Lecture 16

Logistic regression (Ch.16 in the supplementary chapters)

The model

LOGISTIC REGRESSION MODEL

The statistical model for logistic regression is

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 X$$

where p is a binomial proportion and x is the explanatory variable. The parameters of the logistic model are β_0 and β_1 .

Definition, pg 16-5Introduction to the Practice of Statistics, Fifth Edition
© 2005 W. H. Freeman and Company

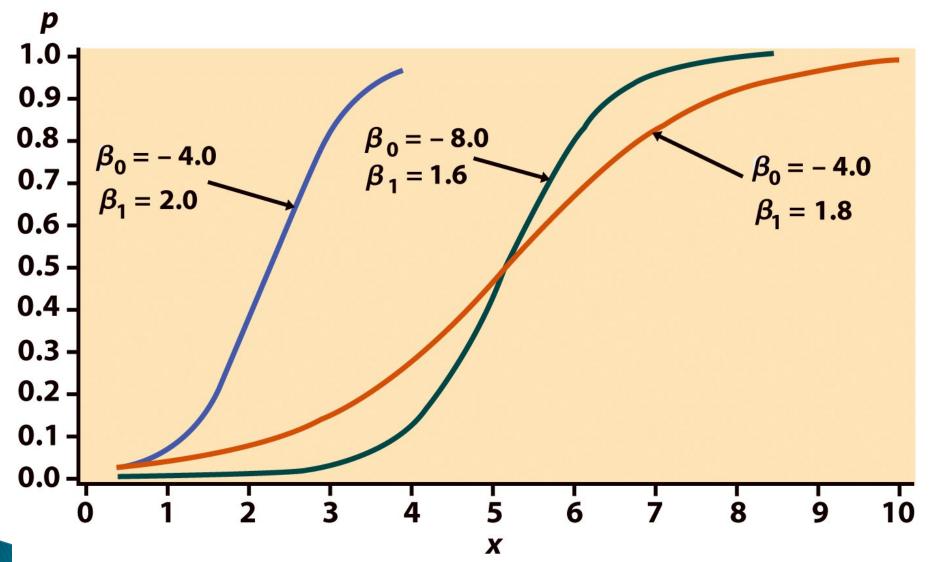


Figure 16-1
Introduction to the Practice of Statistics, Fifth Edition
© 2005 W. H. Freeman and Company

CONFIDENCE INTERVALS AND SIGNIFICANCE TESTS FOR LOGISTIC REGRESSION PARAMETERS

A level C confidence interval for the slope β_1 is

$$b_1 \pm z^* SE_{b_1}$$

The ratio of the odds for a value of the explanatory variable equal to x + 1 to the odds for a value of the explanatory variable equal to x is the **odds ratio**.

A level C confidence interval for the odds ratio e^{β_1} is obtained by transforming the confidence interval for the slope

$$(e^{b_1-z^*SE_{b_1}}, e^{b_1+z^*SE_{b_1}})$$

In these expressions z^* is the value for the standard normal density curve with area C between $-z^*$ and z^* .

To test the hypothesis H_0 : $\beta_1 = 0$, compute the **test statistic**

$$z = \frac{b_1}{SE_{b_1}}$$

The *P*-value for the significance test of H_0 against H_a : $\beta_1 \neq 0$ is computed using the fact that when the null hypothesis is true, z has approximately a standard normal distribution.

Example

- We use the example CSDATA from your textbook on page D-2
- We run through the exercises in chapter 16.
- Please see the accompanying R code.