
Chapter 1
Elements of Probability Measure

The axiomatic approach of Kolmogorov is followed by most Probability Theory
books. This is the approach of choice for most graduate levelprobability courses.
However, the immediate applicability of the theory learnedas such is questionable
and many years of study are required to understand and unleash its full power.

On the other hand the Applied probability books completely disregard this ap-
proach and they go more or less directly into presenting applications, thus leaving
gaps into the reader’s knowledge. At a cursory glance this approach appears to be
very useful (the presented problems are all very real and most are difficult), how-
ever I question the utility of this approach when confrontedwith problems that are
slightly different from the ones presented in such books.

Unfortunately, there is no middle ground between these two,hence the necessity
of the present lecture notes. I will start with the axiomaticapproach and present as
much as I feel is going to be necessary for a complete understanding of the Theory
of Probabilities. I will skip proofs which I consider will not bring something new to
the development of the student’s understanding.

1.1 Probability Spaces

Let Ω be an abstract set. This is sometimes denoted withS and is called the sam-
ple space. It is a set containing all the possible outcomes orresults of a random
experiment or phenomenon. I called it abstract because it could contain anything.
For example if the experiment consists in tossing a coin oncethe spaceΩ could
be represented as{Head,Tail}. However, it could just as well be represented as
{Cap,Pa jura}, these being the romanian equivalents ofHeadandTail. The space
Ω could just as well contain an infinite number of elements. Forexample measur-
ing the diameter of a doughnut could result in all possible numbers inside a whole
range. Furthermore, measuring in inches or in centimeters would produce different
albeit equivalent spaces.

We will useω ∈Ω to denote a generic outcome or a sample point.
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8 1 Elements of Probability Measure

Any collection of outcomes is called an event. That is, any subset ofΩ is an event.
We shall use capital letters from the beginning of the alphabetA,B,C to denote these
events.

So far so good. The proper definition ofΩ is one of the most important issues
when treating a problem probabilistically. However, this is not enough. We have to
make sure that we can calculate the probability of all the items of interest.

Think of the following possible situation: Poles of varioussizes are painted in
all the possible nuances of colors. In other words the poles have two characteris-
tics of interest size and color. Suppose that in this model wehave to calculate the
probability of things like the next pole would be shorter than 15 inches and painted
a nuance of red or blue. In order to answer such questions we have to define prop-
erly the sample spaceΩ and furthermore give a definition of probability that will
be consistent. Specifically, we need to give a definition of the elements ofΩ which
can bemeasured.

To this end we have to group these events into some way that would allow us
to say: yes we can calculate the probability of all the eventsin this group. In other
words, we need to talk about the notion of collection of events.

We will introduce the notion ofσ -algebra (orσ -field) to deal with the problem of
the proper domain of definition for the probability. Before we do that, we introduce
a special collection of events:

P(Ω) = The collection of all possible subsets ofΩ (1.1)

We could define probability on this very large set. However, this would mean that
we would have to define probability for every single element of P(Ω). This will
prove impossible except on the case whenΩ is finite. However, even in this case
we have to do it consistently. For example if say the set{1,2,3} is in Ω and has
probability 0.2, how do we define the probability of{1,2}? How about probability
of {1,2,5}? A much better approach would be to define probability only onthe
generators of the collectionP(Ω) or on the generators of a collection of sets as
close as we can possibly make toP(Ω).

How do we do this? Fortunately, algebra comes to the rescue. The elements of a
collection of events are the events. So first we define operations with them:union,
intersection, complementand slightly less importantdifference and symmetric dif-
ference.





A∪B = set of elements that areeither inA or in B

A∩B = AB= set of elements that areboth in A and in B

Ac = Ā = set of elements that are inΩ butnot in A

(1.2)

{
A\B= set of elements that are inA butnot in B

A△B = (A\B)∪ (B\A)
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We can of course express every operation in terms of union andintersection.
There are important relations between these operations, I will stop here to mention
the De Morgan laws: {

(A∪B)c = Ac∩Bc

(A∩B)c = Ac∪Bc (1.3)

There is much more to be found out about set operations but forour purpose this
is enough. Look atBillingsley (1995) or Chung(2000) for a wealth of more details.

Definition 1.1 (Algebra onΩ ). A collectionF of events inΩ is called an algebra
(or field) onΩ iff:

1. Ω ∈F

2. Closed under complementarity: IfA⊆F thenAc⊆F

3. Closed under finite union: IfA,B⊆F thenA∪B⊆F

Remark 1.1.The first two properties imply that∅ ∈F . The third is equivalent with
A∩B⊆F by the second property and the de Morgan laws (1.3).

Definition 1.2 (σ -Algebra on Ω ). If F is an algebra onΩ and in addition it is
closed under countable unions then it is aσ -algebra (orσ -field) onΩ

Note: Closed under countable unions means that the third propertyin Definition
1.1 is replaced with: Ifn∈ N is a natural number andAn⊆F for all n then

⋃

n∈N

An⊆F

Theσ -algebra provides an appropriate domain of definition for the probability func-
tion. However, it is such an abstract thing that it will be hard to work with it. This
is the reason for the next definition, it will be much easier towork on the generators
of asigma-algebra.This will be a recurring theme in probability, in order to show a
property for a big class we show the property for a small generating set of the class
and then use standard arguments to extend to the whole class.

Definition 1.3 (σ algebra generated by a classC of sets inΩ ).
Let C be a collection (class) of subsets ofΩ . Thenσ(C ) is the smallestσ -

algebra onΩ that containsC .
Mathematically:

1. C ⊆ σ(C )
2. σ(C ) is aσ -field
3. If C ⊆ G andG is aσ -field thenσ(C )⊆ G

The idea of this definition is to verify a statement on the setC . Then, due to the
properties that would be presented later the same statementwill be valid for all the
sets inσ(C ).
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Proposition 1.1.Properties ofσ -algebras:

• P(Ω) is a σ -algebra, the largest possibleσ -algebra onΩ
• If C is already aσ -algebra thenσ(C ) = C

• If C = {∅} or C = {Ω} thenσ(C ) = {∅,Ω}, the smallest possibleσ -algebra
onΩ

• If C ⊆ C ′ thenσ(C )⊆ σ(C ′)
• If C ⊆ C ′ ⊆ σ(C ) thenσ(C ′) = σ(C )

In general listing the elements of a sigma algebra explicitly is hard. It is only in
simple cases that this is done.

Remark 1.2 (Finite spaceΩ ). When the sample space is finite, we can and typically
will take the sigma algebra to beP(Ω). Indeed, any event of a finite space can
be trivially expressed in terms of individual outcomes. In fact, if the finite spaceΩ
containsM possible outcomes, then the number of possible events is finite and is
equal with 2M.

Example 1.1.Suppose a setA⊂ Ω . Let us calculateσ(A). Clearly, by definitionΩ
is in σ(A). Using the complementarity property we clearly see thatAc and /0 are also
in σ(A). We only need to take unions of these sets and see that there are no more
new sets. Thus:

σ(A) = {Ω , /0,A,Ac}.
⊓⊔

Proposition 1.2 (Intersection and union ofσ -algebras).Suppose thatF1 andF2

are twoσ -algebras onΩ . Then:

1. F1∩F2 is a sigma algebra.
2. F1∪F2 is not a sigma algebra. The smallestσ algebra that contains both of

them is:σ(F1∪F2) and is denotedF1∨F2

Proof. For part 2 there is nothing to show. Perhaps a counterexample. Take for in-
stance two setsA,B⊂Ω such thatA∩B 6= /0. Then takeF1 = σ(A) andF2 = σ(B).
Use the previous example and Exercise1.2, partc.

For part 1 we just need to verify the definition of the sigma algebra. For example,
takeA in F1∩F2. SoA belongs to both collections of sets. SinceF1 is a sigma
algebra by definitionAc ∈F1. Similarly Ac ∈F2. Therefore,Ac ∈F1∩F2. The
rest of the definition is verified in a similar manner. ⊓⊔

An example: Borelσ -algebra

Let Ω be a topological space (think geometry is defined in this space and this assures
us that the open subsets exist in this space).
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Definition 1.4. We define:

B(Ω) = The Borelσ -algebra (1.4)

= σ -algebra generated by the class of open subsets ofΩ

In the special case whenΩ = R we denoteB = B(R), the Borel sets ofR. This
B is the most importantσ -algebra. The reason for this fact is that most experiments
can be brought to equivalence withR (as we shall see when we will talk about
random variables). Thus, if we define a probability measure on B, we have a way
to calculate probabilities for most experiments. ⊓⊔

Most subsets ofR are inB. However, it is possible (though very difficult) to
explicitly construct a subset ofR which is not inB. See (Billingsley, 1995, page
45) for such a construction in the caseΩ = (0,1].

There is nothing special about the open sets, except for the fact that they can be
defined in any topological space. InR we have alternate definitions which you will
have to show are equivalent with the one given above in problem 1.7.

Probability measure

We are finally in the position to give the domain for the probability measure.

Definition 1.5 (Measurable Space.).A pair (Ω ,F ), whereΩ is a set andF is a
σ -algebra onΩ is called ameasurable space.

Definition 1.6 (Probability measure. Probability space).Given a measurable space
(Ω ,F ), a probability measure is any functionP : F → [0,1] with the following
properties:

i) P(Ω) = 1
ii) (countable additivity) For any sequence{An}n∈N of disjoint events inF (i.e.
Ai ∩A j = ∅, for all i 6= j):

P

(
∞⋃

n=1

An

)
=

∞

∑
n=1

P(An)

The triple(Ω ,F ,P) is called a Probability Space.

Note that the probability measure is a set function (i.e., a function defined on sets).

The next two definitions are given for completeness only. However, we will use
them later in this class. They are both presenting more general notions than a prob-
ability measure and they will be used later in hypotheses of some theorems to show
that the results apply to even more general measures than probability measures.

Definition 1.7 (Finite Measure).Given a measurable space(Ω ,F ), a finite mea-
sure is a set functionµ : F → [0,1] with the same countable additivity property as
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defined above and the measure of the space finite instead of one. More specifically
the first property above is replaced with:

µ(Ω) < ∞

Definition 1.8 (σ -finite Measure). A measureµ defined on a measurable space
(Ω ,F ) is calledσ -finite if it is countably additive and there exist a partition1 of the
spaceΩ , {Ωi}i∈I , andµ(Ωi) < ∞ for all i ∈ I . Note that the index setI is allowed
to be countable.

Example 1.2 (Discrete Probability Space).
Let Ω be a countable space. LetF = P(Ω). Let p : Ω → [0,N) be a function

on Ω such that∑ω∈Ω p(ω) = N < ∞, whereN is a finite constant. Define:

P(A) =
1
N ∑

ω∈A

p(ω)

We can show that(Ω ,F ,P) is a Probability Space. Indeed, from the definition:

P(Ω) =
1
N ∑

ω∈Ω
p(ω) =

1
N

N = 1.

To show the countable additivity property letA a set inΩ such thatA=
⋃∞

i=1Ai , with
Ai disjoint sets inΩ . Since the space is countable we may writeAi = {ω i

1,ω
i
2, . . .},

where any of the sets may be finite, butω i
j 6= ωk

l for all i, j,k, l where eitheri 6= k or
j 6= l . Then using the definition we have:

P(A) =
1
N ∑

ω∈⋃∞
i=1Ai

p(ω) =
1
N ∑

i≥1, j≥1

p(ω i
j)

=
1
N ∑

i≥1

(
p(ω i

1)+ p(ω i
2)+ . . .

)
= ∑

i≥1

P(Ai)

⊓⊔

This is a very simple example but it shows the basic probability reasoning.

Remark 1.3.The previous exercise gives a way to construct discrete probability
measures (distributions). For example takeΩ = N the natural numbers and take
N = 1 in the definition of probability of an event. Then:

• p(ω) =






1− p , if ω = 0

p , if ω = 1

0 , otherwise

, gives the Bernoulli(p) distribution.

• p(ω) =

{(n
ω
)
pω(1− p)n−ω , if ω ≤ n

0 , otherwise
, gives the Binomial(n,p) distribution.

1 a partition of the set A is a collection of setsAi , disjoint (Ai ∩A j = /0, if i 6= j) such that∪iAi = A
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• p(ω) =

{(ω−1
r−1

)
pr(1− p)ω−r , if ω ≥ r

0 , otherwise
, gives the Negative Binomial(r,p)

distribution.
• p(ω) = λ ω

ω! e−λ , gives the Poisson (λ ) distribution.

Example 1.3 (Uniform Distribution on (0,1)).As another example letΩ = (0,1) and
F = B((0,1)) the Borel sigma algebra. Define a probability measureU as follows:
for any open interval(a,b)⊆ (0,1) let U((a,b)) = b−a the length of the interval.
For any other open intervalO defineU(O) = U(O∩ (0,1)).

Note that we did not specifyU(A) for all Borel setsA, rather only for the gener-
ators of the Borelσ -field. This illustrates the probabilistic concept presented above.
In our specific situation, under very mild conditions on the generators of theσ -
algebra any probability measure defined only on the generators can be uniquely
extended to a probability measure on the wholeσ -algebra (Carathèodory extension
theorem). In particular when the generators are open sets these conditions are true
and we can restrict the definition to the open sets alone. Thisexample is going to be
extended in Section1.5.

Proposition 1.3 (Elementary properties of Probability Measure).Let(Ω ,F ,P)
be a Probability Space. Then:

1. ∀A,B∈F with A⊆ B thenP(A)≤ P(B)
2. P(A∪B) = P(A)+P(B)−P(A∩B), ∀A,B∈F

3. (General Inclusion-Exclusion formula, also named Poincaré formula):

P(A1∪A2∪·· ·∪An) =
n

∑
i=1

P(Ai)− ∑
i< j≤n

P(Ai ∩A j) (1.5)

+ ∑
i< j<k≤n

P(Ai ∩A j ∩Ak)−·· ·+(−1)nP(A1∩A2 · · · ∩An)

Note that successive partial sums are alternating between over-and-under esti-
mating.

4. (Finite subadditivity, sometimes called Boole’s inequality):

P

(
n⋃

i=1

Ai

)
≤

n

∑
i=1

P(Ai), ∀A1,A2, . . . ,An ∈F

1.1.1 Null element ofF . Almost sure (a.s.) statements. Indicator of
a set.

An eventN ∈F is called a null event ifP(N) = 0.
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Definition 1.9. A statementS about pointsω ∈ Ω is said to be truealmost
surely(a.s.), almost everywhere (a.e.) or with probability 1 (w.p.1) if the set
M defined as:

M := {ω ∈Ω |S(ω) is true} ,
is in F andP(M) = 1, (or, equivalentlyMc is a null set).

We will use the notions a.s., a.e., and w.p.1. to denote the same thing – the defi-
nition above. For example we will sayX ≥ 0 a.s. and mean:P{ω |X(ω)≥ 0}= 1 or
equivalentlyP{ω |X(ω)< 0}= 0. The notion of almost sure is a fundamental one in
probability. Unlike in deterministic cases where something has to always be true no
matter what, in probability we care about “the majority of the truth”. In other words
probability recognizes that some phenomena may have extreme outcomes, but if
they are extremely improbable then we do not care about them.Fundamentally, it is
mathematics applied to reality.

Definition 1.10.We define the indicator function of an eventA as the (simple)
function1A : Ω → {0,1},

1A(ω) =

{
1 , if ω ∈ A

0 , if ω /∈ A

Sometimes this function is denoted withIA.

Note that the indicator function is a regular function (not aset function). Indicator
functions are very useful in probability theory. Here are some useful relationships:

1A∩B(·) = 1A(·)1B(·)

If {Bi} form a partition ofΩ (i.e. the setsAi are disjoint andΩ =
⋃n

i=1Ai):

1A(·) = ∑
i

1A∩Bi (·)

1.2 Conditional Probability

Let (Ω ,F ,P) be a Probability Space. Then forA,B∈F we define the conditional
probability ofA givenB as usual by:
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P(A|B) =
P(A∩B)

P(B)
.

We can immediately rewrite the formula above to obtain themultiplicative rule:

P(A∩B) = P(A|B)P(B),

P(A∩B∩C) = P(A|B∩C)P(B|C)P(C), etc.

Total probability formula: GivenA1,A2, . . . ,An a partition ofΩ (i.e. the setsAi

are disjoint andΩ =
⋃n

i=1Ai), then:

P(B) =
n

∑
i=1

P(B|Ai)P(Ai), ∀B∈F (1.6)

Bayes Formula: If A1,A2, . . . ,An form a partition ofΩ :

P(A j |B) =
P(B|A j)P(A j)

∑n
i=1P(B|Ai)P(Ai)

, ∀B∈F . (1.7)

Example 1.4.A biker leaves the point O in the figure below. At each crossroad the
biker chooses a road at random. What is the probability that he arrives at pointA ?

Let Bk, k = 1,2,3,4 be the event that the biker passes through point Bk. These
four events are mutually exclusive and they form a partitionof the space. Moreover,
they are equiprobable(P(Bk) = 1/4,∀k∈ {1,2,3,4}). Let A denote the event “the
biker reaches the destination point A”. Conditioned on eachof the possible points
B1-B4 of passing we have:

P(A|B1) = 1/4

P(A|B2) = 1/2

P(A|B3) = 1

At B4 is slightly more complex. We have to use the multiplicative rule:

P(A|B4) = 1/4+P(A∩B5|B4)+P(A∩B6∩B5|B4)

= 1/4+P(A|B5∩B4)P(B5|B4)+P(A|B6∩B5∩B4)P(B6|B5∩B4)P(B5|B4)

= 1/4+1/3(1/4)+1(1/3)(1/4)= 3/12+2/12= 5/12

Finally, by the law of total probability:

P(A) = P(A|B1)P(B1)+P(A|B2)P(B2)+P(A|B3)P(B3)+P(A|B4)P(B4)

= 1/4(1/4)+1/2(1/4)+1/4(1)+5/12(1/4)= 13/24

⊓⊔

Example 1.5 (De Ḿere’s Paradox).As a result of extensive observation of dice
games the French gambler Chevaliér De Mére noticed that the total number of spots
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B1 B2 B3

B4

B5

B6

A

O

Fig. 1.1 The possible trajectories of the biker. O is the origin pointand A is the arrival point.Bk’s
are intermediate points. Note that not all the ways lead to Rome, i.e. the probability of reaching
Rome is less than 1.

showing on 3 dice thrown simultaneously turn out to be 11 moreoften than 12.
However, from his point of view this is not possible since 11 occurs in six ways :

(6 : 4 : 1);(6 : 3 : 2);(5 : 5 : 1);(5 : 4 : 2);(5 : 3 : 3);(4 : 4 : 3),
while 12 also in six ways:

(6 : 5 : 1);(6 : 4 : 2);(6 : 3 : 3);(5 : 5 : 2);(5 : 4 : 3);(4 : 4 : 4)
What is the fallacy in the argument?

Solution 1.1 (Solution due to Pascal).The argument would be correct if these
“ways” would have the same probability. However this is not true. For example:
(6:4:1) occurs in 3! ways, (5:5:1) occurs in 3 ways and (4:4:4) occurs in 1 way.

As a result we can easily calculate:P(11) = 27/216 ;P(12) = 25/216, and in-
deed his observation is correct and he should bet on 11 ratherthan on 12 if they have
the same game payoff. ⊓⊔

Example 1.6 (Another De Ḿere’s Paradox:).What is more probable?

1. Throw 4 dice and obtain at least one 6



1.2 Conditional Probability 17

2. Throw 2 dice 24 time and obtain at least once a double 6

Solution 1.2.For option 1: 1−P(No 6)= 1− (5/6)4 = 0.517747.
For option 2: 1−P(None of the 24 trials has a double 6)= 1− (35/36)24 =

0.491404

Example 1.7 (Monty Hall problem).This is a problem named after the host of the
American television show “Let’s make a deal”. Simply put at the end of a game
you are left to chose between 3 closed doors. Two of them have nothing behind and
one contains a prize. You chose one door but the door is not opened automatically.
Instead, the presenter opens another door that contains nothing. He then gives you
the choice of changing the door or sticking with the initial choice.

Most people would say that it does not matter what you do at this time, but that
is not true. In fact everything depends on the host behavior.For example, if the host
knows in advance where the prize is and always reveals at random some other door
that does not contain anything then it is always better to switch.

Solution 1.3.This problem generated a lot of controversy since its publication (in
1970’s) since the solution seems so counterintuitive. Articles talking about this prob-
lem in more detailMorgan et al.(1991), Mueser and Granberg(1991). We are pre-
senting it here since it exemplifies the conditional probability reasoning. The key in
any such problem is the sample space which has to be complete enough to be able
to answer the questions asked.

Let Di be the event that the price is behind doori. Let SW be the event that
switching wins the price2.

It does not matter which door we chose initially the reasoning is identical with
all the three doors. So, we assume that initially we pick door1.

Fig. 1.2 The tree diagram
of conditional probabilities.
Note that the presenter has
two choices in caseD1 neither
of which results in winning if
switching the door.

D1

D2

D3

1/3

1/3

1/3

SW

SW0

0

SW

SW

1

1

2 As a side note this event is the same as the event ”not switching loses”
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EventsDi i = 1,2,3 are mutually exclusive and we can write:

P(SW) = P(SW|D1)P(D1)+P(SW|D2)P(D2)+P(SW|D3)P(D3).

When the prize is behind door 1 since we chose door 1 the presenter has two
choices for the door to show us. However, neither would contain the prize and in
either case switching does not result in winning the prize, thereforeP(SW|D1) = 0.
If the car is behind door 2 since our choice is door 1 the presenter has no alternative
but to show us the other door 3 which contains nothing. Thus switching in this case
results in winning the price. The same reasoning works if theprize is behind door
3. Therefore:

P(SW) = 1
1
3

+1
1
3

+0
1
3

=
2
3

Thus switching has a higher probability of winning than not switching.
A generalization ton doors shows that it still is advantageous to switch but the

advantage decreases asn→∞. Specifically, in this caseP(Di) = 1/n; P(SW|D1) = 0
still, but P(SW|Di) = 1/(n−2) if i 6= 1. Which gives:

P(SW) =
n

∑
i=2

1
n

1
n−2

=
n−1
n−2

1
n

>
1
n

Furthermore, different presenter strategies produce different answers. For exam-
ple, if the presenter offers the option to switch only when the player chooses the
right door then switching is always bad. If the presenter offers switching only when
the player has chosen incorrectly then switching always wins. These and other cases
can be analyzed inRosenthal(2008).

Example 1.8 (Bertrand’s box paradox).This problem was first formulated by Joseph
Louis François Bertrand in his Calcul de Probabilités (Bertrand, 1889). In some
sense this problem is related to the previous problem but it does not depend on any
presenter strategy and the solution is much more clear. Solving this problem is an
exercise in Bayes formula.

Suppose that we know that three boxes contain respectively:one box contains
two gold coins, a second box with two silver coins, and a thirdbox with one of
each. We chose a box at random and from that box we chose a coin also at random.
Then we look at the coin chosen. Given that the coin chosen wasgold what is the
probability that the other coin in the box chosen is also gold. At a first glance it may
seem that this probability is 1/2 but after calculation this probability turns out to be
2/3.

Solution 1.4.We plot the sample space in Figure1.3. Using this tree we can calcu-
late the probability:

P(Second coin isG|First coin isG) =
P(Second coin isG and First coin isG)

P(First coin isG)
.

Now, using the probabilities from the tree we continue:
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Fig. 1.3 The tree diagram of
conditional probabilities.

SS

GS

GG

1/3

1/3

1/3

1

1

S

G

1

1

S

S

1

1 G

G

G

S

G

G

S

S

1/2

1/2

1/2

1/2

1/2

1/2

Box choice First coin Second coin

=
1
3

1
21+ 1

3
1
21

1
3

1
21+ 1

3
1
21+ 1

3
1
21

=
2
3
.

Now that we have seen the solution we can recognize a logical solution to the
problem as well. Given that the coin seen is gold we can throw away the middle
box. Then if this would be box 1 then we have two possibilitiesthat the other coin is
gold (depending on which we have chosen in the first place). Ifthis is the box 2 then
there is one possibility (the remaining coin is silver). Thus the probability should be
2/3 since we have two out of three chances. Of course this “logical” argument does
not work if we do not choose the boxes with the same probability. ⊓⊔

Example 1.9.A blood test is 95% effective in detecting a certain disease when it is in
fact present. However, the test yields also a false positiveresult for 1% of the people
tested. If 0.5% of the population actually has the disease, what is the probability that
the person is diseased given that the test is positive?

Solution 1.5.This problem illustrates once again the application of the Bayes rule.
I do not like to use the rule literally instead work from first principles one will
also obtain the Bayes rule without memorizing anything. We start by describing the
sample space. Refer to the Figure1.4for this purpose.

So given that the test is positive means that we have to calculate a conditional
probability. We may write:

P(D|+) =
P(D∩+)

P(+)
=

P(+|D)P(D)

P(+)
=

0.95(0.005)
0.95(0.005)+0.01(0.995)

= 0.323

How about if only 0.05% (i.e. 0.0005) of the population has the disease?



20 1 Elements of Probability Measure

Fig. 1.4 Blood test probabil-
ity diagram
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P(D|+) =
0.95(0.0005)

0.95(0.0005)+0.01(0.9995)
= 0.0454

This problem is an exercise in thinking. It is the same test device. In the first case the
disease is relatively common and thus the test device is moreor less reliable (though
32% right is very low). In the second case however the diseaseis very rare and thus
the precision of the device goes way down. ⊓⊔

Example 1.10 (Gambler’s Ruin Problem).We conclude this section with an exam-
ple which we shall see many times throughout this book. I do not know who to
credit with the invention of the problem since it is so mentioned so often in every
probability treaties3.

The formulation is simple. A game of heads or tails with a faircoin. Player wins
1 dollar if he successfully calls the side of the coin which lands upwards and loses
$1 otherwise. Suppose the initial capital isX dollars and he intends to play until
he winsm dollars but no longer. What is the probability that the gambler will be
ruined?

Solution 1.6.We will display what is called as a first step analysis.
Let p(x) denote the probability that the player is going to be eventually ruined if

he starts withx dollars.
If he wins the next game then he will have $x+ 1 and he is ruined from this

position with probp(x+1).
If he loses the next game then he will have $x− 1 so he is ruined from this

position with probp(x−1).
Let R be the event he is eventually ruined. LetW be the event he wins the next

trial. Let L be the event he loses this trial. Using the total prob. formula we get:

P(R) = P(R|W)P(W)+P(R|L)P(L)⇒ p(x) = p(x+1)(1/2)+ p(x−1)(1/2)

3 The formalization may be due to Huygens (1629-1695) in the XVII-th century
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Is this true for allx? No. This is true forx≥ 1 andx≤ w−1. In the rest of cases
we obviously havep(0) = 1 andp(m) = 0 which give the boundary conditions for
the equation above.

This is a linear difference equation with constant coefficients. Please look at the
general methodology in the following subsection on how to solve such equations.

Applying the method in our case gives the characteristic equation:

y =
1
2

y2 +
1
2
⇒ y2−2y+1= 0⇒ (y−1)2 = 0⇒ y1 = y2 = 1

In our case the two solutions are equal thus we seek a solutionof the formp(x) =
(C+ Dx)1n = C+ Dx. Using the initial conditions we get:p(0) = 1⇒C = 1 and
p(m) = 0⇒C+ Dm= 0⇒ D = −C/m= −1/m, thus the general probability of
ruin starting with wealthx is:

p(x) = 1−x/m.

⊓⊔

Solving difference equations with constant coefficients

This methodology is given for second order difference equations but higher order
equations are solved in a very similar way. Suppose we are given an equation of the
form:

an = Aan−1+Ban−2,

with some boundary conditions.
The idea is to look for solutions of the forman = cyn, with c some constant and

y needs to be determined. Note that if we have two solutions of this form (sayc1yn
1

andc2yn
2), then any linear combination of them is also a solution. We substitute this

proposed form and obtain:

yn = Ayn−1+Byn−2.

Dividing by yn−2 we obtain the characteristic equation:

y2 = Ay+B.

Next, we solve this equation and obtain real solutionsy1 andy2 (if they exist). It
may be possible that the characteristic equation does not have solutions inR in
which case the difference equation does not have solutions either. Now we have two
cases:

1. If y1 andy2 are distinct then the solution isan = Cyn
1 +Dyn

2 whereC,D are con-
stants that are going to be determined from the initial conditions.
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2. If y1 = y2 the solution isan = Cyn
1 +Dnyn

1. Again,C andD are determined from
the initial conditions.

In the case when the difference equation containsp terms the procedure is iden-
tical even replicating the multiplicity issues. For more information one can consult
any book on Ordinary Differential Equations such asBoyce and DiPrima(2004).

1.3 Independence

Definition 1.11.Two eventsA andB are called independent if and only if

P(A∩B) = P(A)P(B)

.
The eventsA1,A2,A3, . . . are calledmutually independent(or sometimes simply

independent) if for every subsetJ of {1,2,3, . . .} we have:

P

(
⋃

j∈J

A j

)
= ∏

j∈J
P(A j)

The eventsA1,A2,A3, . . . are calledpairwise independent(sometimes jointly in-
dependent) if:

P(Ai ∪A j) = P(Ai)P(A j), ∀i, j.

Note that jointly independent does not imply independence.
Two sigma fieldsG ,H ∈F are P–independentif:

P(G∩H) = P(G)P(H), ∀G∈ G ,∀H ∈H .

SeeBillingsley (1995) for the definition of independence ofk≥ 2 sigma-algebras.

1.4 Monotone Convergence properties of probability

Let us take a step back for a minute and comment on what we have seen thus far. The
σ -algebra differs from the regular algebra in that it allows us to deal with countable
(not finite) number of sets. In fact this is a recurrent theme in probability, learning
to deal with infinity. On finite spaces things are more or less simple. One has to
define the probability of each individual outcome and everything proceeds from
there. However, even in these simple cases imagine that one repeats an experiment
over and over. Then again we are forced to cope with infinity. This section introduces
a way to deal with this infinity problem.

Let (Ω ,F ,P) be a Probability Space.
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Lemma 1.1.The following are true:

1. If An,A ∈F and An ↑ A (i.e., A1 ⊆ A2 ⊆ . . .An ⊆ . . . and A=
⋃

n≥1An), then:
P(An) ↑ P(A) as a sequence of numbers.

2. If An,A ∈F and An ↓ A (i.e., A1 ⊇ A2 ⊇ . . .An ⊇ . . . and A=
⋂

n≥1An), then:
P(An) ↓ P(A) as a sequence of numbers.

3. (Countable subadditivity) If A1,A2, . . . , and
⋃∞

i=1An ∈F , with Ai ’s not neces-
sarily disjoint then:

P

(
∞⋃

n=1

An

)
≤

∞

∑
n=1

P(An)

Proof. 1. Let B1 = A1,B2 = A2 \A1, . . . ,Bn = An \An−1. Because the sequence is
increasing we have that theBi ’s are disjoint thus:

P(An) = P(B1∪B2∪·· ·∪Bn) =
n

∑
i=1

P(Bi).

Thus using countable additivity:

P

(
⋃

n≥1

An

)
= P

(
⋃

n≥1

Bn

)
=

∞

∑
i=1

P(Bi) = lim
n→∞

n

∑
i=1

P(Bi) = lim
n→∞

P(An)

2. Note thatAn ↓A ⇔ An
c ↑Ac and from part 1 this means 1−P(An) ↑ 1−P(A).

3. Let B1 = A1,B2 = A1∪A2, . . . ,Bn = A1∪ ·· · ∪An, . . . . From the finite sub-
additivity property in Proposition1.3 we have thatP(Bn) = P(A1 ∪ ·· · ∪An) ≤
P(A1)+ · · ·+P(An).
{Bn}n≥1 is an increasing sequence of events, thus from part 1 we get that

P(
⋃∞

n=1Bn) = limn→∞ P(Bn). Combining the two relations above we obtain:

P(
∞⋃

n=1

An) = P(
∞⋃

n=1

Bn)≤ lim
n→∞

(P(A1)+ · · ·+P(An)) =
∞

∑
n=1

P(An)

⊓⊔

Lemma 1.2.The union of a countable number ofP-null sets is aP-null set

This Lemma is a direct consequence of the countable subadditivity.

Recall from analysis:For a sequence of numbers{xn}n limsup and liminf are
defined:

limsupxn = inf
m
{sup

n≥m
xn}= lim

m→∞
(sup
n≥m

xn)

lim inf xn = sup
m
{ inf

n≥m
xn}= lim

m→∞
( inf
n≥m

xn),

and they represent the highest (respectively lowest) limiting point of a subsequence
included in{xn}n.
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Note that ifz is a number such thatz> limsupxn thenxn < zeventually4.
Likewise, if z< limsupxn thenxn > z infinitely often5.
These notions are translated to probability in the following way.

Definition 1.12.LetA1,A2, . . . be an infinite sequence of events, in some probability
space(Ω ,F ,P). We define the events:

limsup
n→∞

An =
⋂

n≥1

∞⋃

m=n

Am = {ω : ω ∈ An for infinitely many n}= {An i.o.}

lim inf
n→∞

An =
⋃

n≥1

∞⋂

m=n

Am = {ω : ω ∈ An for all n large enough}= {An eventually}

Let us clarify the notions of “infinitely often” and “eventually” a bit more. We
say that an outcomeω happens infinitely often for the sequenceA1,A2, . . . ,An, . . .
if ω is in the set

⋂∞
n=1

⋃
m≥nAm. This means that for anyn (no matter how big) there

exist anm≥ n andω ∈ Am.
We say that an outcomeω happens eventually for the sequenceA1,A2, . . . ,An, . . .

if ω is in the set
⋃∞

n=1
⋂

m≥nAm. This means that there exist ann such that for any
m≥ n, ω ∈ Am, so from this particularn and upω is in all the sets.

Why so complicate definitions? The basic intuition is the following: say you roll
a die infinitely many times, then it is obvious what it means for the outcome 1 to
appear infinitely often. Also, we can say the average of the rolls will eventually be
arbitrarily close to 3.5 (this will be shown later). It is notso clear cut in general. The
framework above provides a generalization to these notions.

The Borel Cantelli lemmas

With this definitions we are now capable to give two importantlemmas.

Lemma 1.3 (First Borel-Cantelli). If A1,A2, . . . is any infinite sequence of events
with the property∑n≥1P(An) < ∞ then

P

(
∞⋂

n=1

⋃

m≥n

Am

)
= P(An events are true infinitely often) = 0

This lemma essentially says that if the probabilities of events go to zero and the
sum is convergent then necessarilyAn will stop occurring. However, the reverse of
the statement is not true. To make it hold we need a very strongcondition (indepen-
dence).

4 i.e., there is somen0 very large so thatxn < z, for all n≥ n0
5 i.e., for anyn there exists anm≥ n such thatxm > z
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Lemma 1.4 (Second Borel-Cantelli).If A1,A2, . . . is an infinite sequence ofinde-
pendentevents then:

∑
n≥1

P(An) = ∞ ⇔ P(An i.o.) = 1.

Proof. First Borel-Cantelli.

P(An i.o.) = P

(
⋂

n≥1

∞⋃

m=n

Am

)
≤ P

(
∞⋃

n=m

Am

)
≤

∞

∑
m=n

P(Am),∀n

where we used the definition and countable subadditivity. Bythe hypothesis the
sum on the right is the tail end of a convergent series, therefore converges to zero as
n→ ∞. Thus we are done. ⊓⊔

Proof. Second Borel-Cantelli:

“⇒” Clearly, showing thatP(An i.o.) = P(limsupAn) = 1 is the same as showing
thatP((limsupAn)

c) = 0.
By the definition of limsup and the DeMorgan’s laws,

(limsupAn)
c =

(
⋂

n≥1

∞⋃

m=n

Am

)c

=
⋃

n≥1

∞⋂

m=n

Ac
m.

Therefore, it is enough to show thatP(
⋂∞

m=nAc
m) = 0 for all n (recall that a countable

union of null sets is a null set). However,

P

(
∞⋂

m=n

Ac
m

)
= lim

r→∞
P

(
r⋂

m=n

Ac
m

)
= lim

r→∞

∞

∏
m=n

P(Ac
m)

︸ ︷︷ ︸
by independence

= lim
r→∞

r

∏
m=n

(1−P(Am))≤ lim
r→∞

r

∏
m=n

e−P(Am)

︸ ︷︷ ︸
1−x≤e−x if x≥0

= lim
r→∞

e−∑r
m=nP(Am) = e−∑∞

m=nP(Am) = 0

The last equality follows since∑P(An) = ∞.
Note that we have used the following inequality: 1− x≤ e−x which is true ifx ∈
[0,∞). One can prove this inequality with elementary analysis.
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“⇐” This implication is the same as the first lemma. Indeed, assume by absurd that
∑P(An) < ∞. By the First Borel-Cantelli Lemma this implies thatP(An i.o.) = 0, a
contradiction with the hypothesis. ⊓⊔

The Fatou lemmas

Again assume thatA1,A2, . . . is a sequence of events.

Lemma 1.5 (Fatou lemma for sets).Given any measure (not necessarily finite)µ
we have:

µ(An eventually) = µ(lim inf
n→∞

An)≤ lim inf
n→∞

µ(An)

Proof. Recall that liminfn→∞ An =
⋃

n≥1
⋂∞

m=nAm, and denote this set withA. Let
Bn =

⋂∞
m=nAm, which is an increasing sequence (less intersections as n increases)

and Bn ↑ A =. By the monotone convergence property of measure (Lemma1.1)
µ(Bn)→ µ(A). However,

µ(Bn) = µ(
∞⋂

m=n

Am)≤ µ(Am),∀m≥ n,

thusµ(Bn)≤ infm≥n µ(Am). Therefore:

µ(A)≤ limn→∞ inf
m≥n

µ(Am) = lim inf
n→∞

µ(An)

⊓⊔
Lemma 1.6 (The reverse of the Fatou lemma).If P is a finite measure (e.g., prob-
ability measure) then:

P(An i.o.) = P(limsup
n→∞

An)≥ limsup
n→∞

P(An)

.

Proof. This proof is entirely similar. Recall that limsupn→∞ An =
⋂

n≥1
⋃∞

m=nAm,
and denote this set withA. Let Bn =

⋃∞
m=nAm. Then clearlyBn is a decreasing

sequence andBn ↓A=. By the monotone convergence property of measure (Lemma
1.1) and since the measure is finiteP(B1) < ∞ soP(Bn)→ P(A). However,

P(Bn) = P(
∞⋃

m=n

Am)≥ P(Am),∀m≥ n,

thusP(Bn)≥ supm≥nP(Am), again since the measure is finite . Therefore:

P(A)≥ limn→∞ sup
m≥n

P(Am) = limsup
n→∞

P(An)

⊓⊔
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Kolmogorov zero-one law

I like to present this theorem since it introduces the concept of a sequence ofσ -
algebras, a notion essential for stochastic processes.

For a sequenceA1,A2, . . . of events in the probability space(Ω ,F ,P) consider
the generated sigma algebrasTn = σ(An,An+1, . . .) and their intersection

T =
∞⋂

n=1

Tn =
∞⋂

n=1

σ(An,An+1, . . . ),

called the tailσ -field.

Theorem 1.1 (Kolmogorov’s 0-1 Law).If A1,A2, . . . are independent then for ev-
ery event A in the tailσ field (A∈ T ) its probabilityP(A) is either0 or 1.

Proof. Skipped. The idea is to show thatA is independent of itself thusP(A∩A) =
P(A)P(A)⇒ P(A) = P(A)2⇒ P(A) is either 0 or 1. The steps of this proof are as
follows:

1. First defineAn = σ(A1, . . . ,An) and show that is independent ofTn+1 for all n.
2. SinceT ⊆Tn+1 andAn is independent ofTn+1, thenAn andT are independent

for all n.
3. DefineA∞ = σ(A1,A2, . . .). Then from the previous step we deduce thatA∞ and

T are independent.
4. Finally sinceT ⊆ A∞ by the previous stepT is independent of itself and the

result follows.

Note that limsupAn and liminfAn are tail events. However, it is only in the case
when the original events are independent that we can apply Kolmogorov’s theorem.
Thus in that caseP{An i.o.} is either 0 or 1.

1.5 Lebesgue measure on the unit interval (0,1]

We conclude this chapter with the most important measure available. This is the
unique measure that makes things behave in a normal way (e.g., the interval
(0.2,0.5) has measure 0.3).

Let Ω = (0,1]. LetF0=class of semiopen subintervals (a,b] ofΩ . For an interval
I = (a,b] ∈F0 defineλ (I) = |I | = b−a. Let ∅ ∈F0 the element of length 0. Let
B0=the algebra of finite disjoint unions of intervals in (0,1].Note that the problem
1.3shows that this algebra is not aσ -algebra.

If A = ∑n
i=1 In ∈B0 with In disjointF0 sets; then

λ (A) =
n

∑
i=1

λ (Ii) =
n

∑
i=1
|Ii|
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The goal is to show thatλ is countably additive on the algebraB0. This will
allow us to construct a measure (actually a prob. measure since we are working on
(0,1]) using the next result (Caratheodory’s theorem). Theconstructed measure is
well defined and will be called the Lebesgue Measure.

Theorem 1.2 (Theorem for the length of intervals:).Let I = (a,b]⊆ (0,1] and Ik
of the form(ak,bk] bounded but not necessarily in(0,1].

(i) If
⋃

k Ik ⊆ I and Ik are disjoint then∑k |Ik| ≤ |I |
(ii) If I ⊆⋃k Ik (with the Ik not necessarily disjoint) then|I | ≤ ∑k |Ik|.
(iii) If I =

⋃
k Ik and Ik disjoint then|I |= ∑k |Ik|.

Proof. Exercise (Hint: use induction)

Note: Part (iii) shows that the functionλ is well defined.

Theorem 1.3.λ is a (countably additive) probability measure on the fieldB0. λ is
called the Lebesgue measure restricted to the algebraB0

Proof. Let A =
⋃∞

k=1Ak, whereAk are disjointB0 sets. By definition ofB0,

Ak =
mk⋃

j=1

Jkj , A =
n⋃

i=1

Ii,

where theJkj are disjoint. Then,

λ (A) =
n

∑
i=1
|Ii |=

n

∑
i=1

(
∞

∑
k=1

mk

∑
j=1
|Ii ∩Jkj |) =

∞

∑
k=1

mk

∑
j=1

(
n

∑
i=1
|Ii ∩Jkj |)

and sinceA∩Jkj = Jkj ⇒ |A∩Jkj |= ∑n
i=1 |Ii ∩Jkj |= |Jkj |, the above is continued:

=
∞

∑
k=1

mk

∑
j=1

|Jkj |
︸ ︷︷ ︸

=|Ak|

=
∞

∑
k=1

λ (Ak)

⊓⊔
The next theorem will extend the Lebesgue measure to the whole (0,1], thus we

define the probability space((0,1],B((0,1]),λ ). The same construction with minor
modifications works in(R,B(R),λ ) case.

Theorem 1.4 (Caratheodory’s Extension Theorem).A probability measure on an
algebra has a unique extension to the generatedσ -algebra.

Note: The Caratheodory Theorem practically constructs all the interesting prob-
ability models. However, once we construct our models we have no further need of
the theorem. It also reminds us of the central idea in the theory of probabilities: If
one wants to prove something for a big set one needs to look first at the generators
of that set.
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Proof. (skipped), in the exercises.

Definition 1.13 (Monotone Class).A classM of subsets inΩ is monotoneif it is
closed under the formation of monotone unions and intersections, i.e.:

(i) A1,A2, · · · ∈M andAn⊂ An+1,
⋃

nAn = A⇒ A∈M

(ii) A1,A2, · · · ∈M andAn⊃ An+1⇒
⋂

n An ∈M

The next theorem is only needed for the proof of the Caratheodory theorem.
However, the proof is interesting and that is why is presented here.

Theorem 1.5.If F0 is an algebra andM is a monotone class, thenF0 ⊆M ⇒
σ(F0)⊆M .

Proof. Let m(F0) = minimal monotone class overF0 = the intersection of all
monotone classes containingF0

We will prove thatσ(F0)⊆m(F0).
To show this it is enough to prove thatm(F0) is an algebra. Then exercise1.11

will show thatm(F0) is a σ algebra. Sinceσ(F0) is the smallest the conclusion
follows.

To this end, letG = {A : Ac ∈m(F0)}.

(i) Sincem(F0) is a monotone class so isG .
(ii) SinceF0 is an algebra its elements are inG ⇒F0⊂ G

(i) and (ii)⇒m(F0)⊆ G . Thusm(F0) is closed under complementarity.

Now defineG1 = {A : A∪B∈m(F0),∀B∈F0}.
We show thatG1 is a monotone class:
Let Anր an increasing sequence of sets,An ∈ G1. By definition ofG1, for all n

An∪B∈m(F0),∀B∈F0.
But An∪B⊇ An−1∪B and thus the definition ofm(F0) implies:

⋃

n

(An∪B) ∈m(F0),∀B∈F0⇒
(
⋃

n

An

)
∪B∈m(F0),∀B,

and thus
⋃

nAn ∈ G1.
This shows thatG1 is a monotone class. But sinceF0 is an algebra its elements

(the contained sets) are inG1
6, thusF0⊂ G1. Sincem(F0) is the smallest monotone

class containingF0 we immediately havem(F0)⊆ G1.

Let G2 = {B : A∪B∈m(F0),∀A∈m(F0)}
G2 is a monotone class.(identical proof- see problem1.10)
Let B∈F0. Sincem(F0)⊆ G1 for any setA∈m(F0)⇒ A∪B∈m(F0). Thus,

by the definition ofG2⇒ B∈ G2⇒F0⊆ G2.
The previous implication and the fact thatG2 is a monotone class implies that

m(F0)⊆ G2.
Therefore,∀A,B∈m(F0)⇒ A∪B∈m(F0)⇒m(F0) is an algebra. ⊓⊔

6 one can just verify the definition ofG1 for this.
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Problems

1.1.Roll a die. ThenΩ = {1,2,3,4,5,6}. An example of a event isA= { Roll an even number}=
{2,4,6}. Find the cardinality (number of elements) ofP(Ω) in this case.

1.2.Suppose two eventsA andB are in some spaceΩ . List the elements of the
generatedσ algebraσ(A,B) in the following cases:
a)A∩B = /0
b) A⊂ B
c) A∩B 6= /0; A\B 6= /0 andB\A 6= /0

1.3. An algebra which is not aσ -algebra
Let B0 be the collection of sets of the form:(a1,a′1]∪ (a2,a′2]∪ ·· · ∪ (am,a′m], for
anym∈ N∗ = {1,2. . .} and alla1 < a′1 < a2 < a′2 < · · ·< am < a′m in Ω = (0,1]
Verify thatB0 is an algebra. Show thatB0 is not aσ -algebra.

1.4.Let F = {A⊆Ω |A finite or Ac is finite}.
a) Show thatF is an algebra
b) Show that ifΩ is finite thenF is aσ -algebra
c) Show that ifΩ is infinite thenF is not a σ -algebra

1.5. A σ -Algebra does not necessarily contain all the events inΩ
Let F = {A⊆Ω |A countableor Ac is countable}. Show thatF is aσ -algebra.
Note that ifΩ is uncountable implies that it contains a setA such that bothA andAc

are uncountable thusA /∈F .

1.6.Show that the Borel sets ofR B = σ ({(−∞,x]|x∈ R}).
Hint: show that the generating set is the same i.e., show that any set of the form

(−∞,x] can be written as countable union (or intersection) of open intervals and
viceversa that any open interval inR can be written as countable union (or intersec-
tion) of sets of the form(−∞,x].

1.7.Show that the following classes all generate the Borelσ -algebra, or put differ-
ently show the equality of the following collections of sets:

σ ((a,b) : a < b∈R) = σ ([a,b] : a < b∈R) = σ ((−∞,b) : b∈ R)

= σ ((−∞,b) : b∈Q) ,

whereQ is the set of rational numbers.

1.8. Properties of probability measures
Prove properties 1-4 in the Proposition1.3on page13.

Hint: You only have to use the definition of probability. The only thing non-trivial
in the definition is the countable additivity property.

1.9. No mater how many zeros do not add to more than zero
Prove the Lemma1.2on page23.
Hint: You may use countable subadditivity.
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1.10.If F0 is an algebra,m(F0) is the minimal monotone class overF0 andG2 is
defined as:

G2 = {B : A∪B∈m(F0),∀A∈m(F0)}
Then show thatG2 is a monotone class.
Hint: Look at the proof of theorem1.5on page29, and repeat the arguments therein.

1.11. A monotone algebra is aσ -algebra
Let F be an algebra that is also a monotone class. Show thatF is aσ -algebra.

1.12.Prove thetotal probability formulaequation (1.6) and theBayes Formula
equation1.7.

1.13.If two events are suchA∩B= /0 areA andB independent? Justify.

1.14.Show thatP(A|B) = P(A) is the same as independence of the eventsA andB.

1.15.Prove that if two eventsA andB are independent then so are their comple-
ments.

1.16.Generalize the previous problem ton sets using induction.

1.17.One urn containsw1 white balls andb1 black balls. Another urn containsw2

white balls andb2 black balls. A ball is drawn at random from each urn, then one of
the two such chose are selected at random.
a) What is the probability that the final ball selected is white?
b) Given that the final ball selected was white what is the probability that in fact it
came from the first urn (withw1 andb1 balls).

1.18.At the end of a well known course the final grade is decided withthe help of
an oral examination. There are a total ofm possible subjects listed on some pieces
of paper. Of themn are generally considered “easy”.

Each student enrolled in the class, one after another, drawsa subject at random
then presents it. Of the first two students who has the better chance of drawing a
“favorable” subject?

1.19.Suppose an eventA has probability 0.3. How many independent trials must be
performed to assert with probability 0.9 that the relative frequency ofA differs from
0.3 by no more than 0.1.

1.20.Show using the Cantelli lemma that when you roll a die the outcome{1} will
appear infinitely often. Also show that eventually the average of all rolls up to rolln
will be within ε of 3.5 whereε > 0 is any arbitrary real number.

1.21.Andre Agassi and Pete Sampras decide to play a number of gamestogether.
They play non-stop and at the end it turns out that Sampras wonn games while
Agassim wheren > m. Assume that in fact any possible sequence of games was
possible to reach this result. LetPn,m denote the probability that from the first game
until the last Sampras is always in the lead. Find:
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1. P2,1; P3,1; Pn,1

2. P3,2; P4,2; Pn,2

3. P4,3; P5,3; P5,4

4. Make a conjecture about a formula forPn,m.

1.22.My friend Andrei has designed a system to win at the roulette.He likes to bet
on red, but he waits until there have been 6 previous black spins and only then he bets
on red. He reasons that the chance of winning is quite large since the probability of
7 consecutive back spins is quite small. What do you think of his system. Calculate
the probability the he wins using this strategy.

Actually, Andrei plays his strategy 4 times and he actually wins three times out
of the 4 he played. Calculate what was the probability of the event that just occurred.

1.23.Ali Baba is caught by the sultan while stealing his daughter.The sultan is be-
ing gentle with him and he offers Ali Baba a chance to regain his liberty.
There are 2 urns andmwhite balls andn black balls. Ali Baba has to put the balls in
the 2 urns however he likes with the only condition that no urnis empty. After that
the sultan will chose an urn at random then pick a ball from that urn. If the chosen
ball is white Ali Baba is free to go, otherwise Ali Baba’s headwill be at the same
level as his legs.
How should Ali Baba divide the balls to maximize his chance ofsurvival?
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