Chapter 1
Elements of Probability Measure

The axiomatic approach of Kolmogorov is followed by most trioility Theory
books. This is the approach of choice for most graduate fgnafdability courses.
However, the immediate applicability of the theory learasdsuch is questionable
and many years of study are required to understand and tritsdsll power.

On the other hand the Applied probability books completetyaetard this ap-
proach and they go more or less directly into presentingiegipdns, thus leaving
gaps into the reader’s knowledge. At a cursory glance thisageh appears to be
very useful (the presented problems are all very real and aresdifficult), how-
ever | question the utility of this approach when confrontétth problems that are
slightly different from the ones presented in such books.

Unfortunately, there is no middle ground between these hwace the necessity
of the present lecture notes. | will start with the axiomatpproach and present as
much as | feel is going to be necessary for a complete unaelisigiof the Theory
of Probabilities. | will skip proofs which I consider will ndoring something new to
the development of the student’s understanding.

1.1 Probability Spaces

Let Q be an abstract set. This is sometimes denoted $/éhd is called the sam-
ple space. It is a set containing all the possible outcomessuits of a random
experiment or phenomenon. | called it abstract becausailt@ontain anything.
For example if the experiment consists in tossing a coin dheespace? could
be represented gdHead Tail}. However, it could just as well be represented as
{Cap Pajura}, these being the romanian equivalent$ieladandTail. The space
Q could just as well contain an infinite number of elements. &@mple measur-
ing the diameter of a doughnut could result in all possiblmbers inside a whole
range. Furthermore, measuring in inches or in centimetetgd\produce different
albeit equivalent spaces.

We will usew € Q to denote a generic outcome or a sample point.
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Any collection of outcomes is called an event. That is, abgetiofQ is an event.
We shall use capital letters from the beginning of the alghAlB, C to denote these
events.

So far so good. The proper definition &f is one of the most important issues
when treating a problem probabilistically. However, tlisidot enough. We have to
make sure that we can calculate the probability of all thegef interest.

Think of the following possible situation: Poles of variosiges are painted in
all the possible nuances of colors. In other words the padee ltwo characteris-
tics of interest size and color. Suppose that in this modehae to calculate the
probability of things like the next pole would be shorterritisb inches and painted
a nuance of red or blue. In order to answer such questions wetbalefine prop-
erly the sample spac® and furthermore give a definition of probability that will
be consistent. Specifically, we need to give a definition efdlements of2 which
can bemeasured.

To this end we have to group these events into some way thadtvedlow us
to say: yes we can calculate the probability of all the evanthis group. In other
words, we need to talk about the notion of collection of egent

We will introduce the notion of-algebra (oio-field) to deal with the problem of
the proper domain of definition for the probability. Before do that, we introduce
a special collection of events:

Z(Q) = The collection of all possible subsets @f (1.1)

We could define probability on this very large set. Howe\vgs tvould mean that
we would have to define probability for every single elemené(Q). This will
prove impossible except on the case wtins finite. However, even in this case
we have to do it consistently. For example if say the{deR,3} is in Q and has
probability 02, how do we define the probability ¢f., 2} ? How about probability
of {1,2,5}? A much better approach would be to define probability onlytren
generators of the collectio®?(Q) or on the generators of a collection of sets as
close as we can possibly make4é(Q).

How do we do this? Fortunately, algebra comes to the rescweelements of a
collection of events are the events. So first we define operstvith themunion,
intersection, complemenind slightly less importardifference and symmetric dif-
ference

AUB = set of elements that aggther inAor in B
ANB = AB= set of elements that ab®th in Aandin B (1.2)
AC — A= set of elements that are @ butnot in A

A\B= set of elements that are Abutnot in B
AAB= (A\B)U(B\A)
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We can of course express every operation in terms of unionirgedsection.
There are important relations between these operationdl,dtep here to mention
the De Morgan laws:

(1.3)

(AUB)® =A°NB®
(ANB)¢ = ACUB®

There is much more to be found out about set operations boufgourpose this
is enough. Look aBillingsley (1995 or Chung(2000) for a wealth of more details.

Definition 1.1 (Algebra on Q). A collection.# of events inQ is called an algebra
(or field) onQ iff:

1.Qes
2. Closed under complementarity AfC .% thenA® C &
3. Closed under finite union: & B C . thenAUB C .#

Remark 1.1The first two properties imply that € .7. The third is equivalent with
ANBC .%# by the second property and the de Morgan latv8)(

Definition 1.2 (o-Algebra on Q). If .% is an algebra o2 and in addition it is
closed under countable unions then it ig-algebra (oro-field) onQ

Note: Closed under countable unions means that the third propeDgfinition
1.1lis replaced with: Ifn € N is a natural number andl, C .% for all n then

Uaco

neN

Theo-algebra provides an appropriate domain of definition fergiobability func-
tion. However, it is such an abstract thing that it will be dhéw work with it. This
is the reason for the next definition, it will be much easiewtwk on the generators
of asigmaalgebraThis will be a recurring theme in probability, in order to sh@
property for a big class we show the property for a small gatirg set of the class
and then use standard arguments to extend to the whole class.

Definition 1.3 (o algebra generated by a clas®” of sets inQ).

Let ¥ be a collection (class) of subsets @f Theno (%) is the smalles-
algebra om2 that containg’.

Mathematically:

1.¢Co(%)
2.0(%) is ao-field
3. If ¥ C¥ and¥ is ao-field theno(¢) C ¥

The idea of this definition is to verify a statement on the®eThen, due to the
properties that would be presented later the same statemiiehée valid for all the
sets ino (%).
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Proposition 1.1.Properties ofo-algebras:

e #(Q)is ao-algebra, the largest possible-algebra onQ

e If ¢ is already ao-algebra theno(¢) =%

o If¢={0}oré ={Q}thena(¥¢)={2,Q}, the smallest possible-algebra
onQ

o If ¢ C ¢ thena(¥) C o(¥¢”)

o If€C%¢ Co(¢)theno(¢’)=0(¥)

In general listing the elements of a sigma algebra expligthard. It is only in
simple cases that this is done.

Remark 1.2 (Finite spac®). When the sample space is finite, we can and typically
will take the sigma algebra to b&’(Q). Indeed, any event of a finite space can
be trivially expressed in terms of individual outcomes.dotf if the finite spac&
containsM possible outcomes, then the number of possible events is &ind is
equal with 2.

Example 1.1Suppose a sét C Q. Let us calculater(A). Clearly, by definitionQ
isin o(A). Using the complementarity property we clearly see Afand 0 are also
in o(A). We only need to take unions of these sets and see that tleermanore
new sets. Thus:

o(A) ={Q,0,AA°}.

O

Proposition 1.2 (Intersection and union ofg-algebras).Suppose tha#; and.%,
are twoo-algebras onQ. Then:

1. #1N .7, is a sigma algebra.
2..%1U %, is not a sigma algebra. The smallest algebra that contains both of
them is:o (.91 U.%) and is denoted?; v %>

Proof. For part 2 there is nothing to show. Perhaps a counterexaifgdte for in-
stance two setd, B C Q such thaANB # 0. Then takeZ1 = o(A) and.%, = 0 (B).
Use the previous example and Exercisg partc.

For part 1 we just need to verify the definition of the sigmaealg. For example,
take A in 71N .%,. SOA belongs to both collections of sets. Singg is a sigma
algebra by definitiorA® € .%;. Similarly A® € .%,. Therefore A® € ., N.%,. The
rest of the definition is verified in a similar manner. a

An example: Borelo-algebra

Let Q be atopological space (think geometry is defined in thisespad this assures
us that the open subsets exist in this space).
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Definition 1.4. We define:

%(Q) = The Borelo-algebra 1.4)
= o-algebra generated by the class of open subsdis of

In the special case whe® = R we denote” = #(R), the Borel sets aR. This
4 is the mostimportant-algebra. The reason for this fact is that most experiments
can be brought to equivalence wikh (as we shall see when we will talk about
random variables). Thus, if we define a probability measuregp we have a way
to calculate probabilities for most experiments. a

Most subsets oR are in.%. However, it is possible (though very difficult) to
explicitly construct a subset @& which is not in%. See Billingsley, 1995 page
45) for such a construction in the ca@e= (0, 1].

There is nothing special about the open sets, except foattta@lat they can be
defined in any topological space.lfwe have alternate definitions which you will
have to show are equivalent with the one given above in pnotl&.

Probability measure

We are finally in the position to give the domain for the prabgbmeasure.

Definition 1.5 (Measurable Space.)A pair (Q,.%), whereQ is a set and? is a
o-algebra om? is called ameasurable space

Definition 1.6 (Probability measure. Probability space)Given a measurable space
(Q,.%), a probability measure is any functiéh: .# — [0, 1] with the following
properties:

i)P(Q)=1
ii) (countable additivity) For any sequen€A, }ncry Of disjoint events inZ (i.e.
ANA; =@, foralli # j):

P (U An) = z P(An)
n=1 n=1
The triple(Q,.%#,P) is called a Probability Space.

Note that the probability measure is a set function (i.eurecfion defined on sets).

The next two definitions are given for completeness only. eley, we will use
them later in this class. They are both presenting more génetions than a prob-
ability measure and they will be used later in hypotheseswfestheorems to show
that the results apply to even more general measures thhalulity measures.

Definition 1.7 (Finite Measure).Given a measurable spat@,.7), a finite mea-
sure is a set functiop : .% — [0, 1] with the same countable additivity property as
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defined above and the measure of the space finite instead ofione specifically
the first property above is replaced with:

H(Q) <o

Definition 1.8 (o-finite Measure). A measureu defined on a measurable space
(Q,.7) is calledo-finite if it is countably additive and there exist a partittaf the
spaceQ, {Qi}ic, andu(Q;) < o for alli € I. Note that the index sétis allowed

to be countable.

Example 1.2 (Discrete Probability Space).
Let Q be a countable space. L&t = #(Q). Letp: Q — [0,N) be a function
on Q such thaty ,co p(w) = N < o, whereN is a finite constant. Define:

We can show tha{Q,.7,P) is a Probability Space. Indeed, from the definition:

P(Q)= 1 z p(w) = %N =1
we

To show the countable additivity property fet set inQ such thaA = ;> 1 Aj, with
A disjoint sets inQ. Since the space is countable we may white= {cw}, wb,...},
where any of the sets may be finite, kw]t;é (qk foralli, j,k,| where either # k or
j # 1. Then using the definition we have:

P(A) = < 3 pO=g 5 e
welUiZ A 1z1)=

_ %;(mm P(eh) ) = 3 PIA)

This is a very simple example but it shows the basic prolghigiasoning.

Remark 1.3The previous exercise gives a way to construct discretegtibty
measures (distributions). For example taRe= N the natural numbers and take
N = 1 in the definition of probability of an event. Then:

1-p ,ifw=0
e plw)=4p ,if w=1 | givesthe Bernoullif) distribution.
0 , otherwise
n w _ n—-w i <
e plw) = {(()w) p?(1-p) ’ Zt;)e?v\zse, gives the Binomialg, p) distribution.

1 a partition of the set A is a collection of seig disjoint (A NA; =0, ifi # j) such thatyiA = A
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“HpPA-per Lifw>r

w) = ives the Negative Binomial
* Pl@) 0 , otherwise’ g g )
distribution.
e plw)= %e*", gives the Poissom( distribution.

Example 1.3 (Uniform Distribution on (0,1))s another example |&2 = (0,1) and
7 =2%((0,1)) the Borel sigma algebra. Define a probability measiiges follows:
for any open intervala,b) C (0,1) letU((a,b)) = b— a the length of the interval.
For any other open interv&l defineU (O) =U (0N (0,1)).

Note that we did not specify (A) for all Borel setsA, rather only for the gener-
ators of the Boreb-field. This illustrates the probabilistic concept preserdbove.
In our specific situation, under very mild conditions on trengrators of thes-
algebra any probability measure defined only on the genaram be uniquely
extended to a probability measure on the whmlalgebra (Caratheodory extension
theorem). In particular when the generators are open se$e ttonditions are true
and we can restrict the definition to the open sets alone.éXaimple is going to be
extended in Sectioh.5.

Proposition 1.3 (Elementary properties of Probability Measure).Let (Q,.%,P)
be a Probability Space. Then:

1. VA B e .# with AC B thenP(A) < P(B)
2.P(AUB)=P(A)+P(B)—P(ANB),VABe .#
3. (General Inclusion-Exclusion formula, also named Panédormula):

P(AlUAzU“'UAn)Z_Z\P(Ai)—. > P(AINA)) (1.5)
i= i<J]<n
+ P(ANANA) — -+ (—1)"P(A1NAz---NAy)

i<j<k<n

Note that successive partial sums are alternating between-and-under esti-
mating.
4. (Finite subadditivity, sometimes called Boole’s indgya

n n
P(UA-> <3 PA). VAR e S
i—1 i=

1.1.1 Null element of%. Almost sure (a.s.) statements. Indicator of
a set.

An eventN € .% is called a null event iP(N) = 0.
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Definition 1.9. A statementS about pointsw € Q is said to be tru@lmost
surely(a.s.), almost everywhere (a.e.) or with probability 1 (d)pf the set
M defined as:

M:={we Q|S(w) is true},

isin.Z andP(M) = 1, (or, equivalentlyM€® is a null set).

We will use the notions a.s., a.e., and w.p.1. to denote time $hing — the defi-
nition above. For example we will sa§> 0 a.s. and mea{w|X(w) >0} =1 or
equivalentlyP{w|X(w) < 0} = 0. The notion of almost sure is a fundamental one in
probability. Unlike in deterministic cases where somegtias to always be true no
matter what, in probability we care about “the majority of thuth”. In other words
probability recognizes that some phenomena may have estoeritomes, but if
they are extremely improbable then we do not care about tRarmdamentally, it is
mathematics applied to reality.

Definition 1.10. We define the indicator function of an eve¥as the (simple)
function1a: Q — {0,1},

1 if we A
1n() = ’
Al©) {o L fwdA

Sometimes this function is denoted with

Note that the indicator function is a regular function (neeafunction). Indicator
functions are very useful in probability theory. Here armeaiseful relationships:

1are(") = 1a(-)18(")

If {Bi} form a partition ofQ (i.e. the setg\ are disjoint and? = |J!_; A):

Ia() = T ()

1.2 Conditional Probability

Let (Q,.%,P) be a Probability Space. Then fArB € .# we define the conditional
probability of A givenB as usual by:
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P(ANB)

PAIB) = 5 g

We can immediately rewrite the formula above to obtainrthatiplicative rule

P(ANB) = P(A|B)P(B),
P(ANBNC) = P(A|BNC)P(B|C)P(C), etc.

Total probability formula Given Ay, Ay, ..., Ay a partition ofQ (i.e. the set#
are disjoint and2 = (J{"_; A)), then:

P(B) __iP(B|Ai)P(A@), VBe .Z (1.6)

Bayes Formulalf Az, A, ..., A, form a partition ofQ:

P(B|Aj)P(A))
Y1 P(BIA)P(A)’

Example 1.4A biker leaves the point O in the figure below. At each crossithe
biker chooses a road at random. What is the probability teartives at poin ?

Let By, k=1,2,3,4 be the event that the biker passes through poinflBese
four events are mutually exclusive and they form a partiibthe space. Moreover,
they are equiprobabl@(By) = 1/4,Vk € {1,2,3,4}). Let A denote the event “the
biker reaches the destination point A’. Conditioned on eafctihe possible points
B1-B4 of passing we have:

P(Aj|B) = VBe 7. (1.7)

P(ABy) = 1/4
P(AB2) = 1/2
P(AB3) =1

At By is slightly more complex. We have to use the multiplicatiuker

P(A|B4) = 1/4+ P(ANBs|Bs) + P(ANBg N Bs|By)
=1/4+ P(A| BsN B4)P(85|B4) + P(A| BsNBsN B4)P(Ba|85 N B4)P(B5|B4)
=1/4+1/3(1/4)+1(1/3)(1/4)=3/12+2/12=5/12

Finally, by the law of total probability:

P(A) = P(A[B1)P(B1) + P(A|B2)P(B2) + P(A|B3)P(B3) + P(A|B4)P(Ba)
= 1/4(1/4) + 1/2(1/4) + 1/4(1) + 5/12(1/4) =13/24

O

Example 1.5 (De Mre’'s Paradox).As a result of extensive observation of dice
games the French gambler Chevaliér De Mére noticed teabtal number of spots
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U
&
/Xw\

Be
A

Fig. 1.1 The possible trajectories of the biker. O is the origin paimd A is the arrival pointBy’s
are intermediate points. Note that not all the ways lead tm&a.e. the probability of reaching
Rome is less than 1.

showing on 3 dice thrown simultaneously turn out to be 11 naften than 12.

However, from his point of view this is not possible since tturs in six ways :
(6:4:1);(6:3:2;(5:5:1);(5:4:2);(5:3:3);(4:4:3),

while 12 also in six ways:
(6:5:1);(6:4:2;(6:3:3);(5:5:2;(5:4:3);(4:4:9
What is the fallacy in the argument?

Solution 1.1 (Solution due to Pascal)The argument would be correct if these
“ways” would have the same probability. However this is nmoet For example:
(6:4:1) occurs in 3! ways, (5:5:1) occurs in 3 ways and (4:4cturs in 1 way.

As a result we can easily calculaf®(1l) = 27/216 ;P(12) = 25/216, and in-
deed his observation is correct and he should bet on 11 ri&tweon 12 if they have
the same game payoff. a

Example 1.6 (Another De &fe’s Paradox:)What is more probable?

1. Throw 4 dice and obtain at least one 6
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2. Throw 2 dice 24 time and obtain at least once a double 6

Solution 1.2.For option 1: 1- P(No 6)= 1— (5/6)* = 0.517747.
For option 2: 1- P(None of the 24 trials has a double=6)1 — (35/36)%4 =
0.491404

Example 1.7 (Monty Hall problem}his is a problem named after the host of the
American television show “Let's make a deal”. Simply put la¢ ttnd of a game
you are left to chose between 3 closed doors. Two of them haiveng behind and
one contains a prize. You chose one door but the door is notespautomatically.
Instead, the presenter opens another door that contaihingoHe then gives you
the choice of changing the door or sticking with the initinbice.

Most people would say that it does not matter what you do attiirie, but that
is not true. In fact everything depends on the host behav@rexample, if the host
knows in advance where the prize is and always reveals abrasdme other door
that does not contain anything then it is always better tacswi

Solution 1.3.This problem generated a lot of controversy since its pabba (in
1970's) since the solution seems so counterintuitive chesitalking about this prob-
lem in more detaiMorgan et al(1991), Mueser and Granbel(d991). We are pre-
senting it here since it exemplifies the conditional proligtrieasoning. The key in
any such problem is the sample space which has to be completgle to be able
to answer the questions asked.

Let D; be the event that the price is behind doot.et SW be the event that
switching wins the price

It does not matter which door we chose initially the reasgrnidentical with
all the three doors. So, we assume that initially we pick door

Fig. 1.2 The tree diagram

of conditional probabilities. SW
Note that the presenter has 0
two choices in casB, neither
of which results in winning if D1
switching the door. 1/3
0 SW
1/3 1
D, SW
1/3

D,—— SW

2 As a side note this event is the same as the event "not swijdbires”
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EventsD; i = 1,2,3 are mutually exclusive and we can write:
P(SW) = P(SWID1)P(D1) + P(SWD2)P(D2) + P(SWD3)P(D3).

When the prize is behind door 1 since we chose door 1 the pgegseas two
choices for the door to show us. However, neither would dortee prize and in
either case switching does not result in winning the prizereforeP(SWD;) = 0.

If the car is behind door 2 since our choice is door 1 the pteséras no alternative
but to show us the other door 3 which contains nothing. Thukhkimg in this case
results in winning the price. The same reasoning works ifpitize is behind door

3. Therefore:
1 1

1 2
P(SW) =13 +15+05 =

3
Thus switching has a higher probability of winning than neitehing.
A generalization tan doors shows that it still is advantageous to switch but the
advantage decreasesms . Specifically, in this casB(D;) = 1/n; P(SWD;) =0
still, but P(SWD;) =1/(n—2) if i # 1. Which gives:

ni1 1 n-11 1
PS == _—_— = — — —
(SW) i;nn—z n—2n>n

Furthermore, different presenter strategies producerdifft answers. For exam-
ple, if the presenter offers the option to switch only whea filayer chooses the
right door then switching is always bad. If the presenteersfwitching only when
the player has chosen incorrectly then switching alwayswihese and other cases
can be analyzed iRosentha(2009).

Example 1.8 (Bertrand’s box paradoXhis problem was first formulated by Joseph
Louis Francois Bertrand in his Calcul de Probabiliteési(rand 1889. In some
sense this problem is related to the previous problem buategsahot depend on any
presenter strategy and the solution is much more clearirpthis problem is an
exercise in Bayes formula.

Suppose that we know that three boxes contain respectiorybox contains
two gold coins, a second box with two silver coins, and a tliodt with one of
each. We chose a box at random and from that box we chose alsoiataandom.
Then we look at the coin chosen. Given that the coin chosergetaswhat is the
probability that the other coin in the box chosen is also gatd first glance it may
seem that this probability is/2 but after calculation this probability turns out to be
2/3.

Solution 1.4.We plot the sample space in Figuke3. Using this tree we can calcu-
late the probability:

P(Second coin i and First coin i<3)

P(Second coin i&|First coin isG) = P(First con isG)

Now, using the probabilities from the tree we continue:
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Box choice First coin Second coin
1
12 G—G
GG <
12 G .G
1/3
1
13 1/2 S S
SS
12 s—! .58
1/3
1 S

12 G—F—
Fig. 1.3 The tree diagram of GS < 1
112 S ———G

conditional probabilities.

11 11
__ 33l4331 2
11 11 11 :
331+331+331 3

Now that we have seen the solution we can recognize a logitatien to the
problem as well. Given that the coin seen is gold we can thnwayahe middle
box. Then if this would be box 1 then we have two possibilities the other coin is
gold (depending on which we have chosen in the first plac#&)idfis the box 2 then
there is one possibility (the remaining coin is silver). $lilne probability should be
2/3 since we have two out of three chances. Of course thiscdigargument does
not work if we do not choose the boxes with the same probwgbilit a

Example 1.9A blood test is 95% effective in detecting a certain disedsenit is in
fact present. However, the test yields also a false posiiselt for 1% of the people
tested. If 0.5% of the population actually has the diseabkat g the probability that
the person is diseased given that the test is positive?

Solution 1.5.This problem illustrates once again the application of thgd3 rule.
| do not like to use the rule literally instead work from firgtinziples one will
also obtain the Bayes rule without memorizing anything. Vet $y describing the
sample space. Refer to the Figurd for this purpose.
So given that the test is positive means that we have to edécal conditional
probability. We may write:
P(DN+) P(+|D)P(D) 0.95(0.005)

PO = =5~ =~ B(1) ~ 0.95(0.005 + 0.01(0.995)

=0.323

How about if only 0.05% (i.e. 0.0005) of the population has disease?
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+
0.95
D
0.00 0.05
+
0.99!
0.0
DC
Fig. 1.4 Blood test probabil- 0-99
ity diagram -
0.95(0.0005
P(D|+) = =0.0454
(BI+) = 5.95/0.0005 1 0.01(0.9995

This problem is an exercise in thinking. It is the same tegiode In the first case the
disease is relatively common and thus the test device is ordess reliable (though
32% right is very low). In the second case however the disisasay rare and thus
the precision of the device goes way down. a

Example 1.10 (Gambler's Ruin Problenye conclude this section with an exam-
ple which we shall see many times throughout this book. | dokmow who to
credit with the invention of the problem since it is so menéd so often in every
probability treatie®,

The formulation is simple. A game of heads or tails with a aiin. Player wins
1 dollar if he successfully calls the side of the coin whichda upwards and loses
$1 otherwise. Suppose the initial capitalXsdollars and he intends to play until
he winsm dollars but no longer. What is the probability that the gaenllill be
ruined?

Solution 1.6.We will display what is called as a first step analysis.

Let p(x) denote the probability that the player is going to be evdhytuained if
he starts withx dollars.

If he wins the next game then he will havex$ 1 and he is ruined from this
position with probp(x+1).

If he loses the next game then he will havex$ 1 so he is ruined from this
position with probp(x—1).

Let R be the event he is eventually ruined. Mgtbe the event he wins the next
trial. Let L be the event he loses this trial. Using the total prob. foemua get:

P(R) = P(RW)P(W) + P(RIL)P(L) = p(x) = p(x+1)(1/2) + p(x—1)(1/2)

3 The formalization may be due to Huygens (1629-1695) in thélXiVcentury
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Is this true for allx? No. This is true fox > 1 andx < w— 1. In the rest of cases
we obviously havep(0) = 1 andp(m) = 0 which give the boundary conditions for
the equation above.

This is a linear difference equation with constant coeffitsePlease look at the
general methodology in the following subsection on how feessuch equations.

Applying the method in our case gives the characteristi@ggn:

1, 1
Y=5¥ 5=V -2y +1=0=(y-12=0=y1=y,=1

In our case the two solutions are equal thus we seek a sohitibe formp(x) =
(C+Dx)1" = C+ Dx. Using the initial conditions we gep(0) =1=-C=1 and
p(m =0=C+Dm=0= D= -C/m= —1/m, thus the general probability of
ruin starting with wealthx is:

p(x) =1—x/m.

Solving difference equations with constant coefficients

This methodology is given for second order difference dguatbut higher order
equations are solved in a very similar way. Suppose we asngn equation of the
form:

an = Aan_1+ Ban_2,

with some boundary conditions.

The idea is to look for solutions of the forag = cy", with c some constant and
y needs to be determined. Note that if we have two solutionkisfform (sayciy;
andcpyy), then any linear combination of them is also a solution. Wesstute this
proposed form and obtain:

y' =AYty 2
Dividing by y"~2 we obtain the characteristic equation:
y? = Ay+B.

Next, we solve this equation and obtain real solutignandy, (if they exist). It
may be possible that the characteristic equation does nat $a@lutions inR in
which case the difference equation does not have solutitrereNow we have two
cases:

1. If y; andys are distinct then the solution & = Cy; + Dy; whereC,D are con-
stants that are going to be determined from the initial cioors.
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2. If y; =y, the solution isa, = Cyj 4+ Dny}. Again,C andD are determined from
the initial conditions.

In the case when the difference equation contaiterms the procedure is iden-
tical even replicating the multiplicity issues. For moréimation one can consult
any book on Ordinary Differential Equations suchzas/ce and DiPrim€2004).

1.3 Independence

Definition 1.11. Two eventsA andB are called independent if and only if

P(ANB) = P(A)P(B)

The eventd\;, Ay, As, ... are callednutually independerfbr sometimes simply
independent) if for every subsébf {1,2,3,...} we have:

P(UA | =[P
(U) M)

The eventd\;, Az, Az, ... are calledpairwise independerfsometimes jointly in-
dependent) if:
P(AIUA)) =PA)PA), Vi, j.

Note that jointly independent does not imply independence.
Two sigma fields?, 7 € .# are P-independernit:

P(GNH)=P(G)P(H), YGe%,vH c .

SeeBlillingsley (1995 for the definition of independence k> 2 sigma-algebras.

1.4 Monotone Convergence properties of probability

Let us take a step back for a minute and comment on what we kavdlisus far. The
o-algebra differs from the regular algebra in that it allovgg@deal with countable
(not finite) number of sets. In fact this is a recurrent themprobability, learning
to deal with infinity. On finite spaces things are more or lésgpke. One has to
define the probability of each individual outcome and ev@ng proceeds from
there. However, even in these simple cases imagine thatpeats an experiment
over and over. Then again we are forced to cope with infinitys $ection introduces
a way to deal with this infinity problem.
Let (Q,.#,P) be a Probability Space.



1.4 Monotone Convergence properties of probability 23

Lemma 1.1.The following are true:

LIfALZAe Fand ATA(e, ACAC...AnC... and A= p>1An), then:
P(An) T P(A) as a sequence of numbers. -

2. f An,Ae Zand Ay | A(lLe, ADAD...An D ... and A= =1 An), then:
P(An) | P(A) as a sequence of numbers. -

3. (Countable subadditivity) If AAz,..., and > Aq € #, with A’s not neces-

sarily disjoint then:
P (U An) <5 P(An)
n=1 n=1

Proof. 1. LetB; = A1,By = Ao\ Ay,...,Bn = An\ Ay_1. Because the sequence is
increasing we have that thig's are disjoint thus:

n

P(An) =P(BiUBU---UBp) = _ZP(B;).

Thus using countable additivity:

P(U N) - P<U Bn> le (Bi) = I|m P(B.) = lim P(An)
n>1 n>1

2. Note thatd, | A < A° T A®and from part 1 this means-1P(A,) T 1—P(A).

3. LetBy =A;,Bo=A1UA,,....Bh=A1U---UA,, .... From the finite sub-
additivity property in Propositior1.3 we have thatP(Bp) = P(Aj U - UA,) <
P(A1) + -+ P(An).

{Bn}n>1 is an increasing sequence of events, thus from part 1 we @ét th
P(Un=1Bn) = limp—« P(Bn). Combining the two relations above we obtain:

[ee]

P(O Aa) = P(G Bn) < lim (P(A1) +--+P(An) = 5 P(An)
n=1

n=1 n=1

Lemma 1.2.The union of a countable number@ull sets is a-null set

This Lemma is a direct consequence of the countable subatydit

Recall from analysis: For a sequence of numbejfs, }» limsup and liminf are
defined:

limsupx, = mf{supxn} = ITI}an (supxn)
n>m

liminf x, = srgp{rlgl;nxn} = J:an(rlgl;nxn),

and they represent the highest (respectively lowest)itigipoint of a subsequence
included in{Xn}n.
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Note that ifzis a number such that> lim supx, thenx, < z eventually.
Likewise, if z < limsupx, thenx, > zinfinitely ofter?.
These notions are translated to probability in the follaywvay.

Definition 1.12.LetA;, Ay, ... be aninfinite sequence of events, in some probability
spacegQ,.7,P). We define the events:

limsupA, = ﬂ U An={w: w e A, for infinitely many it = {A,i.0.}

n—eo n>1m=n

Iinmiann = U ﬂ An={w: w e A, forall n large enough= {A, eventually}

n>1m=n

Let us clarify the notions of “infinitely often” and “eventiid@ a bit more. We
say that an outcome happens infinitely often for the sequensg Ay, ... Ay, ...
if wisinthe seNn_1 Um>nAm. This means that for any(no matter how big) there
existanm> nandw € Am.

We say that an outconie happens eventually for the sequergeA,, ... Ay, ...
if wis inthe selJy_1Nm=nAm. This means that there exist arsuch that for any
m>n, w € Am, SO from this particulan and upw is in all the sets.

Why so complicate definitions? The basic intuition is thédi@ing: say you roll
a die infinitely many times, then it is obvious what it meanstfe outcome 1 to
appear infinitely often. Also, we can say the average of this waill eventually be
arbitrarily close to 3.5 (this will be shown later). It is rsxt clear cut in general. The
framework above provides a generalization to these nations

The Borel Cantelli lemmas

With this definitions we are now capable to give two imporianimas.

Lemma 1.3 (First Borel-Cantelli). If A1, Az, ... is any infinite sequence of events
with the propertyy -1 P(An) < o then

P (ﬂ U M) = P(A, events are true infinitely oftén= 0

n=1lm>n

This lemma essentially says that if the probabilities ofréseo to zero and the
sum is convergent then necessaAlywill stop occurring. However, the reverse of
the statement is not true. To make it hold we need a very stondition (indepen-
dence).

4i.e., there is somag very large so that, < z for alln>ng
Si.e., for anyn there exists am > n such that, > z
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Lemma 1.4 (Second Borel-Cantelli)If A;, Ao, ... is an infinite sequence aide-
pendentevents then:

P(A)) = < P(Ani.0)=1

Proof. First Borel-Cantelli.

P(Ani.0)) <ﬂ UAm><P<UAm>§miP(Amwn

n>1m=n

where we used the definition and countable subadditivitytl®y hypothesis the
sum on the right is the tail end of a convergent series, thezefonverges to zero as
n— co. Thus we are done. a

Proof. Second Borel-Cantelli:

=" Clearly, showing thaP (A, i.0.) = P(limsupAn) = 1 is the same as showing
thatP ((limsupAp)©) =0
By the definition of limsup and the DeMorgan’s laws,

(lim SupAn)° (ﬂ UAm> UﬁA?n

n>1m=n n>1m=n

Therefore, itis enough to show tHR¢N ., AS,) = O for all n (recall that a countable
union of null sets is a null set). However,

(%) - nmp<mAm> - im [P

by mdependence

;
— lim )< lim e P(Am)
im, [1 (2 ﬂ
© m=n
_,_/
1-x<e Xif x>0

— |im e Zm=nP(Am) — &~ Sm-nP(Am) _

r—o0

The last equality follows sincg P(A,) = .
Note that we have used the following inequality- X < e * which is true ifx €
[0,0). One can prove this inequality with elementary analysis.
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“«<" This implication is the same as the first lemma. Indeed, mssby absurd that
Y P(An) < 0. By the First Borel-Cantelli Lemma this implies tHafA, i.0.) =0, a
contradiction with the hypothesis. a

The Fatou lemmas

Again assume thak;, Ao, ... is a sequence of events.

Lemma 1.5 (Fatou lemma for sets)Given any measure (not necessarily finite)
we have:

U (An eventually = u(linmJQfN) < IinmJQf U(An)

Proof. Recall that liminfi—.An = Un>1NmenAm, and denote this set with. Let
Bn = N, Am, Which is an increasing sequence (less intersections asreaises)
and B, T A =. By the monotone convergence property of measure (Lerhrfa
U(Bn) — u(A). However,

H(Bn) = p( m Am) < U (Am),Ym=n,

m=n

thusp(Bn) < infrsn 1 (Am). Therefore:
H(A) < limnco inf 11(Am) = liminf 1 (An)

O
Lemma 1.6 (The reverse of the Fatou lemmalf P is a finite measure (e.g., prob-
ability measure) then:

P(Aq i.0.) = P(limsupA,) > lim supP(A,)

n—oo n—oo

Proof. This proof is entirely similar. Recall that lim SpPp., An = Nn>1 Umen Am,

and denote this set witA. Let B, = Uy_,Am. Then clearlyBy is a decreasing
sequence anB, | A=. By the monotone convergence property of measure (Lemma
1.1) and since the measure is finR¢B1) < 0 soP(B,) — P(A). However,

P(Bn) = P(|J Am) = P(Am),Ym>n,
m=n
thusP(Bn) > supy-,P(Am), again since the measure is finite . Therefore:

P(A) > liMy_.e SUPP(Am) = limsupP(Ay)

m>n n—sco



1.5 Lebesgue measure on the unit interval (0,1] 27

Kolmogorov zero-one law

| like to present this theorem since it introduces the cohoém sequence of-
algebras a notion essential for stochastic processes.

For a sequenca;, Ay, ... of events in the probability spa¢€,.%, &) consider
the generated sigma algebrgigs= g(An, Ani1,-..) and their intersection

[

T = m%: mo-(AnaAn+17"')7

n=1 n=1
called the tailo-field.

Theorem 1.1 (Kolmogorov’s 0-1 Law).If A;, Ay, ... are independent then for ev-
ery event A in the taib field (A€ .7) its probability P(A) is either0 or 1.

Proof. Skipped. The idea is to show thais independent of itself thuB(ANA) =
P(A)P(A) = P(A) = P(A)? = P(A) is either 0 or 1. The steps of this proof are as
follows:

1. First definesy, = 0(Ay,...,As) and show that is independent 6§ 1 for all n.

2. Since7 C 9,1 andar is independent aff, 1, thena}, and.7 are independent
for all n.

3. Defined, = 0(Aq,Az,...). Then from the previous step we deduce tvatand
7 are independent.

4. Finally since.7 C <%, by the previous stepy is independent of itself and the
result follows.

Note that limsup\, and liminfA, are tail events. However, it is only in the case
when the original events are independent that we can apginé@orov’s theorem.
Thus in that casP{A, i.0.} is either 0 or 1.

1.5 Lebesgue measure on the unit interval (0,1]

We conclude this chapter with the most important measurgaé@. This is the
unique measure that makes things behave in a normal way, (bey.nterval
(0.2,0.5) has measure.B).

Let Q =(0,1]. Let %#p=class of semiopen subintervals (a,bXdf For an interval
| = (a,b] € % defineA(l) =|I| =b—a. Let @ € % the element of length 0. Let
ABo=the algebra of finite disjoint unions of intervals in (0,llpte that the problem
1.3shows that this algebra is noaalgebra.

If A= 3 11h € Ho with |, disjoint %, sets; then

AR = imi) _ iun
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The goal is to show that is countably additive on the algebgdy. This will
allow us to construct a measure (actually a prob. measuce sie are working on
(0,1]) using the next result (Caratheodory’s theorem). trestructed measure is
well defined and will be called the Lebesgue Measure.

Theorem 1.2 (Theorem for the length of intervals:).Let | = (a,b] C (0,1] and k
of the form(ag, bx] bounded but not necessarily {6, 1].

(i) If Uxlk € I and I are disjoint theny |1y < |l
(ii) If I € Ukl (with the k not necessarily disjoint) thejh| < 5 |lx|.
(iii) If I = Uglk and k disjoint then|l| = 3|1k

Proof. Exercise Hint: use induction)
Note: Part (iii) shows that the functioh is well defined.

Theorem 1.3.A is a (countably additive) probability measure on the figtg. A is
called the Lebesgue measure restricted to the algekya

Proof. Let A= UUg_; Ak, WwhereAy are disjoint%, sets. By definition 0fA,

mg n
Ac=J X, A=Un,
j=1 i=1

where thely, are disjoint. Then,

A® =5 =5 k_ljZII k=5 ; 5 ind)

and sinceANJy, = J; = [ANJq| = 3iL; [liNJy | = |J |, the above is continued:

8

My co

Jol=S A(A
1;1| | k; (Ac)
——

=[Ayl

=
Il

O

The next theorem will extend the Lebesgue measure to theaBdl|, thus we
define the probability spad¢0, 1], #((0,1]),A ). The same construction with minor
modifications works iR, #(R),A) case.

Theorem 1.4 (Caratheodory’s Extension Theorem)A probability measure on an
algebra has a unique extension to the generatezlgebra.

Note: The Caratheodory Theorem practically constructs all ther@sting prob-
ability models. However, once we construct our models wesmavfurther need of
the theorem. It also reminds us of the central idea in theryhebprobabilities: If
one wants to prove something for a big set one needs to lodlafitke generators
of that set.
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Proof. (skipped), in the exercises.

Definition 1.13 (Monotone Class)A class.# of subsets i is monotonéf it is
closed under the formation of monotone unions and intemsesti.e.:

() A, Az,--- € A andA, C Anp1,UnAn=A=Ac A/
(i) Ag,Ap,--- € 4 andAn D Ant1 = NnAn € A

The next theorem is only needed for the proof of the Carathigotheorem.
However, the proof is interesting and that is why is presghere.

Theorem 1.5.1f .%; is an algebra and# is a monotone class, the#i, C .# =
O'(yo) C ..

Proof. Let m(.%p) = minimal monotone class ove¥, = the intersection of all
monotone classes containiig

We will prove thato (.%g) € m(.%p).

To show this it is enough to prove thaw.%p) is an algebra. Then exerciell
will show thatm(.%p) is a o algebra. Sincer(.%y) is the smallest the conclusion
follows.

To this end, let? = {A: A € m(.%)}.

(i) Sincem(.%#y) is a monotone class so%.
(ii) Since % is an algebra its elements aredh= %o C ¢

() and (ii) = m(F#y) C ¢. Thusm(F) is closed under complementarity.

Now define4; = {A: AUB e m(%),VB € %o }.

We show that¥; is a monotone class:

Let A, " an increasing sequence of sétg,c ¢ . By definition of¢;, for all n
AnUBemM(H),VB € F.

But A,UB D A,_1 UB and thus the definition ah(.%p) implies:

J(AnUB) € m(F),VB € o = <UAn> UB € m(%),VB,
n n
and thug J,,An € 4.

This shows tha#; is a monotone class. But sincg, is an algebra its elements
(the contained sets) aredf®, thus.Zy C 4. Sincem(.%y) is the smallest monotone
class containing#, we immediately haven(.%p) C %;.

Let% = {B: AUB € m(%),YAe m(%p)}

%, is a monotone class(identical proof- see problem 10

Let B € %p. Sincem(:%y) C % for any setA € m(.%y) = AUB € m(%). Thus,
by the definition 0f%, = B € % = %y C %.

The previous implication and the fact th# is a monotone class implies that
m(Fo) C %,.

ThereforeyA,B € m(.%g) = AUB € m(.%y) = m(.%p) is an algebra. 0

6 one can just verify the definition of; for this.
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Problems

1.1.Rolladie. Them2 ={1,2,3,4,5,6}. An example of a eventi&= { Roll an even numbér=
{2,4,6}. Find the cardinality (number of elements)&f(Q) in this case.

1.2.Suppose two eventd andB are in some spacg. List the elements of the
generated algebrao (A, B) in the following cases:

a)ANB=0

b)ACB

C)ANB#0;A\B#0andB\A#0D

1.3. An algebra which is not acg-algebra

Let Ao be the collection of sets of the forrfay,a;| U (ag,a,] U--- U (am, ar], for
anyme N*={1,2...}andallay <aj <ap<a, <---<am<apin Q =(0,1]
Verify that % is an algebra. Show tha#, is not acg-algebra.

1.4.Let.7 = {AC Q|Afinite or ACis finite}.

a) Show that# is an algebra

b) Show that ifQ is finite then is aog-algebra

¢) Show that ifQ is infinite then.Z is not a -algebra

1.5. A o-Algebra does not necessarily contain all the events i@

Let.# = {AC Q|A countableor A®is countablé. Show thatZ is ac-algebra.
Note that ifQ is uncountable implies that it contains a 8etuch that boti# andA°
are uncountable thus ¢ .%.

1.6.Show that the Borel sets & %2 = o ({(—,X]|x € R}).

Hint: show that the generating set is the same i.e., show that aoy the form
(—o0,X] can be written as countable union (or intersection) of opgervals and
viceversa that any open intervallfhcan be written as countable union (or intersec-
tion) of sets of the fornf—oo, x].

1.7.Show that the following classes all generate the Borellgebra, or put differ-
ently show the equality of the following collections of sets

o((ab):a<beR)=o0([abl:a<beR)=0((—»,b):beR)
=0((—e,b):beQ),

whereQ is the set of rational numbers.

1.8. Properties of probability measures
Prove properties 1-4 in the Propositibr8 on pagel 3.

Hint: You only have to use the definition of probability. The onlinthnon-trivial
in the definition is the countable additivity property.

1.9. No mater how many zeros do not add to more than zero
Prove the Lemma.2on page23.
Hint: You may use countable subadditivity.
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1.10.1f %y is an algebram(%#y) is the minimal monotone class ovéf and%; is
defined as:
4 ={B:AUBe m(%),YAe m(%)}

Then show tha®, is a monotone class.
Hint: Look at the proof of theorerh.50n page29, and repeat the arguments therein.

1.11. A monotone algebra is ar-algebra
Let.7 be an algebra that is also a monotone class. Show#hiata o-algebra.

1.12.Prove thetotal probability formulaequation {.6) and theBayes Formula
equationl.7.

1.13.If two events are sucAN B = 0 areA andB independent? Justify.
1.14.Show thatP(A|B) = P(A) is the same as independence of the evAraadB.

1.15.Prove that if two event# andB are independent then so are their comple-
ments.

1.16.Generalize the previous problemnaets using induction.

1.17.0ne urn containgy, white balls andb; black balls. Another urn containg
white balls and, black balls. A ball is drawn at random from each urn, then dne o
the two such chose are selected at random.

a) What is the probability that the final ball selected is wit

b) Given that the final ball selected was white what is the phbiliy that in fact it
came from the first urn (witkv; andb; balls).

1.18.At the end of a well known course the final grade is decided thighhelp of
an oral examination. There are a totalnopossible subjects listed on some pieces
of paper. Of thenm are generally considered “easy”.

Each student enrolled in the class, one after another, drieaubject at random
then presents it. Of the first two students who has the belienae of drawing a
“favorable” subject?

1.19.Suppose an evehthas probability 0.3. How many independent trials must be
performed to assert with probability®that the relative frequency éfdiffers from
0.3 by no more than Q.

1.20.Show using the Cantelli lemma that when you roll a die the @ui{1} will
appear infinitely often. Also show that eventually the ageraf all rolls up to rolin
will be within ¢ of 3.5 wheres > 0 is any arbitrary real number.

1.21.Andre Agassi and Pete Sampras decide to play a number of gagetber.
They play non-stop and at the end it turns out that Samprasmgemes while
Agassim wheren > m. Assume that in fact any possible sequence of games was
possible to reach this result. LiB{ iy denote the probability that from the first game
until the last Sampras is always in the lead. Find:
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1.P1; P31 Pha
2. P32, Py2; P2
3. P43, P53 Ps 4
4. Make a conjecture about a formula fém.

1.22.My friend Andrei has designed a system to win at the rouléteelikes to bet
onred, but he waits until there have been 6 previous blaclssrid only then he bets
on red. He reasons that the chance of winning is quite largeshe probability of
7 consecutive back spins is quite small. What do you think®iistem. Calculate
the probability the he wins using this strategy.

Actually, Andrei plays his strategy 4 times and he actualiysathree times out
of the 4 he played. Calculate what was the probability of theméthat just occurred.

1.23.Ali Baba is caught by the sultan while stealing his daugfitke sultan is be-
ing gentle with him and he offers Ali Baba a chance to regasriberty.

There are 2 urns and white balls andh black balls. Ali Baba has to put the balls in
the 2 urns however he likes with the only condition that noigrampty. After that
the sultan will chose an urn at random then pick a ball fron tina. If the chosen
ball is white Ali Baba is free to go, otherwise Ali Baba’s heail be at the same
level as his legs.

How should Ali Baba divide the balls to maximize his chancsufvival?
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