MA222-HW3

Ex. $50 /$ Pg. 114

$X \sim \operatorname{Bin}(25, .25)$
a. $P(X \leq 6)=B(6 ; 25,25)=.561$
b. $P(X=6)=b(6 ; 25,25)=.183$
c. $P(X \cdot 6)=1-P(X \cdot 5)=1-B(5 ; 25,25)=.622$
d. $P(X>6)=1-P(X \cdot 6)=1-.561=.439$

Ex. 51/Pg. 114

a. $E(X)=n p=25(.25)=6.25$
b. $\operatorname{Var}(X)=n p(1-p)=25(.25)(.75)=4.6875$, so $S D(X)=2.165$
c. $P(X>6.25+2(2.165))=P(X>10.58)=1-P(X \cdot 10.58)=1-P(X \cdot 10)=1-B(10 ; 25,25)=.030$

Ex. 54/Pg. 114

a)

$$
x \sim \operatorname{Bin}(10, .60)
$$

$$
P(X \geq 6)=1-P(X \leq 5)=1-B(5 ; 20,60)=1-.367=.633
$$

b)

$$
\begin{aligned}
& E(X)=n p=(10)(.6)=6 ; V(X)=n p(1-p)=(10)(.6)(.4)=2.4 ; \\
& \sigma_{X}=1.55 \\
& E(X) \pm \sigma_{X}=(4.45,7.55) . \\
& \text { We desire } P(5 \leq X \leq 7)=P(X \leq 7)-P(X \leq 4)=.833-.166=.667
\end{aligned}
$$

c) $\quad P(3 \leq X \leq 7)=P(X \leq 7)-P(X \leq 2)=.833-.012=.821$

Ex. 69 / Pg. 120

2. $\quad \mathrm{X} \sim \mathrm{h}(\mathrm{x} ; 6,12,7)$
a. $P(X=5)=\frac{\binom{7}{5}\binom{5}{1}}{\binom{12}{6}}=\frac{105}{924}=.114$
b. $P(X \cdot 4)=1-P(X \cdot 5)=1-[P(X=5)+P(X=6)]=$

$$
1-\left[\frac{\binom{7}{5}\binom{5}{1}}{\binom{12}{6}}+\frac{\binom{7}{6}}{\binom{12}{6}}\right]=1-\frac{105+7}{924}=1-.121=.879
$$

c. $\mathrm{E}(\mathrm{X})=\left(\frac{6 \cdot 7}{12}\right)=3.5 ; \sigma=\sqrt{\left(\frac{6}{11}\right)(6)\left(\frac{7}{12}\right)\left(\frac{5}{12}\right)}=\sqrt{.795}=.892 \quad \mathrm{P}(\mathrm{X}>3.5+$.892) $=P(X>4.392)=P(X \cdot 5)=.121$ (see part b)
d. We can approximate the hypergeometric distribution with the binomial if the population size and the number of successes are large: $h(x ; 15,40,400)$ approaches $b(x ; 15,10)$. So $P(X \cdot 5) \bullet B(5 ; 15, .10)$ from the binomial tables $=.998$

Ex. $75 /$ Pg. 121

a. With $S=$ a female child and $F=$ a male child, let $X=$ the number of $F^{\prime} s$ before the $2^{\text {nd }} S$. Then $P(X=$ $\mathrm{x})=\mathrm{nb}(\mathrm{x} ; 2, .5)$
b. $\quad \mathrm{P}$ (exactly 4 children) $=\mathrm{P}$ (exactly 2 males)

$$
=n b(2 ; 2,5)=(3)(.0625)=.188
$$

c. $P($ at most 4 children $)=P(X \leq 2)$

$$
=\sum_{x=0}^{2} n b(x ; 2, .5)=.25+2(.25)(.5)+3(.0625)=.688
$$

d. $E(X)=\frac{(2)(.5)}{.5}=2$, so the expected number of children $=E(X+2)$

$$
=E(X)+2=4
$$

Ex. $82 /$ Pg. 125

a. $\mathrm{P}(\mathrm{X}=1)=\mathrm{F}(1 ; 2)-\mathrm{F}(0 ; 2)=.982-.819=.163$
b. $P(X \geq 2)=1-P(X \leq 1)=1-F(1 ; 2)=1-.982=.018$
c. $P\left(1^{\text {st }}\right.$ doesn't $\cap 2^{\text {nd }}$ doesn't $)=P\left(1^{\text {st }}\right.$ doesn't $) \cdot P\left(2^{\text {nd }}\right.$ doesn't $)$
$=(.819)(.819)=.671$

Ex. 100 / Pg. 127 (BONUS)

a. $P(X \geq 5)=1-B(4 ; 25, .05)=.007$
b. $P(X \geq 5)=1-B(4 ; 25,10)=.098$
c. $P(X \geq 5)=1-B(4 ; 25,20)=.579$
d. All would decrease, which is bad if the $\%$ defective is large and good if the $\%$ is small.

