# Homework 4 <br> Ma623 Stochastic Processes <br> due Tuesday April 72009 

For this assignment please solve the following problems:
(1) Consider a nonsymmetric random walk with history on $\mathbb{Z}$, where increments are $\pm 1$ and which has the property:

$$
\mathbf{P}\left\{X_{n}=1 \mid X_{1}, X_{2}, \ldots, X_{n-1}\right\} \geq \alpha>0, \forall n
$$

Prove that:
(a) $\mathbf{P}\left\{X_{n}=1\right.$ for some $\left.n\right\}=1$
(b) $\mathbf{P}\left\{X_{n}=1\right.$ infinitely often $\}=1$
(2) Let a $2 \times 2$ matrix be:

$$
P=\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right)
$$

Calculate the $n$-th power of this matrix: $P^{n}$.
(3) Consider a random walk $\left\{S_{n}\right\}_{n}$ on integers $\mathbb{Z}$ such that the increments have probability $\mathbf{P}\left\{X_{i}=1\right\}=p=1-\mathbf{P}\left\{X_{i}=-1\right\}$ and let $1-p=q$.
(a) Determine the probability:

$$
P_{00}^{n}=\mathbf{P}\left\{X_{n}=0 \mid X_{0}=0\right\}
$$

(Note: this we actually calculated in class).
(b) Find the generating function of the sequence $u_{n}=P_{00}^{n}$, i.e.:

$$
G(x)=\sum_{n=0}^{\infty} u_{n} x^{n}
$$

