λe−λt

∞∑

j=n

[
(λt)j−1

(j − 1)!
− (λt)j

j!

]

=
λe−λt(λt)n−1

(n− 1)!
and DONE

OR using another way:

fSn
(t)dt = P(t ≤ Sn ≤ t + dt)

= P


N(t) = n− 1︸ ︷︷ ︸

independent

and at least one event in [t, t + dt]︸ ︷︷ ︸
independent




= P (N(t) = n− 1)P (N(dt) ≥ 1)

=
(λt)nte−λt

(n− 1)!
[λdt + o(dt) + o(dt)]
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Dividing the last expression by dt and taking dt→ 0,

fSn
=

(λt)nte−λt

(n− 1)!

(
λ + 2

o(dt)

dt

)

dt→0−→ (λt)nte−λt

(n− 1)!

�

The plan is to finish the proof of Proposition 3.4 by calculating the
joint density of Xi’s. To do so we need the joint density of the Si’s. To
this end we will introduce the concept of order statistic.

3.2.1. Order Statistic. Let Y1 . . . Yn be n random variables. We
say that Y(1) . . . Y(n) are the order statistics corresponding to Y1 . . . Yn

if Y(k) is the k-th smallest value among Y1 . . . Yn

Lemma 3.5. If Yi’s are continuous random variables with p.d.f. f
then the joint density of the order statistics Y(1) . . . Y(n) is given by

f(Y1 . . . Yn) = n!

n∏

i=1

f(Y(i))

Proof. exercise. See page 66 of the handed notes. �

Theorem 3.6. The joint density of (S1 . . . Sn) = (X1, X1+X2 . . .
∑n

i=1 Xi)
is

fS1...Sn
(t1 . . . tn) = λne−λtnI{0≤t1<t2...<tn}

Proof. Let 0 ≤ t1 < t2 . . . < tn, and δ > 0 small enough2 such
that 0 ≤ t1 < t1 + δ < t2 < t2 + δ . . . < tn. Let

Ij = (tj , tj + δ)

Goal: Find P(S1 ∈ I1, S2 ∈ I2 . . . Sn ∈ In), then take δ → 0 to
obtain the joint density. Note that terms can be express as follows




S1 ∈ I1 no event in (0, t1) and 1 event in I1

S2 ∈ I2 no event in (t1 + δ, t2) and 1 event in I2

:

Sn ∈ In no event in (tn−1 + δ, tn) and at least 1 event in In

2In other words, chose δ such that we create non-overlapping intervals.
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Then

P(S1 ∈ I1, S2 ∈ I2 . . . Sn ∈ In)

= e−λt
︸︷︷︸

0∈(0,t1)

(
λδ

1!
e−λ(t2−t1−δ)

)

︸ ︷︷ ︸
1∈I1

e−λt
︸︷︷︸

0∈(t1+δ,t2)

(
λδ

1!
e−λ(t2−t1−δ)

)

︸ ︷︷ ︸
1∈I2

. . . e−λ(tn−tn−1−δ)
(
1− e−λδ

)
︸ ︷︷ ︸

at least 1 in In

= (λδ)n−1e−λδ(n−1)(1− e−λδ)e−λtneλ(n−1)δ

= (λδ)n−1e−λtn(1− e−λδ)

Divide3 by δn

P(S1 ∈ I1, S2 ∈ I2 . . . Sn ∈ In)

δ
= e−λtnλn−1 1− e−λδ

δ︸ ︷︷ ︸
→λ

→ λne−λtn

�

3.2.2. Finishing the proof.

Proof of Proposition 3.4. Note that X1 = S1, X2 = S2 −
S1, . . . , Xn = Sn − Sn−1. Therefore we can obtain their distribution
from:

fX1...Xn
(x1, . . . , xn) = fS1...Sn

(
x1, x1 + x2, . . . ,

n∑

i=1

xi

)
|J |1{0≤x1≤x1+x2...≤

∑n
i=1 xi}

The determinant of the Jacobian J of the transformation is∣∣∣∣∣∣∣∣

1 1 1 . . . 1
0 1 1 . . . 1

: : 1
0 0 0 . . . 1

∣∣∣∣∣∣∣∣
= 1

Hence

fX1...Xn
(x1 . . . xn) = fS1,...,Sn

(
x1, x1 + x2, . . . ,

n∑

i=1

xi

)
1{0≤x1≤x1+x2...≤

∑n
i=1 xi}

= λne−λ(x1+x2...xn)
n∏

i=1

1{xi≥0}

=

n∏

i=1

λe−λxi1{xi≥0}

which is the product of n independent exponential distributions. �

3Note that 1−e−a

a

a→0−−−→= 1
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Corollary 3.7. Given Sn = tn the other n−1 arrival times S1, S2 . . . Sn−1

have the same distribution as the order statics corresponding to (n−1)
independent uniform random variables on the interval (0, tn).

Proof.

fS1...Sn−1|Sn
(t1 . . . tn−1|tn) =

fS1...Sn
(t1 . . . tn)

fSn
(tn)

=
λne−λtn1{0≤t1<t2...<tn<t}

λe−λtn(λtn)n−1

(n−1!)

=
(n− 1)!

tn−1
n

1{0≤t1<t2...<tn<t}

�

Corollary 3.8. Given N(t) = n the n arrival times S1, S2 . . . Sn have
the same distribution as the order statics corresponding to n indepen-
dent uniform random variables on the interval (0, t), i.e.

fS1...Sn|N(t)(t1 . . . tn|n) =
n!

tn
1{0≤t1<t2...<tn<t}

Proof. Exercise. �

Proposition 3.9. Assume that each event of a Poisson(λ) process can
be classified as either Type I or Type II event. Furthermore, suppose
that if an event occurs at time s then it is classified as being Type I
with probability p(s) and Type II with probability 1− p(s).

If Ni(t) is the number of events of Type i, i ∈ {I,II} by time t,
then N1(t) and N2(t) are independent Poisson random variables with
means(rates) λtp and λt(1− p) respectively, where

p =
1

t

∫ t

0

p(s)ds

Proof. Omitted. �

Corollary 3.10. In general if N(t) is poisson(λ) process and events
can be categorized into some category type A independently of the
original process, then if NA(t) is the number of events of type A by

time t, then NA(t) is Poisson with rate λ ·
∫ t

0
pA(s)ds, where pA(s) is

the probability that one event occurring at time s is of type A.

Note that the original Poisson(λ) process has the mean E[N(t)] =
λt.
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For the process counting the events of type A, the rate (mean) can

be written4 as E[NA(t)] = λt︸︷︷︸ ·
1

t

∫ t

0

pA(s)ds

︸ ︷︷ ︸
.

3.3. General Poisson Processes

Definition 3.11. Let X be a set, G be a σ-field on X . A counting
process on (X , G ) is a stochastic process {N(A)}A∈G with the following
properties:

(i)N(A) ∈ {0, 1, 2 . . .}

(ii)N(
∞⋃

i=1

Ai, ω) =
∞∑

i=1

N(Ai, ω), ∀w ∈ Ω and A1, A2 . . . disjoint sets in G

Definition 3.12 (General Poisson Process). Let (X , G , µ) be a mea-
sure space, A Poisson process on (X , G ) with intensity µ is a counting
process {N(A)}A∈G with

(1) N(A) is a poisson random variable with mean µ(A)
(2) Independent increments, i.e., if A1, A2 . . . An are disjoint G sets

in X , then N(A1), N(A2), . . . N(An) are independent random
variables.

Theorem 3.13. Let {N(A)}A∈G be a counting process on (X , G ). Let
µ(A) = E[N(A)] for A ∈ G . If:

(1) N(·) has independent increments (as before),
(2) ∀ǫ > 0, there exists δ > 0 such that ∀ A with E[N(A)] < δ,

P(N(A) ≥ 2)

µ(A)
< ǫ

(3) If x ∈X with µ({x}) > 0 then N({x}) ∼ Poisson(µ({x}))
Then {N(A)}A∈G is a Poisson variable with mean µ(A)

Consequence: If {N(A)}A∈G satisfies the above then

P (N(A) = k) =
µ(A)k

k!
e−µ(A)

Example 3.14 (Non-homogenous Poisson Process). This is a simple
generalization of the regular Poisson process. The rate is a function of
time λ(t) instead of λt. In terms of the previous definition X = [0,∞),
G = B([0,∞)) and µ(A) =

∫
A

λ(t)dt. Notice that this process does
not have stationary increments anymore.

4Note that the expectation is the product between the rate of the original
Poisson(λ) process and the probability that the event is of type A.
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Example 3.15 (Compound Poisson Process). For each hit i for a
Poisson(µ1) process N on (X , G ) attach the random variables Yi iid
with c.d.f. F , which give rise to the probability measure µ2

5. Then the
process:

Z(A) =

N(A)∑

i=1

Yi

is a process called the compound poisson process on [0,∞) × R with
intensity µ = µ1 × µ2

This is the most general definition of the compound process. In the
particular case when N is a regular Poisson process we obtain:

Z(t) =

N(t)∑

i=1

Yi,

called the (simple) compound Poisson process.

Proposition 3.16. If λ is the rate for the Poisson process N(t) and
the variables Yi have mean µ and variance ν2 then:

E[Z(t)] = λµt, V [Z(t)] = λ(ν2 + µ2)t

As an example of occurrence of such a process imagine claims ar-
riving at a health insurance agency, with the time of events modeled
by the Poisson process, and with the amount of the claim given by the
variables Yi.

Example 3.17. Consider a system with possible states {1, 2 . . .}. In-
dividuals enters the “system” according to a Poisson(λ) process. At
any time after the entry, any individual is in some state i ∈ N∗ (N∗ =
N \ {0}).

Let αi(s) = P{An individual is in state i at time s after entry}.
Let Ni(t) be the number of individual in state i at time t. Find

E[Ni(t)].

Solution: We can represent the state of each point of this process
as the pair:


 entry time︸ ︷︷ ︸

poisson process

, state at time t︸ ︷︷ ︸
the r.v., Yi


 ∈ [0, t]× N∗.

5One can obtain the measure from c.d.f. remembering that the Borel sets are
generated by intervals and using the relation µ((a, b]) = F (b)− F (a)
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An event is of type i if at time t it is in state i. The process N that
counts the number of particles on this set X = [0, t]×N∗ is a general
Poisson process.

Using this definition Ni(t) = N([0, t] × {i}). Recalling the theo-
rem 3.13, we have that Ni(t) is a Poisson random variable with mean
µ([0, t]× {i}). Therefore, the mean is:

µ([0, t]×{i}) = λ

∫ t

0

p(event at time s is of type i)ds = λ

∫ t

0

αi(t−s)ds.

Let us look at this further. We have, using r = t− s:

λ

∫ t

0

αi(t− s) = λ

∫ t

0

αi(r)dr

= λ

∫ t

0

P(invidual is in state i, r units after its entry)dr

= λ

∫ t

0

E

[
1{individual is in state i, r units after its entry}

]
dr

Fubini→ = λE




∫ t

0

1{...}dr

︸ ︷︷ ︸
time spent in state i during [0, t]




= λE [time spent in state i during the first t time units]

Question: What happens as t→∞? �

Example 3.18 (text 2.22). Cars enter a highway (one way highway)
according to a poisson(λ) process in time. Each car has velocity v(i)
iid with c.d.f.=F .
Q: Assuming that each car travels at constant velocity, find the distri-
bution of the number of cars on the highway between points a and b
(spatial points) at time t?

Solution: We have the entry time and velocity, i.e.,

(entry time, velocity) = (S(i), v(i)) ∈ [0,∞)× [0,∞)

A sample outcome is presented in Figure 1. The position of the car
i at time t is v(i)(t− S(i))
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TimeS(1) S(2) S(3) S(4) S(5)

v(1)

v(2)

v(3)

v(4)

v(5)

v=b/(t−s)

v=a/(t−s)

Speed

Figure 1. Cars enter at S(i) with velocity v(i)

We call the event i an event of Type AB if a car entering at si with
velocity vi is in [a, b] at time t. Then using Corollary 3.10:

N(t) = number of cars in [a, b] = number of events of type AB

N(t) ∼ Poisson with the rate = λ

∫ t

0

p(events enter at s is of type AB)ds

What is the probability that a car that arrives at s will be in the
interval [a, b] at time t?

P ({v : a < v · (t− s) < b}) = P

{
v :

a

t− s
< v <

b

t− s

}

=

[
F

(
b

t− s

)
− F

(
a

t− s

)]
1[0,t](s)

Therefore, N(t) is a Poisson random variable with mean

λ

∫ t

0

[
F

(
b

t− s

)
− F

(
a

t− s

)]
ds.

Question: What happens as t→∞? �

3.4. Simulation Techniques. Constructing the Poisson
Process.

There are two ways to construct a 1-dim Poisson process

Simplest way : Let X1, X2 . . . iid, exponential(λ) with mean 1
λ
.

Use Xi as the time between events i− 1 and i. (Done!)
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Time of the 5th arrival

X(1) X(2)

X(3)

X(4)
X(5)

Time of first arrival

Figure 2. Illustration of the construction idea

Generate interval wise: For each time interval [0, 1), [1, 2) . . . [t−
1, t) . . .
(1) Simulate6 NI = N([k − 1, k)) = number of events in I =

[k − 1, k), this generates the number of events in each
interval.

(2) To get the actual times of the events, use the uniform
distribution to generate times in each interval. For ex-
ample if say you obtained N([0, 1)) = 2 just generate
2 Uniform(0, 1) random variables, they are your 2 event
times.

As anything in life, the simple way is simple but only works with
the 1-dim process. The interval-wise way on the other hand is more
complicated but it can be extended to the general Poisson process. The
way to do it is straight forward. Suppose we have (X , G ) a measurable
space, and µ a σ-finite measure (see Definition 1.11). Partition X into
{Bi}∞i=1 such that µ(Bi) <∞. Then for each Bi get:

(1) N(Bi) = the number of events in Bi which is distributed as a
Poisson(µ(Bi)) random variable,

(2) X
(i)
1 , X

(i)
2 . . . iid7 with probability distribution

P (X
(i)
k ∈ A) = µ(A|Bi) =

µ(A ∩ Bi)

µ(Bi)

Then for every A ∈ G let

(3.3) N(A) =

∞∑

i=1

N(A ∩ Bi) =

∞∑

i=1

[ ∞∑

k=1

1{X(i)
k

∈A and N(Bi)≥k}

]

Theorem 3.19. The construction above and (3.3) yields a Poisson
process with intensity µ on (X , G ).

Sketch of the proof. We omit the detailed proof, but we give
bellow the important ideas of the proof.

6Note that for each interval, N([k−1, k)) are iid Poisson(λ·1) random variables.
7random points positions in Bi
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The countable additivity is satisfied automatically, by the definition
of measure. The proof continues demonstrating the following facts:

(1) N(A) ∼ Poisson(µ(A)) for any A ∈ G

(2) N(A) and N(B) are independent if A ∩B = ∅
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Figure 3. Illustration of set A and Bi

First show these properties inside each Bi. To show (2) inside Bi

we may proceed as follows. Let A ⊂ Bi and C = Bi\A (see Figure 3).
For integers a, c ∈ N we have:
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P(N(A) = a,N(C) = c) = P(N(A) = a, N(C) = c, N(Bi) = a + c)

= P(N(A) = a, N(C) = c|N(Bi) = a + c)P(N(Bi) = a + c)

= P (N(A) = a|N(Bi) = a + c) · P (N(Bi) = a + c)(3.4)

= P (N(A) = a|N(Bi) = a + c) · [µ(Bi)]
a+c

(a + c)!
e−µ(Bi)(3.5)

=

(
a + c

a

)
[µ(A|Bi)]

a[µ(C|Bi)]
c · [µ(Bi)]

a+c

(a + c)!
e−µ(Bi)(3.6)

=

(
a + c

a

)
[µ(A ∩ Bi)]

a[µ(c ∩Bi)]
c

(a + c)!
e−µ(Bi)(3.7)

=
[µ(A ∩ Bi)]

a[µ(c ∩Bi)]
c

a!c!
e−µ(A∩Bi)−µ(C∩Bi)

=
[µ(A ∩ Bi)]

a

a!
e−µ(A∩Bi)

︸ ︷︷ ︸
poisson in A

· [µ(C ∩Bi)]
c

c!
e−µ(C∩Bi)

︸ ︷︷ ︸
poisson in C

=
[µ(A)]a

a!
e−µ(A) · [µ(C)]c

c!
e−µ(C)

= P (N(A) = a) · P (N(C) = c)

In (3.4), we removed the redundant information.
In (3.5), we used the Poisson distribution to write the probability for
P (N(Bi) = a + c)
In (3.6) we used the binomial distribution with n = a + c and p =
µ(A|Bi)

In (3.7) by the definition of conditional probability [µ(A|Bi)]
a = [µ(A∩Bi]a

[µ(Bi]a

Therefore, N(A) and N(C) are independent. �

Example 3.20 (Astronomy). Consider stars distributed in space ac-
cording to a 3D Poisson process with intensity, λµ, where µ is the
Lebesgue measure8 on R3, λ > 0. Let x, y be 3-dim vectors (position).

8The Lebesgue measure is the standard way of assigning a length, area or vol-
ume to subset of Euclidean space. It is used throughout real analysis, in particular
to define Lebesgue integration. Sets which can be assigned a volume are called
Lebesgue measurable; the volume or measure of the Lebesgue measurable set A is
denoted by λ(A). A Lebesgue measure of ∞ is possible, but even so, assuming
the axiom of choice, not all subset in Rn are Lebesgue measurable. The “strange”
behavior of non-measurable sets gives rise to such statements as the Banach-Tarski
paradox, a consequence of the axiom of choice.
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Assume that light intensity exerted at x by a star located at y is

f(x, y, α) =
α

‖x− y‖2 =
α

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2
,

where α is a random parameter depending on the size of the star at y.
Assume that α’s associated with stars are iid with common mean

µα and common variance σ2
α. Also assume that the combined intensity

at x accumulates additively.
Let Z(x, A) be the total intensity at x due to stars in the region A.

Then:

Z(x, A) =

N(A)∑

i=1

αi

‖X − Yi‖2
=

N(A)∑

i=1

f(x, yi, αi),

where N(A) is the number of stars in the region A in space. Note that
Y and α are random variables.

We have:

(3.8) E[Z(x, A)] = E[N(A)]E[f(x, Y, α)].

We do not prove this result here but note that the expression is a direct
consequence of the Wald’s equation.

We have that E[N(A)] = λµ(A), where µ(A) is the volume of A.

E[f(x, Y, α)] = E

[
α

||x− Y ||2
]

= E[α]E

[
1

||x− Y ||2
]

Since α and Y are independent. As a consequence of the Poisson
Process in space, Y is going to be uniform in A or: E[||x − Y ||−2] =

1
µ(A)

∫
A

1
||x−y||2dy, then applying the equation (3.8) we have:

E[Z(x, A)] = λµ(A)µα
1

µ(A)

∫

A

1

||x− y||2dy

= λµα

∫

A

1

||x− y||2dy





CHAPTER 4

Renewal Processes

In the past I have concentrated on these processes because of the
strength of the theorems one can prove. I will state here the majority
of the results but we are going to cover a lot less than what this chapter
contains.

Example 4.1 (Typical example where renewal process appears). A
light bulb in a room keeps burning out. Assume that a mechanism
instantaneously replaces the bulb with another one as soon as it burns.
Describe the Number of light bulbs replaced by time t.

Let X1, X2 . . . iid with c.d.f. F , Xi positive, (non identical zero),
with E[X1] = µ ∈ (0,∞]. These variables will describe the lifetimes of
the light bulbs. Define:

Sn = time to replace the n-th bulb

Sn =

n∑

i=1

Xi ∼ F ∗ F . . . F︸ ︷︷ ︸
n times

= Fn

Note that Fn means F convoluted1 itself n times.
We define the renewal process, N(t) as:

N(t) = sup{n : Sn ≤ t}
= number of renewals up to time t

Note that a Poisson(λ) process is a renewal process. In that spe-
cial case the Xi’s are exponentially distributed. For a general renewal
process, Xi’s could have any distribution.
We have the property: {N(t) ≥ n} ⇔ {Sn ≤ t}. This is the same
result we had for the Poisson(λ) process. Therefore, we can write:

P (N(t) = n) = P (N(t) ≥ n)− P (N(t) ≥ n + 1)

= P (Sn ≤ t)− P (Sn+1 ≤ t) = Fn(t)− Fn+1(t)

1Recall X, Y ∼ F, G and with pdf f, g then: X + Y ∼ F ∗G(z) = G ∗ F (z) =∫
∞

−∞
f(x)g(z − x)dx

53



54 4. RENEWAL PROCESSES

The renewal function The renewal function is the main topic of
our study.

m(t) = E[N(t)] = The expected number of renewals by time t

m(t) = E[N(t)] = E

[ ∞∑

i=1

I{Si≤t}

]

=
∞∑

i=1

E
[
I{Si≤t}

]

=

∞∑

i=1

P (Si ≤ t)

=

∞∑

i=1

Fi(t)

Thus we just showed that:

(4.1) m(t) =

∞∑

i=1

Fi(t)

Proposition 4.2. m(t) <∞, for all 0 < t <∞ fixed

Proof. Assume P (Xk ≥ 1) = p > 0. We will make this assump-
tion. Since P (Xk = 0) < 1 then it must exist a positive value α such
that P (Xk ≥ α) = p > 0. If the proof works with α = 1 we can later
substitute α and the proof will not change significantly.

Let j − 1 ≤ t ≤ j
Claim: N(t) the number of renewals by time t ≤ sum of j independent
“total” number of trials Geometric(p) random variable. Let us prove
the claim. For each bulb k,

If Xk < 1 = throw away the bulb (it counts as a renewal)

If Xk ≥ 1 = use the bulb for 1 unit of time then throw it away

If N∗(t) is the number of bulbs replaced by time t using the protocol
described above, we obviously have N∗(t) ≥ N(t). This proves the
claim since N∗(t) has the desired probability distribution.
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2

S St
N(t) N(t)+1

time

N(t)

Excess life
or

residual life

Current life
or

age

1

Figure 1. Relationship between SN(t), t, and SN(t)+1

Therefore, using the claim:

m(t) = E[N(t)] ≤ E[N∗(t)]

= E[Y1 + Y2 . . . Yj]

=
1

p
+

1

p
. . .

1

p︸ ︷︷ ︸
j times

=
j

p
<

t + 1

p
<∞ (because j − 1 < t < j)

We also have:
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E[N(t)2] ≤ E[N∗(t)2]

≤ E[(Y1 + Y2 . . . Yj)
2]

= Var(Y1 + Y2 . . . Yj)︸ ︷︷ ︸
negative binomial

+ (E[Y1 + Y2 . . . Yj])
2

︸ ︷︷ ︸
known

=
j(j − p)

p2
+

(
t + 1

p

)2

< c(t + 1)2 <∞ as well.(4.2)

�

4.1. Limit Theorems for the renewal process

We will consider limiting results (as t → ∞) for the processes de-
fined thus far.

Proposition 4.3 (Strong Law of Large Numbers for renewal pro-
cesses). Using the notation defined earlier,

N(t)

t
→ 1

µ
a.s. as t→∞

Proof of SLLN:. N(t)
t
→ 1

µ
a.s.

Recall that Sn =
∑n

i=1 Xi. Then the regular SLLN for random variables
gives that Sn ⇒ Sn

n
→ µ a.s.

By the definition of N(t) we have SN(t) ≤ t < SN(t)+1

Divide both sides by N(t)

SN(t)

N(t)︸ ︷︷ ︸
→µ by SLLN

≤ t

N(t)
<

SN(t)+1

N(t)
=

SN(t)+1

N(t) + 1︸ ︷︷ ︸
→µ by SLLN

· N(t) + 1

N(t)︸ ︷︷ ︸
→1 a.s.

which implies t
N(t)
→ µ a.s. OR N(t)

t
→ 1

µ
a.s.

�

Now we want to obtain a convergence result for m(t). Notice that
m(t) = E[N(t)] and we already have a convergence result for N(t) (this
SLLN). Can we get a result about m(t) immediately. Not necessarily
as the following example shows.

Example 4.4 (a.s. convergence does not necessarily imply L1- con-

vergence). Assume that Xn
a.s.−−→ 0. Is is always true that E[Xn]→ 0?
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Answer: Not necessary, for example let U ∼ Uniform[0, 1], and

define Xn = n1{U< 1
n
}. Then we have Xn

a.s.−−→ 0, but

E[Xn] = n · P
(

µ <
1

n

)
= n · 1

n
= 1→ 1 6= 0

�

However for our particular case the implication is true. For the
result to be true we need to apply either the dominated convergence
theorem or the monotone convergence theorem.

Theorem 4.5 (Elementary renewal theorem). With the earlier nota-
tions we have:

m(t)

t
→ 1

µ
as t→∞

with the convention 1
∞ = 0

Unimaginative proof. Recall that we showed in (4.2) that E[N(t)2] ≤
c(t + 1)2. Thus we have:

E

[(
N(t)

t

)2
]
≤ c(t + 1)2

t2
≤ 2c which is independent of t

Therefore, N(t)
t

is uniformly integrable (since it is in L2). Thus we get
the desired result immediately �

4.1.1. Wald’s Theorem. Discrete stopping time. We could
just leave the Elementary renewal theorem the way it is, after all we
have proven it. However, instead we will prove it again using different
concepts which we will use latter on.

The first such new concept is the next theorem which is very very
general and very, very useful.

Theorem 4.6 (Wald’s Theorem/Identity/Equation). Let X1, X2 . . .,
W1, W2 . . . be 2 sequence of random variables with Xk independent of
Wk for any fixed k. If one of the following conditions is true

(1) All Xk’s and Wk’s are ≥ 0

(2)
∑∞

k=1 E[WkXk] <∞
Then

E

[ ∞∑

k=1

WkXk

]
=

∞∑

k=1

E[Wk]E[Xk]
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Proof of Wald’s Theorem: If the first hypothesis is true
we have:

E

[ ∞∑

k=1

XkWk

]
=︸︷︷︸

positivity

∞∑

k=1

E[XkWk]

=︸︷︷︸
independence

∞∑

k=1

E[Xk]E[Wk]

If the second hypothesis is true:
∑∞

k=1 E[XkWk] <∞.
Let

W+
k = WkI{Wk≥0}

W−
k = −WkI{Wk<0}

X+
k = XkI{Xk≥0}

X−
k = −XkI{Xk<0}

Note that

Wk = W+
k −W−

k

Xk = X+
k −X−

k

We then have the following:
∞∑

k=1

WkXk =
∞∑

k=1

W+
k X+

k −
∞∑

k=1

W+
k X−

k −
∞∑

k=1

W−
k X+

k +
∞∑

k=1

W−
k X−

k

All X+
k , X−

k , W+
k and W−

k are positive, then from part 1, we have

E[
∑

W+
k X+

k ] =
∑

E[W+
k ]E[X+

k ]

E[
∑

W+
k X−

k ] =
∑

E[W+
k ]E[X−

k ]

E[
∑

W−
k X+

k ] =
∑

E[W−
k ]E[X+

k ]

E[
∑

W−
k X−

k ] =
∑

E[W−
k ]E[X−

k ]

Recombining the terms in the expression above will finish the proof. �

Example 4.7. Let X1, X2 . . . iid with E[Xi] = µ. Define Xk to be the
gain at some game if you actually make the k-th bet. Let

Wk =

{
1 if you win

0 if you loose

then
∑∞

k=1 XkWk is the total gain from all bets.
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Assume that Xk > 0, also assume that Wk is determined by previ-
ous bets and by X1 . . .Xk−1

2 and maybe some U ∼ uniform random variable
Let N =

∑∞
i=1 Wk to be the number of bets you win. Then Wald’s the-

orem says that if E[N ] <∞ we have

E

[ ∞∑

k=1

WkXk

]
=

∞∑

k=1

E[Wk] E[Xk]︸ ︷︷ ︸
=µ

= µ

∞∑

k=1

E[Wk] = µE[N ]

Note: Think about this and explain to yourself why this result is
obvious.

The second important concept is the notion of a stopping time
defined next.

Definition 4.8 (Discrete Stopping time). Let X1, X2 . . . a sequence of
independent random variable. N ∈ {0, 1, 2 . . .} is called a stopping time
for this {Xn}n sequence if {N = n} is independent of Xn+1, Xn+2 . . ..
Note that this is true if {N = n} is determined only by X1, X2, . . . , Xn

(or {N = n} is measurable with respect to the sigma algebra generated
by X1, X2, . . . , Xn)

Corollary 4.9 (A simpler version of Wald’s theorem which we will use
for the renewal processes). . For X1, X2 . . . iid with µ = E[Xi] finite
and N a stopping time with E[N ] <∞, then

E[

N∑

k=1

Xk] = E[Xi]E[N ] = µE[N ]

Proof. We wish to apply the general Wald. For this purpose no-
tice that we can write:

∑N
k=1 Xk =

∑∞
k=1 Xk1{N≥k}. In order to apply

regular Wald we need to show that 1{N≥k} is independent of Xk.

Remark 4.10. N is a stopping time ⇔ {N ≤ n} is independent of
{Xn+1, Xn+2 . . .}.

Proof of this Remark: is an exercise. As a hint note that
{N ≤ n} = ∪n

k=1{N = k}. �

Then {N ≤ n} is independent of Xn+1, Xn+2 . . . by the remark
OR {N > n} is independent of Xn+1, Xn+2 . . .
OR {N > n− 1} is independent of Xn, Xn+1 . . .

2In other words, it can depend on previous wins but not on the current
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which implies that {N ≥ n} is independent of Xn, Xn+1 . . . ⇒ we can
use Wald.

E

[
N∑

k=1

Xk

]
= E

[ ∞∑

k=1

Xk1{N≥k}

]

=
∞∑

k=1

E[Xk]︸ ︷︷ ︸
=µ

E[1{N≥k}]

= µ
∞∑

k=1

E[1{N≥k}]

= µ
∞∑

k=1

P (N ≥ k)

= µ




P (N = 1) +P (N = 2) +P (N = 3) + . . .
+P (N = 2) +P (N = 3) + . . .

+P (N = 3) + . . .)




= µ[1 · P (N = 1) + 2 · P (N = 2) + 3 · P (N = 3) + . . .]

= µE[N ]

�

4.1.2. Back to the renewal processes. Now the idea is to use
the Wald’s theorem we just prove. To this end we need to find a stop-
ping time for the inter-arrival times. So, the next question comes nat-
urally: “Is N(t) = sup{n : Sn ≤ t} a stopping time for X1 . . .Xn . . .”

Short answer: No, since there could be an event happen between
the n-th event and t.

Mathematical answer:

{N(t) = n} = {Sn ≤ t < Sn+1}
= {X1 + X2 . . . + Xn ≤ t < X1 + X2 . . .Xn + Xn+1︸ ︷︷ ︸

not independent of Xn+1

}

Note that the event is determined by Xn+1, hence {N(t) = n} can’t
be a stopping time.

New question: “Is N(t) + 1 a stopping time?”
Answer: Yes, note that

{N(t) + 1 = n} = {N(t) = n− 1} = {Sn−1 ≤ t < Sn}
= {X1 . . . + Xn−1 ≤ t < X1 . . .Xn−1 + Xn}

Since everything inside the last {·} does not contain terms of type n+1
or larger, {N(t) + 1} is a stopping time.
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At this point we are in the position to give the alternate proof to
the elementary renewal theorem. We will restate the theorem first.

Theorem 4.11 (Elementary Renewal Theorem). Let m(t) = E[N(t)].

m(t)

t

a.s.−−→ 1

µ
(= 0 if µ =∞)

Alternate Proof to the Elementary Renewal Theorem.
Since N(t) + 1 is a stopping time, from Wald we have

(4.3) E[SN(t)+1] = E[N(t) + 1]E[X] = µ(m(t) + 1)

Claim 1. lim inf
t→∞

m(t)
t
≥ 1

µ

Claim 1 proof: By definition, SN(t)+1 > t ⇒ E[SN(t)+1] > t.
Then using (4.3) we obtain:

µ(m(t) + 1) > t

m(t)

t
>

1

µ
− 1

t

Take lim inf on both sides

lim inf
t→∞

m(t)

t
≥ lim inf

t→∞

(
1

µ
− 1

t

)
=

1

µ

�

Claim 2. lim sup m(t)
t
≤ 1

µ

Claim 2 proof: Fix M > 0 constant. Let

X̄k =

{
Xk if Xk ≤M

M if Xk > M

Let µM = E[X̄k], N̄(t) to be the number of renewals up to t with
lifetimes X̄k.

Note that N̄(t) ≥ N(t) (due to shorter life times3)

m̄(t) = E[N̄(t)] ≥ m(t)

Now look at the Figure 2 on page 62 which represents the behavior
of the new process at t. Note that since we bounded the interarrival
times by M we have:

S̄N̄(t)+1 > t

S̄N̄(t)+1 ≤ t + M

3Life span is limited by the upper bound M .
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<M

t t+MSS

N(t)+1

N(t) N(t)+1

X

Figure 2. Representation of the new process.

If we use (4.3) for N̄(t) we get: E[S̄N̄(t)+1] = µM(m̄(t) + 1). There-
fore:

µM(m̄(t) + 1) ≤ t + M

m̄(t) + 1

t
≤ 1

µM
+

M

tµM

m̄(t)

t
≤ 1

µM
+

M

tµM
− 1

t

Apply lim sup in both sides to get:

lim sup
t→∞

m̄(t)

t
≤ 1

µM

which implies

lim sup
t→∞

m(t)

t
≤ lim sup

t→∞

m̄(t)

t
≤ 1

µM
.

But this holds for any M > 0. Therefore take M →∞ and using that

limM→∞
1

µM
= 1

µ
, we conclude: lim sup

t→∞

m(t)
t

= 1
µ
. �

Now combining the two claims will finish the proof. �

Finally we will give a convergence in distribution result similar with
the regular Central Limit Theorem.

Theorem 4.12 (Renewal Central Limit Theorem). Let X1, X2 . . . i.i.d.,
positive, µ = E[Xk], σ2 = Var(Xk) <∞

Sn =

n∑

i=1

Xi, N(t) = sup{n : Sn ≤ t}

Then

P


N(t)− t

µ

σ
√

t
µ3

< y


 t→∞−−−→ Φ(y)
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where Φ(y) is the c.d.f. of N(0, 1)

In other words, when t is large N(t) ∼ N( t
µ
, σ2t

µ3 )

Proof. Fix y.

P


N(t)− t

µ

σ
√

t
µ3

< y


 = P


N(t) <

t

µ
+ yσ

√
t

µ3

︸ ︷︷ ︸
=rt




= P (N(t) < rt)

= P (Srt
> t)

where it is obvious the definition of rt. Note here that what we wrote
only works if rt is an integer. If rt is not an integer, take r̃t = [rt] + 1.
Then

P (N(t) < rt) = P (N(t) < r̃t) = P (Sr̃t
> t)

We can use the classic central limit theorem to complete the proof.

P (Sr̃t
> t) = P

(
Sr̃t
− r̃tµ

σ
√

r̃t

>
t− r̃tµ

σ
√

r̃t

)

= lim
t→∞

Φ

(
t− r̃tµ

σ
√

r̃t

)

The proof of the theorem will end if we show that t−r̃tµ
σ
√

r̃t
→ −y

We have that:

r̃t = rt + {1− {rt}}︸ ︷︷ ︸
=∆t∈[0,1)

where we used the notation {x} for the fractional part of x. This
implies:

t− r̃tµ

σ
√

r̃t

=
t− rtµ−∆tµ

σ
√

rt + ∆t

Recall that rt = t
µ

+ yσ
√

t
µ3 . Therefore, we continue:

=
t−∆tµ−

(
t + yσ

√
t
µ

)

σ

√
∆t + t

µ
+ σy

√
t

µ3

t→∞−−−→ −yσ

σ
= −y

�
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4.2. Discrete Renewal Theory. Blackwell theorem.

We will start this section with a motivating example.

Example 4.13 (Block Replacement Policy). Consider a light-bulb
with lifetime X, a random variable. Due to economic reasons, it might
be cheaper on a per bulb basis to replace all the bulbs instead of just
the one that breaks. A block replace policy does just that by fixing a
time period K and replacing bulb’s as they failed at times 1, 2 . . .K−1
and at K replacing everything regardless the condition of the bulb. Let

c1 = replacement cost per bulb (block replacement)

c2 = replacement cost per bulb (failure replacement)

where obviously c1 < c2. Let N(n) to be the number of replacements
up to time n for 1 bulb, let m(n) = E[N(n)]

For one bulb the expected cost is c2m(k− 1) + c1. Then, the mean
cost per unit of time is:

mean cost

unit time
=

c2m(k − 1) + c1

K

Since the replacements take place only at the beginning of the day
we are only interested in discrete variables to describe the lifetime of
a lightbulb. Suppose that X has the distribution P (X = k) = pk,
k = 1, 2 . . .. Fix n ≤ K. Look at X1 the lifetime of the first lightbulb.
Obviously, if X1 > n there was no replacement by time n. If X1 = k ≤
n then we will have m(n− k) expected replacements in the later time
period. Therefore, we can write conditioning on the lifetime of the first
bulb:

m(n) =
∞∑

k=n+1

pk · 0 +
n∑

k=1

pk[1 + m(n− k)]

=

n∑

k=1

pk[1 + m(n− k)]

= FX(n) +
n−1∑

k=1

pkm(n− k),
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where FX(·) is the c.d.f. of X. Then we obtain recursively:

m(0) = 0

m(1) = FX(1) + p1m(0) = p1

m(2) = FX(2) + p1m(1) + p2m(0) = p1 + p2 + p2
1

... etc.

Example 4.14 (continues the example above). Let us look to a nu-
merical example of the problem above. Suppose that X can only take
values {1, 2, 3, 4} with p1 = 0.1, p2 = 0.4, p3 = 0.3, p4 = 0.2, fur-
thermore the costs are c1 = 2, c2 = 3. Find the optimal replacement
policy.

Using the formulas above we can calculate:

m(1) = 0.1, m(2) = 0.51, m(3) = 0.891, m(4) = 1.3231

Using these numbers we will try to minimize the expect cost,

cost =
c1 + c2m(K − 1)

K
←We will try different K’s to get the minimum

We will obtain a table of cost as a function of K as:

Table 1. default

K cost
1 2.00
2 1.15
3 1.17
4 1.16
5 1.19

Hence the optimal replacement policy is at K = 2. We can also
continue the calculation of m’s:

m(5) =1.6617, m(6) = 2.0647, m(7) = 2.4463, m(8) = 2.8336,

m(9) =3.2136, m(10) = 3.6016, . . .

Now we can calculate un the probability that a replacement occurs
in period n as:

un = m(n)−m(n− 1).

Calculating un’s for the values given we can see that pretty quickly
we have

un ≈
1

µ
= 0.3846.

This fact will be explained by the next theorem.
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Let us assume that we have a renewal process with non negative
integer valued lifetimes, X with P (X = k) = pk, k = 0, 1, 2 . . .

Definition 4.15. X an integer random variable is called a lattice if
there ∃d ≥ 0 such that pk > 0, ∀k not a multiple of d. The largest
d with the property that

∑∞
n=1 pnd = 1 is called the period of X. In

effect:

d = g.c.d.{k : pk > 0}4
If g.c.d.{k : pk > 0} = 1 then X is called a non lattice random variable.
Also if X, a lattice random variable has c.d.f F , then F is called a
lattice.

Example 4.16. Consider the two simple example below

• p2 = p4 = p6 = 1
3

lattice distribution.
• p3 = p7 = 1

2
non-lattice distribution.

In the previous example we have seen how to establish the equation

m(n) = FX(n) +

n−1∑

k=1

pkm(n− k).

(Note that if lifetimes are allowed to be zero the equation is a little
different.)

However, this equation constitutes a particular example of a renewal
equation (discrete case). In general a discrete renewal equation looks
like:

(4.4) vn = bn +

n∑

k=0

pkvn−k,

where vi’s are unknowns and pi’s are probabilities. Note that this form
of equation has a unique solution, e.g. v0 = b0

1−p0
, v1 = b1+p1v0

1−p0
, etc.

Let un be the expected number of renewals that take place in period
n. We have said in the example that un = m(n) −m(n − 1). This is
only true if lifetimes are nonzero and therefore at most one renewal
occurs in any 1 time period. This is easy to show:

un = P{One renewal occurred at n}
= E[1{One renewal occurred at n}]

= E[N(n)−N(n− 1)] = m(n)−m(n− 1)

We have seen in the previous example that this un got closer and
closer to 1/µ. The next theorem formalizes this fact and generalizes it.

4The greatest common denominator of the set of integers.
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Theorem 4.17 (Blackwell renewal theorem). Using the notations de-
fined thus far we have:

(1) un → 1
µ

as n→∞.

(2) If X0 ≥ 0 is a ”delay” variable, and X1, X2, . . . ≥ 0 are i.i.d.
lifetimes independent of X0 with EX1 = µ and non-lattice dis-
tribution then:

m(t + a)−m(t)→ a

µ
, as t→∞.

Note that m(t + a)−m(t) is the expected number of renewals
in the interval [t, t + a].

(3) If Xi’s are lattice random variables with period d, and X0 = 0
then:

E[Number of renewals at nd]→ d

n
, n→∞

Remark 4.18. About the theorem.

(1) Even though the section was started with an example of a
discrete renewal process, the part (2) of the Blackwell theo-
rem applies to any non-lattice distribution. This includes any
continuous distribution.

(2) All the parts of the theorem are true if µ =∞ (1/∞ = 0).
(3) If Xi > 0, part (3) is ⇔ P{Renewal at nd} → d/µ

Proof. Not proven. �

Write for an infinitesimal increment dy:

m(dy) =



 dm(y)︸ ︷︷ ︸
Notation used sometimes



 = m(y + dy)−m(y)

= E[Number of renewals in the interval (y, y + dy]]

This is the renewal measure. The Blackwell renewal theorem says that:

m(dy) ≃ 1

µ
dy.

Lemma 4.19. We have:

(4.5) m(dy) =

∞∑

n=0

P (Sn ∈ (y, y + dy])
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Proof. The proof is straightforward (here we use a delay, therefore
the sum starts from n = 0):

m(dy) = E[N(y + dy)−N(y)] = E[N(y + dy)]− E[N(y)] =

=

∞∑

n=0

P (N(y + dy) ≥ n)−
∞∑

n=0

P (N(y) ≥ n)

=

∞∑

n=0

P (Sn ≤ y + dy)−
∞∑

n=0

P (Sn ≤ y)

=

∞∑

n=0

P (Sn ∈ (y, y + dy])

�

Many applications of the renewal theorem are concerned with the
behavior of the process near a large time t. We need a final key of the
puzzle before we proceed with the study of such applications and this
key is provided in the next section.

4.3. The Key Renewal Theorem

This is the main result used in applications of the renewal processes.
We will start with a definition.

Definition 4.20 (Directly Riemann Integrable function). A function
h : [0,∞)→ R is called a Directly Riemann Integrable (DRI) function
if the upper and lower mesh δ Darboux sums are finite and have the
same limit as δ → 0.

Reminder of lower (and upper) Darboux sum LDS (and UDS):
Let π = (t0 = 0 < t1 < t2 < . . .) be a partition of [0,∞), with

maxi(ti − ti−1) ≤ δ. Define:

LDS(h, π, δ) =
∞∑

n=1

inf
t∈[tn−1,tn]

h(t)(tn − tn−1)

UDS(h, π, δ) =

∞∑

n=1

sup
t∈[tn−1,tn]

h(t)(tn − tn−1)

Example 4.21 (Example of Riemann integrable function which is not
DRI). Let:

h(s) =
∞∑

k=1

1{k≤s<k+ 1
k2 }
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Make a plot of this function to see what is happening. We have that:
∫ ∞

0

h(s)ds = 1 +
1

4
+

1

9
+ · · · =

∞∑

k=1

1

k2
<∞,

so this function is Riemann integrable. However it is not DRI. Take
the partition π = (t0 = 0, t1 = δ, t2 = 2δ, . . . , tn = nδ, . . .). Then:

UDS(h, π, δ) =
∞∑

n=1

sup
t∈[(n−1)δ,nδ]

h(t)(nδ − (n− 1)δ)

= δ
∞∑

n=1

sup
t∈[(n−1)δ,nδ]

h(t)

For any δ no matter how small but positive the last term is an infinite
sum of 1’s which is infinite.

Proposition 4.22. The following are sufficient conditions for a func-
tion to be DRI:

(1) h(t) ≥ 0, ∀t > 0
(2) h is nonincreasing
(3)

∫∞
0

h(t)dt <∞
Proof. Not given. �

Now we are in the postion to be able to state the main theorem of
this section.

Theorem 4.23 (The Key Renewal Theorem). For non-lattice X1, X2, . . .
(any X0 “delay” is fine) and if h is a DRI function we have:

lim
t→∞

∫ t

0

h(t− y)m(dy) =
1

µ

∫ ∞

0

h(t)dt

Proof. Skipped. �

This is a very powerful theorem. We shall see its application in the
next section.

4.4. Applications of the Renewal Theorems

Refer back to Figure 1 on page 55. We can see there the current age
at time t and the remaining lifetime at t. Applications are concerned
with these quantities when t is large. So the question is: can we get
distributions for these quantities? For example:

(a) P(Age at time t of the current item > x) = P(A(t) > x)
(b) P(Remaining lifetime of the item in use at t > x) = P(Y (t) >

x)



70 4. RENEWAL PROCESSES

(c) P(Total age of the item in use at t > x) = P(XN(t)+1 > x),

where we have use the obvious notations A(t) to denote the age of
the item in use at t and Y (t) to denote the residual life for the item in
use at t.

X

t+xt

S

y y+dy

n

n+1

Figure 3. Deduction of the formula.

We will look at the process Y (t) for exemplification (see Figure 3
on page 70). Recall that X0 is the delay and we will use the convention
S0 = X0. Note that this renewal is counted in the renewal process
N(t). We have:

P(Y (t) > x) = P(SN(t)+1 − t > x) = P(N(t) = 0, X0 > t + x)

+
∞∑

n=1

∫ t

0

P(N(t) = n, Sn−1 ∈ (y, y + dy], Xn > t + x− y)

= P(X0 > t + x) +
∞∑

n=1

∫ t

0

P(Sn−1 ∈ (y, y + dy], Xn > t + x− y)

= (1− F0(t + x)) +
∞∑

n=0

∫ t

0

P(Sn ∈ (y, y + dy])P(Xn+1 > t + x− y)

Using the notation:

F (x) = 1− F (x)

we continue:

P(Y (t) > x) = F 0(t + x) +

∫ t

0

F (t + x− y)
∞∑

n=0

P(Sn ∈ (y, y + dy])

= F 0(t + x) +

∫ t

0

F (t + x− y)m(dy)

= F 0(t + x) +

∫ t

0

h(t− y)m(dy),

where we have used the Lemma 4.19 and we used the notation
h(s) = F (s + x). Using now the fact that F 0(t + x)

t→∞−−−→ 0 (argue this
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yourselves) a direct application of the Key Renewal Theorem (KRT)
4.23 will yield:

P(Y (t) > x)
t→∞−−−→ 1

µ

∫ ∞

0

F (s + x)ds =
1

µ

∫ ∞

x

F (y)dy

This result is significant enough to make it a proposition.

Proposition 4.24. Let A(t) be the age at t of the item and let Y (t)
be the residual life of the item alive at t. Then if F is the c.d.f. of the
lifetimes with mean lifetime µ, then the distributions of A(t) and Y (t)
for t large have densities proportional with:

f(y) =
F (y)

µ

Proof. For Y (t) the result is clear since from above we have:

P(Y (t) ≤ x)
t→∞−−−→=

∫ x

−∞

F (y)

µ
dy

For A(t) note that we have:

{A(t) > x} ⇔ {Y (t− x) > x} (No renewal in [t− x, t]),

therefore

lim
t→∞

P{A(t) > x} = lim
t→∞

P{Y (t− x) > x} =
1

µ

∫ ∞

x

F (y)dy

�

Remark 4.25. If the distribution of the delay has this special form:
P(X0 > x) = 1

µ

∫∞
x

F (y)dy then m(t) = t
µ

and the process is stationary

(meaning that it looks the same regardless when you start observing
it).

4.5. Special cases of Renewal Processes. Alternating
Renewal process. Renewal Reward process.

4.5.1. The Alternating Renewal process. Let {(Zn, Yn)}∞n=1

be i.i.d. pairs of random variables5. Note that the pairs for i 6= j are
independent but Zn and Yn can be dependent.

Let Xn = Zn + Yn. Let Sn =
∑n

i=1 Xi which will give the renewal
process.

The story: The Zi’s represent the lightbulb lifetimes or the time
that the system is ON, and the Yi’s represent the replacement times or
the time that the system is OFF.

5Here (Z1, Y1) (delay) is allowed to have a different distribution than the rest
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Denote the c.d.f of Yi’s with G, the c.d.f of Zi’s with H and the
c.d.f of Xi’s with F .

Theorem 4.26. If E[Xn] <∞ and F is non-lattice we have:

P(The system is ON at time t)
t→∞−−−→ E(Zn)

E(Xn)
=

E(Zn)

E(Zn) + E(Yn)

Proof.

P(ON at time t) = P(Z1 > t) +

∞∑

n=0

∫ t

0

P(Sn ∈ (y, y + dy], Zn+1 > t− y)

= H1(t) +

∞∑

n=0

∫ t

0

P(Sn ∈ (y, y + dy])P(Zn+1 > t− y)

= H1(t) +

∫ t

0

H(t− y)

∞∑

n=0

P(Sn ∈ (y, y + dy])

= H1(t) +

∫ t

0

H(t− y)m(dy)

t→∞−−−→
KRT

H1(∞) +
1

µ

∫ ∞

0

H(t)dt

However, E[Z] =
∫∞

0
P(Z > z)dz =

∫∞
0

H(z)dz and E[X] = µ so
we are done. �

Example 4.27. We have already seen that the distribution of A(t)
has density F (y)/µ. We will obtain this distribution again using the
previous theorem about alternating renewal processes. Please read the
next derivations since they provide examples of using this most useful
theorem.

Once again we will deduce P(A(t) > x). Fix x > 0. Say that the
system is ON during the first x units of each lifetime and OFF the rest
of that time. Mathematically, using the notation of the alternating
renewal processes:

Zk := Xk ∧ x = min(Xk, x)

Yk = Xk − Zk

Then the theorem says:

P(System is ON at time t) = P(A(t) < x)→ E(Zn)

µ

But we can calculate the limit since:
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E(Zn) =

∫ ∞

0

P(Zn > y)dy =

∫ x

0

P(Zn > y)dy +

∫ ∞

x

P(Zn > y)dy

=

∫ x

0

P(Xn > y)dy =

∫ x

0

F (y)dy,

which will give the density and finish the solution.

Example 4.28 (Limiting distribution of the current lifetime XN(t)+1).
We want to calculate P(XN(t)+1 > x). Fix x. Construct an alternating
renewal process using:

Zn = Xn1{Xn>x}, Yn = Xn1{Xn≤x}

Then:

P(System is ON at time t) = P(XN(t)+1 > x)→ E(Zn)

µ

Again we can calculate:

E(Zn) =

∫ ∞

0

P(Zn > y)dy =

∫ x

0

P(Zn > y)dy +

∫ ∞

x

P(Zn > y)dy

=

∫ x

0

P(Xn > x)dy +

∫ ∞

x

P(Xn > y)dy

= xP(Xn > x) +

∫ ∞

0

F (y)dy

=

∫ ∞

0

ydF (y) (Integrating by parts)

which will give the limiting distribution:

P(XN(t)+1 > x)→
∫∞
0

ydF (y)

µ

Recall that if we denote Y (t) the excess lifetime, we have already
found its limiting distribution:

P (Y (t) > x)→ 1

µ

∫ ∞

x

F̄ (t)dy

We would like to find its expectation, or the limiting expected excess
life, E[Y (t)]. A first guess would be obviously the expectation of the
previous distribution:

E[Y (t)] =

∫ ∞

0

P (Y (t) > x)dx→ 1

µ

∫ ∞

0

∫ ∞

x

F̄ (y)dydx
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The guess turns out to be correct but we need to prove this.

Proposition 4.29. If X is non-lattice with E[X2] <∞, then

lim
t→∞

E[Y (t)] =
E[X2]

2µ

Note that one can show E[X2]
2µ

and 1
µ

∫∞
0

∫∞
x

F̄ (y)dydx are the same

quantities using a change the order of integration then integrating by
parts.

Y(t)

t

S

y y+dy

n

n+1X

Figure 4. Relationship between Xn+1 and Y (t)

Proof. We can go ahead and calculate:

E[Y (t)] =
∞∑

n=0

E[Y (t)1{N(t)=n}]

= E[Y (t)1{N(t)=0}] +
∞∑

n=1

E[Y (t)1{N(t)=n}]

= E[(X1 − t)1{X1>t}] +
∞∑

n=1

∫ t

0

E


 Y (t)︸︷︷︸

=Xn+1−(t−y)

1{Sn∈(y,y+dy],N(t)=n}




= E[(X1 − t)1{X1>t}] +

∞∑

n=1

∫ t

0

E
[
(Xn+1 − (t− y))1{Sn∈(y,y+dy]}1{Xn+1>t−y}

]

= E[(X1 − t)1{X1>t}] +

∫ t

0

E
[
X − (t− y)1{X>t−y}

] ∞∑

n=1

E
[
1{Sn∈(y,y+dy]}

]

︸ ︷︷ ︸
=m(dy)

= E[(X1 − t)1{X1>t}] +

∫ t

0

E
[
X − (t− y)1{X>t−y}

]
m(dy)

The first term in the above sum converges to 0 as t → ∞ since E[X1]
is finite. We can write h(t− y) = X − (t− y)1{X>t−y} and use the Key
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Renewal Theorem for the second term. If we do that we obtain the
limit as:

E[Y (t)]
t→∞−−−→=

1

µ

∫ ∞

0

h(s)ds =
1

µ

∫ ∞

0

E[(X − s)1{X>s}]ds

=
1

µ

∫ ∞

0

[∫ ∞

s

(x− s)dF (x)

]
ds

Fubini =
1

µ

∫ ∞

0

∫ x

0

(x− s)dsdF (x)

=
1

µ

∫ ∞

0

−(x− s)2

2

∣∣∣∣
x

0

dF (x)

=
1

µ

∫ ∞

0

x2

2
dF (x) =

E[X2]

2µ

�

Corollary 4.30. If E[X2] < ∞ and F non-lattice then (for the un-
delayed renewal process)

m(t)− t

µ

t→∞−−−→ E[X2]

2µ2
− 1

Proof. Note that we have shown that E[SN(t)+1] = µ · (m(t) + 1)
However:

E[t + Y (t)] = t + E[Y (t)]→ t +
E[X2]

2µ

Since SN(t)+1 = t + Y (t) we obtain:

m(t) + 1→ t

µ
+

E[X2]

2µ2
⇒ m(t)− t

µ
→ E[X2]

2µ2
− 1

�

Example 4.31. Let X1, X2 . . . iid U [0, 1]. Then µ = 1
2
, E[X2] = 1

3

Then the corollary says for t = 100

m(100) ∼ 100

m
+

E[X2]

2µ2
− 1

=
100

1
2

+
1
3

2 · (1
2
)2
− 1 ← better approximation

= 199
1

3
(probably very accurate)
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4.5.2. Renewal Reward Process. Consider iid pairs: (X1, R1), (X2, R2) . . .
Story: At time Sn =

∑n
i=1 Xi you get a reward Rn. Assume that

Xi ≥ 0, E[Xi] = µ <∞, E[Ri] <∞.

Let Rt =
∑N(t)

i=1 Ri the total reward up to time t

Theorem 4.32. Two results:

(1)

R(t)

t

a.s.−−→ E[R]

µ
as t→∞

(2)

E[R(t)]

t
→ E[R]

µ
as t→∞

Proof. Part (1): We have:

R(t)

t
=

1

t

N(t)∑

i=1

Ri =

∑N(t)
i=1 Ri

N(t)

N(t)

t

The first term in the product above converges to the E[R] using the
strong law of large numbers and the second term converges to 1/µ by
the renewal SLLN. Therefore, we get the result in part (1).

Part (2): We have:
Using Wald for N(t) + 1 which is a stopping time,

E[R(t)] = E[

N(t)∑

i=1

Ri] = E[

N(t)+1∑

i=1

Ri]− E[RN(t)+1]

= E[N(t) + 1]E[Rn]− E[RN(t)+1] = (m(t) + 1) E(R)− E[RN(t)+1]

This implies dividing with t and taking the limit as t→∞:

E[R(t)]

t
=

(m(t) + 1)

t
E(R)− E[RN(t)+1]

t

t→∞−−−→ E(R)

µ
− lim

t→∞

E[RN(t)+1]

t
,

where we used the elementary renewal theorem for the first term. To
complete the proof we have to show that limt→∞ E[RN(t)+1]/t = 0. We
have:
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E[RN(t)+1] = E[R11{X1>t}] +
∞∑

n=1

∫ t

0

E
[
Rn+11{Xn+1>t−y,Sn∈(y,y+dy],N(t)=n}

]

= E[R11{X1>t}] +

∫ t

0

∞∑

n=1

E
[
Rn+11{Xn+1>t−y}

]
E
[
1{Sn∈(y,y+dy]}

]

= E[R11{X1>t}] +

∫ t

0

E
[
R21{X2>t−y}

] ∞∑

n=1

E
[
1{Sn∈(y,y+dy]}

]

= E[R11{X1>t}] +

∫ t

0

h(t− y)m(dy),

where we denoted h(t− y) = E
[
R21{X2>t−y}

]
, to apply the KRT. The

first term converges to 0 as t→∞ (justify), and we obtain the limit:

lim
t→∞

E[RN(t)+1] =
1

µ

∫ ∞

0

h(t)dt =
1

µ

∫ ∞

0

E
[
R21{X2>t}

]
<

E(R)

µ
<∞

Thus, dividing with t and taking the limit we obtain 0, which fin-
ishes the proof. �

4.6. The Renewal Equation. Convolutions.

Often the quantity of interest in renewal theory Z(t) satisfies an
equation of the form:

Z(t) = z(t) +

∫ t

0

Z(t− y)F (dy)

where F (t) = c.d.f. of interarriaval time, and z(t) is the some known
function with the properties:

• z(t) = 0 if t < 0
• z bounded on finite interval

An equation of this type is called a renewal equation

Example 4.33. m(t) satisfies:

m(t) = F (t) +

∫ t

0

m(t− y)F (dy)

Example 4.34. P (Y (t) > x):

P (Y (t) > x) = F̄ (t + x) +

∫ t

0

P (Y (t− y) > x)F (dy)
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Example 4.35. E[Y (t)]:

E[Y (t)] = E[X1 − t]I{X1>t} +

∫ t

0

E[Y (t− y)]dF (y)

The next theorem will provide a way to solve the renewal equation.

Theorem 4.36. If F (0−) = 0, F (0) < 1, z(t) is bounded on finite
intervals and z(t) = 0 for t < 0 then the renewal equation

Z(t) = z(t) +

∫ t

0

Z(t− s)dF (s)

has a unique solution, bounded on finite intervals given by

Z(t) = z(t) ∗m0(t) =

∫ t

0

z(t− y)m0(dy) =

∞∑

n=0

∫ t

0

z(t− y)dFn(y)

where

m0(t) =

∞∑

n=0

Fn(t) =

∞∑

n=0

P (Sn ≤ t)

Fn(t) = F ∗ F . . . ∗ F︸ ︷︷ ︸
n times

, with S0 = 0

Properties of Convolution Let F , G c.d.f.’s with F (0−) =
G(0−) = 0, z as in the theorem. Then:

(1) F ∗G = G ∗ F
(2) z*(F*G)=(z*F)*G
(3) z*(F+G)=z*F+z*G

(4) If G has density g then F ∗ G has density g ∗ F =
∫ t

0
g(t −

y)F (dy)

Proof of the theorem on renewal equation. Part 1. Ex-
istence of the solution.
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z ∗m0(t) =

∞∑

n=0

z ∗ Fn(t)

= z ∗ F0(t) +

∞∑

n=1

z ∗ Fn(t)

= z(t) ∗ F0 +

[ ∞∑

n=0

z ∗ Fn(t)

]
∗ F (t)

= z(t) + (z ∗m0) ∗ F (t)

= z(t) +

∫ t

0

(z ∗m0)(t− s)dF (s)

Note that we used the fact F0(t) = P (S0 ≤ t) = 1{t≥0}
This shows that z ∗m0 is a solution for the renewal equation.
Part 2. Uniqueness:
Assume that there exist Z1(t) and Z2(t) 2 solutions of the renewal

equation. Let V (t) = (Z1−Z2)(t). By definition V (t) should also solve
the renewal equation, i.e.,

V (t) = (Z1 − Z2)(t)

= z(t) +

∫ t

0

Z1(t− s)dF (s)− z(t)−
∫ t

0

Z2(t− s)dF (s)

=

∫ t

0

V (t− s)dF (s) = V ∗ F (t)

Repeat the argument:

V (t) = V ∗ F (t) = V ∗ F2(t) = . . . = V ∗ Fk(t), ∀k

which implies:

V (t) =

∫ t

0

V (t− y)Fk(dy)

≤ sup
0≤s≤t

V (s)

∫ t

0

dFk(s)

= sup
0≤s≤t

V (s)Fk(t)
k→∞−−−→ 0

Because Fk(t) = P (X1 +X2 + . . .+Xk ≤ t)
k→∞−−−→ 0, ∀t fixed. (CLT

or SLLN) �
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Theorem 4.37. (true for both lattice and non-lattice case) If X1 has
distribution

P (X1 > x) =

∫ ∞

0

1

µ
F (y)dy

def
= Fe(x)

This is called the equilibrium distribution; the process with the delay X1

having this distribution is called the equilibrium renewal process. Let

mD(t)
def
=

∞∑

n=1

P (Sn ≤ t) =

∞∑

n=0

Fe ∗ Fn(t),

and YD(t) be the residual lifetime at t for the delayed process. Then:

(1) mD(t) = t
µ

(2) P (YD(t) > x) = F e(x) for all t > 0
(3) {ND(t)}t has stationary increments.

Proof. Part 1.

mD(t) = Fe(t) +

(
Fe ∗

∞∑

n=1

Fn

)
(t)

= Fe(t) +

(
Fe ∗

∞∑

n=0

Fn

)
∗ F (t)

= Fe(t) + mD(t) ∗ F (t)

which implies that mD(t) solves a renewal equation with z(t) = Fe(t)
If we show that t

µ
also solves the renewal equation with the same

z(t), we are done.
Check yourself that h(t) = t

µ
1{t>0} also solves the same renewal

equation. By uniqueness of the solution we are done.
Part 2We have using the usual renewal argument:
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P (YD(t) > x) = P(X1 > t + x) +

∫ t

0

F (t− y + x)mD(dy)

(From (i) =⇒) = F e(t + x) +

∫ t

0

F (t− y + x)
dy

µ

=

∫ ∞

t+x

1

µ
F (y)dy +

∫ t

0

1

µ
F (t− y + x)dy

(c.v. v = t− y + x) =

∫ ∞

t+x

1

µ
F (y)dy −

∫ x

t+x

1

µ
F (v)dv

=

∫ ∞

x

1

µ
F (y)dy

= F e(x) =⇒ DONE.

Part 3. This part follows from part (2) using the fact that
ND(t + s)−ND(s) is the number of renewals in a time interval length
t of a delayed renewal process. �





CHAPTER 5

Special Chapter about some applications of the

notions learned thus far.

At this point we are going to stop and look to some interesting
examples of discrete processes.

5.1. Random Walk on integers in Rd

Let ~Xk = (X
(1)
k , X

(2)
k . . .X

(d)
k ) ∈ Rd a random vector. Each X

(i)
k is

independent of the others and it is ±1 each with probability 1
2
.

Then ~Sn =
n∑

k=1

~Xk is a d-dimensional random walk

Remark 5.1. The sum above is done componentwise, it is not the
regular summation of the vectors. I use the notation ~X to symbolize
the fact that X has more than one dimensions nothing more, there is
no origin, directional angle or size involved in the notation.

We will talk next about some common questions regularly asked
about this process.

Question: Once started from (0, 0, . . . , 0), would the process come

back to ~0? OR is Sn = (0, 0, . . . , 0) for some n?

Answer: For n odd, P (Sn = ~0) = 0. For n even say equal to 2k

P (~S2k = ~0) = P
(
S

(1)
2k = 0, S

(2)
2k = 0, . . . S

(d)
2k = 0

)

=
[
P
(
S

(i)
2k = 0

)]d

�

Claim:
[
P
(
S

(i)
2k = 0

)]d
=
(

constant√
k

)d

Why?

Note that we have a total of 2k steps and S
(i)
2k is now 1-dimensional.

To get back to 0 once you start from it you need k steps up (values

83
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−1

1

1

−1

Figure 1. Random walk in 2-dimensions. Possible val-
ues for the first jump each with probability 1/4

of 1) and k steps down (values of −1). But then the number of such
paths is:

2k total steps⇒
{

k forward steps

k back steps
→
(

2k

k

)

Probability of any such path is (1
2
)2k, which implies

P
(
S

(i)
2k = 0

)
=

(
2k

k

)(
1

2

)2k
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Now use Stirling’s formula for the combinatorial term, (i.e., n! ∼√
2πnnne−n):

P
(
S

(i)
2k = 0

)
=

(2k)!

(k!)2

(
1

2

)2k

=

√
2π2k(2k)2ke−2k

(
√

2πkkke−k)2

(
1

2

)2k

=
2
√

πk22k(k2ke−2k)

2πk(k2ke−2k)

(
1

2

)2k

=
1√
πk

=
constant√

k

which proves the claim.

Theorem 5.2 (Polya). If d = 1, 2 then you come back to ~0 infinitely

often. If d ≥ 3 eventually you never come back to ~0.

Proof. Let pd = P{You never come back to ~0 at all in Rd}. Then:

∞∑

n=1

1{~Sn=~0} = {number of times you return to ~0}

then
∑∞

n=1 1{~Sn=~0} is a Geometric(pd) (number of failures) random vari-

able. This is clear if you consider coming back to ~0 a failure and not
coming back a success. Therefore we can write:

E

[ ∞∑

n=1

1{~Sn=~0}

]
=

1

pd
− 1

Using Fubini and the previous claim:

E

[ ∞∑

n=1

1{~Sn=~0}

]
=

∞∑

n=1

(
E[1{~Sn=~0}]

)
=

∞∑

n=1

P
(

~Sn = ~0
)

=

∞∑

n=2k
k=1

cd

k
d
2

= cd

∞∑

k=1

1

k
d
2

Therefore:

1− pd

pd

=

{
<∞ if d ≤ 2

∞ if d > 2
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which implies

pd > 0⇔ d ≥ 3

pd = 0⇔ d = 1, 2

As a conclusion when d = 1, 2 the number of visits to 0 is∞. When
d >= 3 the number of visits is finite a.s. which means that eventually
you will drift to infinity. Moral: Do not get drunk while driving a
spaceship. �

Remark 5.3. Considering a renewal event the event that the random
walk returns to the origin ~0 we can easily see that the random walk
produces a renewal process.

5.2. Age dependent Branching processes

Story: Let F to be the lifetime distribution, with F (0) = 0,
Pj to be the probability that at death we get exactly j offsprings,
j = 0, 1, 2 . . ..
Each offspring then acts independently of others and produce their own
offspring according to Pj, and so on and so forth.

Let X(t) denote the number of organisms alive at time t. {X}t>0

is called an age dependent branching process with X(0) = 1.

Quantity of interest : M(t) = E[X(t)]

m =
∞∑

j=0

jPj = number of offsprings (assumed to be > 1)

Special case: If lifetimes are identically equal to 1, then

M(k) = mk

In this particular situation X(k) is called a Galton-Watson
process (which is also a Markov Chain, as we will see later).
This process was invented in 1873 by the people whose name it
bears as result of a study initiated at the request of the crown
to see if the aristocratic surnames were dying out in England
of that time.

Remark : usually
X(k)

mk
→ Z

with Z a random variable finite a.s..

Theorem 5.4. If X(0) = 1 and F is non-lattice then

e−αtM(t)
t→∞−−−→ m− 1

m2α
∫∞
0

xe−αxdF (x)
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where α > 0 is the solution of the equation:
∫∞
0

e−αtdF (t) = 1
m

Remark 5.5. The theorem simply says that M(t) ∼ constant · e−αt

Proof. Using ds = (s, s + ds] and the renewal argument:

M(t) = E[X(t)]

= E[X(t)1{1st life >t}] + E[X(t)1{1st life≤t}]

= E[11{T1>t}] +

∫ t

0

E[ N︸︷︷︸
Nr. of offsprings

X(t− s)1{T1∈ds}]

= P (T1 > t) +

∫ t

0

mE[X(t− s)1{T1∈ds}] , note m = E[N ]

= F (t) +

∫ t

0

mM(t− s)dF (s)

This looks a lot like a renewal equation except for the m. To eliminate
it multiply both sides by e−αt

⇒M(t)e−αt = F (t)e−αt +

∫ t

0

e−αtmM(t− s)dF (s)

= F (t)e−αt +

∫ t

0

e−α(t−s)M(t − s) me−αsdF (s)︸ ︷︷ ︸
=dG(s)

We denoted dG(s) = me−αsdF (s), OR G(t) =
∫ t

0
me−αsdF (s)

G is a c.d.f. because α is a solution of
∫∞
0

e−αtdF (t) = 1
m

. Its
definition implies that G(0−) = 0.

Thus, we obtain a renewal equation Z(t) = z(t)+
∫ t

0
Z(t−s)dG(s),

where:

Z(t) = e−αtM(t)

z(t) = e−αtF (t)

Recall that the unique solution is

Z(t) = z ∗m0(t) =

∫ t

0

z(t− s)m0(ds) (with m0 given by

∞∑

n=0

Gn(s))

KRT−−→ 1

µG

∫ ∞

0

z(t)dt,

provided that we can apply the Key Renewal Theorem. Looking back
we see that Z(t) → 1

µG

∫∞
0

e−αtF (t)dt. Now let us calculate the limit,

while at the same time showing that z(t) is DRI. Using that F (t) =∫∞
t

dF (x) we have:
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∫ ∞

0

z(t)dt =

∫ ∞

0

(∫ ∞

t

dF (x)

)
e−αtdt

=

∫ ∞

0

(∫ x

0

eαtdt

)
dF (x) (Fubini)

=

∫ ∞

0

1

α
(1− e−αx)dF (x)

=
1

α




∫ ∞

0

dF (x)

︸ ︷︷ ︸
=1

−
∫ ∞

0

e−αxdF (x)

︸ ︷︷ ︸
= 1

m
(def. of α)




=
1

α

[
1− 1

m

]
<∞

Thus, z(t) is Riemann integrable, also it is decreasing and positive
therefore it is DRI. All that remains is to calculate µG.

µG =

∫ ∞

0

xdG(x) =

∫ ∞

0

xme−αxdF (x) = m

∫ ∞

0

xe−αxdF (x)

Hence,

Z(t) = e−αtM(t)→
1
α

(
1− 1

m

)

m
∫∞
0

αe−αxdF (x)

And a little algebra shows that this is exactly the formula we need to
prove. �

Remark 5.6. What if m < 1? If ∃α < 0 with
∫∞
0

e−αxdF (x) = 1
m

and

e−αxF (x) is DRI, then the same result is true.
In either case m > 1, m < 1; µG = ∞ is possible and it will not

change the answers.

Exercise 22. Question For a Branching Process what is the proba-
bility that X(t) = 0 eventually? (population dies out).
Think about this.
Guesses.

For m < 1, it is kind of obvious that P (Population dies out) = 1.
If m = 1, then P (Population dies out) = 1 except when the number

of offsprings is exactly 1.
What if m > 1? P (Population dies out) > 0 iff P (0 offsprings) > 0



CHAPTER 6

Markov Chains

In this chapter we start the study of the first and one of the most
popular models for real life situations coming from probability.

6.1. Basic concepts of Markov Chains

6.1.1. Definition. Consider a set of outcomes S which is finite or
countable. It is convenient to represent the set S as the nonnegative
integers {0, 1, . . .}. Consider a process X = (X1, X2, . . . , Xn, . . .) whose
components Xn take values in this set S. We will say that the process
X is in state i ∈ S at time n if Xn = i.

Consider a matrix

P =




P0,0 P0,1 P0,2 . . .
P1,0 P1,1 P1,2 . . .

: : :
Pi,0 Pi,1 Pi,2 . . .
: : :




,

with
{

Pi,j ≥ 0, ∀i, j∑∞
j=0 Pi,j = 1, ∀i (i.e., rows sum to 1).

Furthermore, let π0 = {π0(i)}∞i=0 be a probability mass function on
the elements of S (i.e., π0(i) ≥ 0 and

∑
i π0(i) = 1).

Definition 6.1. A discrete time Markov chain on the state space S,
with initial distribution π0 and and transition matrix P is a stochastic
process X = {Xn}∞n=0 with

P (X0 = i0, . . . , Xn = in) = π0(i0)

n−1∏

k=0

Pik,ik+1

Note that with this definition pij can be interpreted as the transition
probability of jumping from state i to state j in one step.

89
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Theorem 6.2 (Markov Property). If X = {Xn}∞n=0 is a discrete time
Markov chain defined as above then:

P (Xn+1 = in+1|X0 = i0, . . . , Xn = in) = P (Xn+1 = in+1|Xn = in) = Pin,in+1

Proof. Exercise. Verify the theorem using the Definition 6.1. �

6.1.2. Examples of Markov chains. This section presents sev-
eral simple examples.

Example 6.3. This is a very simple example. Let X1, X2, . . . , Xn, . . .
be iid random variables on Z. Take the transition probabilities pi,j =
P(Xk = j), for any k. Then this forms a (rather trivial) Markov Chain
on Z with transition probabilities not dependent on the current state
(i.e. all rows in the transition matrix are identical).

Example 6.4 (Generalized random walk on Z). Let ∆0, ∆1, ∆2, . . . , ∆n, . . .
be again iid random variables on Z with some probability mass func-
tion: pm = P(∆k = m). Let the process X with components given
by:

Xn =
n∑

k=0

∆k

Note that unlike the simple random walk the generalized one can have
jumps of any size. It is easy to see that X is a Markov chain on Z with
initial distribution π0(m) = pm and with transition probability matrix
having elements:

Pi,j = P(∆k = j − i) = pj−i.

As a special case if all the jumps are positive ∆k ≥ 0 we obtain a
renewal process.

Example 6.5 (Ehrenfest chain). Suppose we have two boxes, box 1
with x balls and box 2 with d− x balls (a total of d balls in both). At
each step (time) we pick one of the balls at random and we transfer
that ball from one box to another (see figure 1).

We consider the process X = {Xn}∞n=0 with Xn given by the number
of balls in box 1 at time n. We obviously have Xn ∈ S = {0, 1, .., d}.
Then X is a Markov chain on S with some initial distribution. The
transition probabilities for the chain are:

P(Xn = y|Xn−1 = x) = Px,y =






x
d
, if y = x− 1,

d−x
d

, if y = x + 1,

0, else .

Ehrenfest used this model to study the exchange of air molecules in
two chambers connected by a small hole.
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Figure 1. A graphical description of the Ehrenfest Chain

We also note that this is an example of a periodic chain (the proper
definition to come) since the number of balls in the box 1 alternates
between odd and even.

Example 6.6 (Gambler’s ruin problem). Suppose we deal with the
case of a compulsive gambler that starts with some initial wealth K.
At every step the gambler bets one dollar on some game that has prob-
ability p of winning and if he/she wins his wealth goes up by one dollar.
Furthermore, assume that the gambler stops betting only when his/her
wealth reaches either 0 or some upper limit fixed apriory d > K (which
may be∞). Let X0 = K and let Xk = Gambler’s wealth after k such games.
Then Xn is a Markov chain on S = {1, 2, . . . , d}, with initial distribu-
tion π0(i) = 1{K}(i) and transition probabilities:

If 0 < i < d then






Pi,i+1 = p

Pi,i−1 = 1− p

Pi,j = 0, for any other j

P0,j = 1{0}(j); Pd,j = 1{d}(j);

Note that this process can be interpreted as a simple (±1) random walk
with 0 and d absorbtion states (see diagram in figure ??).

An interesting question (as with all random walks) is what is the
probability of eventually hitting 0 (probability of eventual ruin).

Example 6.7 (Birth and Death chain). This is a generalization of both
previous examples. We have absorbtion states as in the example 6.6
and the probabilities of transition are state dependent as in example
6.5. Furthermore, the process can remain in the same state.
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Figure 2. A graphical description of the Gambler’s ruin problem

The story is that we start with a certain population type. We
view the time between events as non-important so we take that the
time step is 1 (thus creating a Markov chain). At any time step one
event take place: either a birth or a death or nothing occurs. If X
is the process denoting the size of the population then it is a Markov
chain on S = {0, 1, 2, . . .} with some initial distribution. We can see a
scheme depicting it in figure 3, assuming that the population dies out
if reaching size 0 (no immigration from outside). We could also put
an upper cap on the population by creating another (semi) absorbing
upper state.

Figure 3. A graphical description of the Birth and
Death Chain

We can write down the transition probabilities of this chain as:

If 0 < i then





Pi,i+1 = pi

Pi,i−1 = qi

Pi,i = ri

Pi,j = 0, for any other j

P0,j = 1{0}(j),

assuming that for any i we have pi + qi + ri = 1.



6.1. BASIC CONCEPTS OF MARKOV CHAINS 93

Example 6.8 (A simple queuing process (G/G/1)). Assume that we
have customers arriving at a service facility. They are processed by
one service facility according to some general distribution. In queuing
theory G/G/1 is a notation where the first letter denotes the arrival
distribution (G stands for general), the second letter stands for ser-
vice distribution (once again G means general) and the last number
symbolizes the number of servers in the queuing system (in this case a
single server). Let ∆n denote the number of customers arriving during
the n’th service. Let pm = P(∆n = m), m = 0, 1, 2, . . .. In general this
distribution will depend on the length of the n’th service and we will
obtain a so called non-homogeneous Markov chain but for now let us
make the (unrealistic) assumption that the distribution is the same for
all n (symbolized above by the fact that pm does not have an index n).

Figure 4. A realization of the simple queue system

Let Xn+1 be the number of customers in queue after the n’th service.
A typical realization is depicted in figure 4. Then we can write in
general (think why):

Xn+1 = Xn + ∆n − 1{Xn>0}.

Therefore, {Xn} is a Markov chain with state space N = {0, 1, 2, . . .};
with initial distribution π0(i) = 1{0}(i); and with transition probabili-
ties given by:

Pi,j = P(∆n = j − i + 1) = pj−i+1, if i ≥ 1

P0,j = pj

Example 6.9 (Birth and catastrophe chain). This is similar with the
Birth and Death chain in Example 6.7 with the difference that there are
no natural deaths, instead at any moment there is a probability that
the entire population is wiped out. Furthermore, to not get stuck we
assume that once at zero there is a certain probability for spontaneous
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life. We can easily show that X the process of population size after
step n is a Markov chain and its transition probabilities are given by:

Pi,j =






pi, if j = i + 1

qi, if j = 0

0, else

, ∀i ≥ 0.

A simple example of such a process that we have already seen is
the current age process A(t) for a renewal process restricted to time in
Z.

Example 6.10 (Number of Mutant Genes in a population). Simplified
model.
Story: Suppose the existence of i mutant genes (from a total of d
genes) in the n-th generation of a certain population. To get to the
next generation:

(1) All genes duplicate, therefore there will be 2i mutant and 2d−
2i normal genes

(2) d genes are randomly selected from the above possibilities.

If Xn denotes the number of mutant genes in the population after the
n-th generation then X = {Xn}∞n=1 is a Markov chain with state space
S = {1, 2, . . . , d} and with transition probabilities given by:

Pi,j =

(
2i
j

)(
2d−2i
d−j

)
(
2d
d

) , ∀i, j ∈ {1, 2, . . . , d}.

6.1.3. The Chapman-Kolmogorov equation.

Theorem 6.11. Let X = {Xn}∞n=1 be a Markov chain on S = {1, 2, . . .},
with some initial distribution and one step transition probability ma-
trix P . Denote the n-step transition probability of going from state i
to state j by P n

i,j, i.e. P n
i,j = P (Xm+n = j|Xm = i). Then we have the

Chapman-Kolmogorov relation:

(6.1) P n+m
i,j =

∑

k∈S
P n

i,kP
m
k,j.
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Proof. The proof is simple:

P n+m
i,j = P (Xm+n = j|X0 = i) =

∑

k∈S
P (Xm+n = j, Xn = k|X0 = i)

=
∑

k∈S
P (Xm+n = j|Xn = k, X0 = i)P (Xn = k|X0 = i)

=
∑

k∈S
P m

k,jP
n
i,k,

where the first equality is the definition, for the second we used the law
of total probability (exhaustive events: ∪k∈S{Xn = k}), third equal-
ity is just the multiplicative rule and finally the last follows from the
Markov property (Theorem 6.2). �

Remark 6.12. This theorem also tells us that if P (n) is the n-step
transition matrix then P (n) = P n the n-th power of the 1-step transition
matrix.

6.2. Exercises

1. Give the proof of the Markov property (Theorem 6.2).
2. Show that the Remark 6.12 is true.
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