Midterm Exam 2, Spring 2008 (Take Home Exam)

due Monday 28 June, 2010 by class time (1:30pm)

Name:

- There are 5 problems, each worth 20 points for a total of 100 .
- Be very specific with your random variables and your definitions. Showcase your work.
- Please write neatly and clearly
- You may attach as many pages as you think are necessary. Please use one full page for each problem in this exam.

For instructor's use only

Problem	Points	Score
1	15	
2	20	
3	20	
4	30	
5	15	
Total	100	

1. Show that the correlation is invariant to linear transformations. That is for any two random variables X and Y with joint pdf $f(x, y)$ prove that the correlation between X and Y is the same as the correlation between $a X+b$ and $c Y+d$ for any a, b, c, d real numbers.
2. Give an example of two random variables X and Y which are uncorrelated $\left(\rho_{X, Y}=0\right)$ but not independent. You may give an example of either discrete or continuous r.v. but in either case do not forget to write clearly the joint distribution.
3. A point is selected at random from the unit disk

$$
\mathcal{R}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 1\right\}
$$

Let X be the x coordinate and Y be the y coordinate of the point chosen. Determine if X and Y are independent random variables. (A non-mathematical proof will earn 0 points).
4. Let the joint pdf of two variables X and Y be:

$$
f(x, y)= \begin{cases}c x(1-x) & \text { if } 0 \leq x \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine the value of c which makes $f(x, y)$ a true probability density
(b) Calculate the marginal distributions of x and Y
(c) Calculate the conditional distribution of $Y \mid X=x$
(d) Determine if X and Y are independent
(e) Calculate the Covariance and correlation of X and Y
(f) Calculate the conditional probability:

$$
P(1 / 2 \leq Y \leq 2 / 3 \mid X=1 / 2)
$$

5. A bar of length L is broken into three pieces at two random points. What is the probability that the length of at least one piece is less than $L / 20$?
