
Chapter 2
Random Variables

All the definitions with sets presented in Chapter1 are consistent, however if we
wish to calculate and compute numerical values related to abstract spaces we need
to standardize the spaces. The first step is to give the following definition.

Definition 2.1 (Measurable Function (m.f.)).Let (Ω1,F1), (Ω2,F2) be two mea-
surable spaces. Letf : Ω1 −→ Ω2 be a function.f is called a measurable function
if and only if for any setB ∈F2 we havef−1(B) ∈F1. The inverse function is a
set function defined in terms of the pre-image. Explicitly, for a given setB∈F2,

f−1(B) = {ω1 ∈Ω1 : f (ω1) ∈ B}

Note: This definition makes it possible to extend probability measures to other
spaces. For instance, letf be a measurable function and assume that there exists a
probability measureP1 on the first space(Ω1,F1). Then we can construct a proba-
bility measure on the second space(Ω2,F2) by (Ω2,F2,P1◦ f−1). Note that since
f is measurablef−1(B) is in F1, thusP1◦ f−1(B) = P1( f−1(B)) is well defined.

Reduction toR. Random variables

Definition 2.2. Any measurable function with codomain(Ω2,F2) = (R,B(R)) is
called a random variable.

Consequence:Since the Borel sets inR are generated by(−∞,x] then we can
have the definition of a random variable directly by:

f : Ω1−→ R such thatf−1(−∞,x] ∈F or {ω : f (ω)≤ x} ∈F ,∀x∈R.

We shall sometimes usef (ω) ≤ x to denote f−1(−∞,x). Traditionally, the
random variables are denoted with capital letters from the end of the alphabet
X,Y,Z, . . . and their values are denoted with corresponding small lettersx,y,z, . . . .
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36 2 Random Variables

Definition 2.3 (Distribution of Random Variable). Assume that on the measur-
able space(Ω ,F ) we define a probability measureP so that it becomes a proba-
bility space(Ω ,F ,P). If a random variableX : Ω → R is defined then we call its
distribution, the set functionµ defined on the Borel sets ofR: B(R), with values in
[0,1]:

µ(B) = P({ω : X(ω) ∈ B}) = P
(
X−1(B)

)
= P◦X−1(B)

Remark 2.1.First note that the measureµ is defined on sets inR and takes val-
ues in the interval[0,1]. Therefore, the random variableX allows us to apparently
eliminate the abstract spaceΩ . However, this is not the case since we still have to
calculate probabilities usingP in the definition ofµ above.

However, there is one simplification we can make. If we recallthe result of the
exercises1.6 and1.7, we know that all Borel sets are generated by the same type
of sets. Using the same idea as before it is enough to describehow to calculate
µ for the generators. We could of course specify any type of generating sets we
wish (open sets, closed sets, etc) but it turns out the simplest way is to use sets of
the form(−∞,x], since we only need to specify one end of the interval (the other is
always−∞). With this observation we only need to specify the measureµ = P◦X−1

directly on the generators to completely characterize the probability measure.

Definition 2.4. [The distribution function of a random variable] The distribution
function of a random variableX is F : R→ [0,1] with:

F(x) = µ(−∞,x] = P({ω : X(ω) ∈ (−∞,x]}) = P({ω : X(ω)≤ x})

But wait a minute, this is exactly the definition of the cumulative distribution
function (cdf) which you can find in any lower level probability classes. It is ex-
actly the same thing except that in an effort to dumb down (in whomever opinion
it was to teach the class that way) the meaning is lost and we cannot proceed with
more complicated things. From the definition above we can deduce all the elemen-
tary properties of the cdf that you have learned (right-continuity, increasing, taking
values between 0 and 1). In fact let me ask you to prove this in exercise .

Proposition 2.1.The distribution function for any random variable X has the fol-
lowing properties:

(i) F is increasing (i.e. if x≤ y then F(x)≤ F(y))1

(ii) F is right continuous (i.e.limh↓0F(x+h) = F(x))
(iii) limx→−∞ F(x) = 0 andlimx→∞ F(x) = 1

Example 2.1 (Indicator random variable).Recall the indicator function from Def-
inition 1.10. Let 1A be the indicator function of a setA ⊆ Ω . This is a function

1 In other math books a function with this property is called non-decreasing. I do not like the
negation and I prefer to call a function like this increasingwith the distinction that a function
with the following propertyx < y impliesF(x) < F(y) is going to be called astrictly increasing
function
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defined onΩ with values inR. Therefore, it may be a random variable. According
to the definition it is a random variable if the function is measurable. It is simple
to show that this happens if and only ifA ∈F the σ -algebra associated with the
probability space. Assuming thatA ∈ F , what is the distribution function of this
random variable?

According to the definition we have to calculateP◦1−1
A ((−∞,x]) for anyx. How-

ever, the function 1A only takes two values 0 and 1. We can calculate immediately:

1−1
A ((−∞,x]) =





/0 , if x < 0

Ac , if x∈ [0,1)

Ω , if x > 1

.

Therefore,

F(x) =





0 , if x < 0

P(Ac) , if x∈ [0,1)

1 , if x≥ 1

.

Proving the following lemma is elementary using the properties of the probability
measure (Proposition1.3) and is left as an exercise.

Lemma 2.1.Let F be the distribution function of X. Then:

(i) P(X ≥ x) = 1−F(x)
(ii) P(x < X ≤ y) = F(x)−F(y)
(iii) P(X = x) = F(x)−F(x−), where F(x−) = limyրx F(y) the left limit of F
at x.

Above, we define a random variable as a measurable function with codomain
(R,B(R)). A more specific case is obtained when the random variable hasthe do-
main also equal to(R,B(R)). In this case the random variable is called a Borel
function.

Definition 2.5 (Borel measurable function).A functiong : R→ R is called Borel
(measurable) function ifg is a measurable function from(R,B(R)) into (R,B(R)).

Example 2.2.Show that any continuous functiong : R→R is Borel measurable.

Solution 2.1.This is very simple. Recall that the Borel sets are generatedby open
sets. So it is enough to see what happens to the pre-image of a open setB. But g
is a continuous function thereforeg−1(B) is an open set and thusg−1(B) ∈B(R).
Therefore by definitiong is Borel measurable.

2.1 Discrete and Continuous Random Variables

Definition 2.6 (pdf pmf and all that). Note that the distribution functionF always
exists. In general the distribution functionF is not necessarily derivable. However,
if it is, we call its derivativef (x) theprobability density function(pdf):
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F(x) =

∫ x

−∞
f (z)dz

Traditionally, a variable X with this property is calleda continuous random variable.
Furthermore ifF is piecewise constant (i.e., constant almost everywhere),or in

other words there exist a countable sequence{a1,a2, . . .} such that the functionF
is constant for every point except theseai ’s and we denotepi = F(ai)−F(ai−),
then the collection ofpi ’s is the traditionalprobability mass function(pmf) that
characterizes adiscrete random variable2.

Remark 2.2.Traditional undergraduate textbooks segregate between discrete and
continuous random variables. Because of this segregation they are the only vari-
ables presented and it appears that all the random variablesare either discrete or
continuous. In reality these are the only types that can be presented without follow-
ing the general approach we take here. The definitions we presented here cover any
random variable. Furthermore, the treatment of random variables is the same, no
more segregation.

Important. So what is the point of all this? What did we just accomplish here?

The answer is: we successfully moved from the abstract space(Ω ,F ,P) to some-
thing perfectly equivalent but defined on(R,B(R)). Because of this we only need
to define probability measures onR and show that anything coming from the orig-
inal abstract space is equivalent with one of these distributions onR. We have just
constructed our first model.

Example 2.3 (Indicator r.v. (continued)).This indicator variable is also called the
Bernoulli random variable. Notice that the variable only takes values 0 and 1 and
the probability that the variable takes the value 1 may be easily calculated using the
previous definitions:

P◦1−1
A ({1}) = P{ω : 1A(ω) = 1}= P(A).

Therefore the variable is distributed as a Bernoulli randomvariable with parame-
ter p = P(A). Alternately, we may obtain this probability using the previously com-
puted distribution function:

P{ω : 1A(ω) = 1}= F(1)−F(1−) = 1−P(Ac) = P(A)

Example 2.4.Roll a six sided fair die. SayX(ω) = 1 if the die shows 1 (ω = 1),
X = 2 if the die shows 2, etc. FindF(x) = P(X ≤ x).

Solution 2.2 (Solution).

If x < 1 thenP(X ≤ x) = 0

2 Again we used the notationF(x−) for the left limit of functionF at x or in a more traditional
notation limz→x,z<x F(z).
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If x∈ [1,2) thenP(X ≤ x) = P(X = 1) = 1/6
If x∈ [2,3) thenP(X ≤ x) = P(X(ω) ∈ {1,2}) = 2/6

We continue this way to get:

F(x) =






0 if x < 1
i/6 if x∈ [i, i +1) with i = 1, · · · ,5

1 if x≥ 6

Exercise 2.1 (Mixture of continuous and discrete random variable).Say a game
asks you to toss a coin. If the coin lands Tail you lose 1$, if Head then you draw a
number from[1,2] at random and gain that number. Furthermore, suppose that the
coins lands a Head with probabilityp. Let X be the amount of money won or lost
after 1 game. Find the distribution of X.

Solution 2.3 (Solution).Let ω = (ω1,ω2) whereω1 ∈ {Head,Tail} andω2 in the
defining experiment space for the Uniform distribution. Newdefine a random vari-
ableY(ω2) on the uniform[1,2] space. Then the random variableX is defined as:

X(ω) =

{
−1 , if ω1 = Tail

Y(ω2) if ω1 = Head

If x∈ [−1,1) we get :

P(X ≤ x) = P(X =−1) = P(ω1 = Tail) = 1− p

If x∈ [1,2) we get:

P(X ≤ x) = P(X =−1 orX ∈ [1,x))︸ ︷︷ ︸
the two events are disjoint

= 1− p+P(ω1 = heads,Y ≤ x)

= 1− p+ pP(Y ∈ [1,x))︸ ︷︷ ︸
Uniform[1,2]

= 1− p+ p
∫ x

1
1dy= 1− p+ p(x−1)

= 1−2p+ px.

Note that if the two parts of the game are not independent of each-other we cannot
calculate this distribution.

Finally, we obtain:

F(x) =






0 if x <−1
1− p if x∈ [−1,1)

1−2p+ px if x∈ [1,2)
1 if x≥ 2



40 2 Random Variables

Checking that our calculation is correctIt is always a good idea to check the re-
sult. We can verify the distribution function properties, and we can plot the function
to confirm this.

Examples of commonly encountered Random Variables:

Discrete random variables

For discrete random variables we give the probability mass function and it will de-
scribe completely the distribution (recall that the distribution function is piecewise
linear).

(i) Bernoulli Distribution, the random variable only takes two values:

X =

{
1 with P(X = 1) = p
0 with P(X = 0) = 1− p

We denote a random variableX with this distribution withX ∼ Bernoulli(p).
(ii) Binomial(n, p) distribution, the random variable takes values inN with:

P(X = k) =

{(n
k

)
pk(1− p)n−k for anyk∈ {0,1,2, . . . ,n}

0 otherwise

Note:X has the same distribution asY1 + · · ·Yn whereYi ∼ Bernoulli(p)
We denote a random variableX with this distribution withX ∼ Binom(n, p).

(iii) Geometric(p) distribution:

P(X = k) =

{
(1− p)k−1p for anyk∈ {1,2· · ·}

0 otherwise

This is sometimes called Geometric “number of trials” distribution. We can also
talk about Geometric “number of failures distribution” distribution, defined:

P(Y = k−1) =

{
(1− p)k−1p for anyk∈ {1,2· · ·}

0 otherwise

Most of the time when we writeX ∼Geometric(p) we mean thatX has a Geo-
metric number of trials distribution. In the rare cases whenwe use the other one
we will specify very clearly.

(iv) Negative Binomial(r, p) distribution

P(X = k) =

{(k−1
r−1

)
(1− p)r−kpr for anyk∈ {r, r +1, . . .}

0 otherwise
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Similarly with theGeometric(p) distribution we can talk about “number of fail-
ures” distribution, but I will not give that definition.

Let us stop for a moment and see where these distributions arecoming from.
Suppose we do a simple experiment, we repeat an experiment many times. This ex-
periment only has two possible outcomes “success” with probability p and “failure”
with probability 1− p.

• The variableX that takes value 1 if the experiment is a success and 0 otherwise
has aBernoulli(p) distribution.

• Repeat the experimentn times in such a way that no experiment influences the
outcome of any other experiment3 and we count how many of then repetition
actually resulted in success. LetY be the variable denoting this number. Then
Y ∼ Binom(n, p).

• If instead of repeating the experiment a fixed number of timeswe repeat the
experiment as many times as are needed to see the first success, then the number
of trials needed is going to be distributed as aGeometric(p) random variable. If
we count failures until the first success we obtain theGeometric(p) “number of
failures” distribution.

• If we repeat the experiment until we seer successes, the number of trials needed
is aNegativeBinomial(r, p)

(v) Hypergeometric distribution(N,m,n,p),

P(X = k) =

(m
k

)(N−m
n−k

)
(N

n

) k∈ {0,1· · ·m}

This may be thought of as drawingn balls from an urn containingmwhite balls
and N−m black balls, whereX represents the number of white balls in the
sample.

(vi) Poisson Distribution, the random variable takes values inN,

P(X = k) =
λ k

k!
e−k, k = 0,1,2, . . .

Continuous Random Variables.

In this case every random variable has a pdf and we will specify this function di-
rectly.

(i) Uniform Distribution[a,b], the random variable represents the position of a
point taken at random (without any preference) within the interval[a,b].

3 this is the idea of independence which we will discuss a bit later
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f (x) =

{ 1
b−a , if x∈ [a,b]

0 ,otherwise

(ii) Exponential Distribution(θ )

f (x) =
1
θ

e−x/θ , x≥ 0

(iii) Normal Distribution(µ ,σ )

f (x) =
1√

2πσ2
e
−(x−µ)2

2σ2 , x∈ R

There are many more distributions, for our purpose the few presented will suffice.

A special random variable: Diraç Delta distribution

For a fixeda real number, consider the following distribution function:

Fδ (x) =

{
0 if x < a

1 if x≥ a

Fig. 2.1 A distribution func-
tion.

a

[

)

1

This function is plotted in Figure2.1. Note that the function has all the proper-
ties of a distribution function (increasing, right continuous and limited by 0 and 1).
However, the function is not derivable (the distribution does not have a pdf).

The random variable with this distribution is called a Dirac¸ impulse function at
a. It can only be described using measures. We will come back tothis function
when we develop the integration theory but for now let us say that if we define the
associated set function:

δ{a}(A) =

{
1 if a∈ A
0 otherwise
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this is in fact a probability measure with the property:
∫ ∞

−∞
f (x)dδ{a}(x) = f (a), for all continuous functionsf

This will be written later asEδ{a} [ f ] = f (a). (In other sciences:δ{a}( f ) = f (a)).
Also note thatδ{a}(A) is a set function (a is fixed) and has the same value as the

indicator1A(a) which is a regular function (A is fixed).

2.2 Existence of random variables with prescribed distribution.
Skorohod representation of a random variable

In the previous section we have seen that any random variablehas a distribution
functionF , what is called in other classes the c.d.f. Recall the essential properties
of this function from Proposition2.1 on page36: right-continuity, increasing, tak-
ing values between 0 and 1. An obvious question is given a function F with these
properties can we construct a random variable with the desired distribution?

In fact yes we can and this is the first step in a very important theorem we shall
see later in this course: the Skorohod representation theorem. However, recall that
a random variable has to have as domain some probability space. It actually is true
that we can construct random variables with the prescribed distribution on any space
but recall that the purpose of creating random variables wasto have a uniform way
of treating probability. It is actually enough to give the Skorohod’s construction on
the probability space([0,1],B([0,1]),λ ), whereλ is the Lebesque measure.

On this space define the following random variables:

X+(ω) = inf{z∈ R : F(z) > ω}
X−(ω) = inf{z∈ R : F(z)≥ ω}

Note that in statisticsX− would be called theω-quantile of the distributionF .
For most of the outcomesω the two random variables are identical. Indeed, if

at z with ω = F(z) the functionF is non-constant then the two variables take the
same valuesX+(ω) = X−(ω) = z. The two important cases when the variables take
different values are depicted in Figure2.2.

We need to show that the two variables have the desired distribution. To this end
let x∈ R. Then we have:

{ω ∈ [0,1] : X−(ω)≤ x}= [0,F(x)]

Indeed, if ω is in the left set thenX−(ω) ≤ x. By the definition ofX− then
ω ≤ F(x) and we have the inclusion⊆. If on the other handω ∈ [0,F(x)] then
ω ≤ F(x) and again by definition and right continuity ofF , X−(ω) ≤ x, thus we
obtain⊇. Therefore, the distribution is:
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X +(ϖ) X (ϖ)
_

=

ϖ

0

1

(a) A point of discontinuity forF

X +(ϖ)X (ϖ)
_

ϖ

0

1

z

(b) An interval where the functionF is constant

Fig. 2.2 Points where the two variablesX± may have different outcomes

λ ({ω ∈ [0,1] : X−(ω)≤ x}) = λ ([0,F(x)]) = F(x)−0 = F(x).

Finally, X+ also has distribution functionF and furthermore:

λ (X+ 6= X−) = 0.

By definition ofX+:

{ω ∈ [0,1] : X−(ω)≤ x} ⊇ [0,F(x)),

and soλ (X+ ≤ x)≥ F(x). Furthermore, sinceX− ≤ X+ we have:

{ω ∈ R : X−(ω) 6= X+(ω)}=
⋃

x∈Q

{ω ∈ R : X−(ω)≤ x < X+(ω)}

But for every suchx∈Q:

λ ({ω ∈R : X−(ω)≤ x< X+(ω)}) = λ ({X− ≤ x}\{X+≤ x})≤ F(x)−F(x) = 0

SinceQ is countable and any countable union of null sets is a null setthe result
follows.

2.3 Independence

In this section we extend the idea of independence originally defined for events to
random variables. In order to do this we have to explain the joint distribution of
several variables.
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Example 2.5 (The idea of joint distribution).Suppose 2 pointsξ1,ξ2 are tossed at
random and independently onto a line segment of lengthL (ξ1, ξ2 are i.i.d.). What
is the probability that the distance between the 2 points does not exceed 1?

Solution 2.4 (Solution).If L≤ 1 then the probability is trivially equal to 1.
Assume thatL > 1 (the following also works if 1 is substituted by al ≤ L). What

is the distribution ofξ1 and ξ2? They are bothUni f [0,L]. We want to calculate
P(|ξ1− ξ2| ≤ 1).

Fig. 2.3 The area we need to
calculate. The blue parts need
to be deleted.
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We plot the surface we need to calculate in Figure2.3. The area within the rect-
angle and not shaded is exactly the area we need. If we pick anypoint from within
this area it will have the property that|ξ1− ξ2| ≤ 1. Since the points are chosen
uniformly from within the rectangle the chance of a point being chosen is the ratio
between the “good” area and the total area.

The unshaded area from within the rectangle is:L2− (L−1)2

2 − (L−1)2

2 = 2L−1.
Therefore, the desired probability is:

P(|ξ1− ξ2| ≤ 1) =
2L−1

L2 .

⊓⊔

This geometrical proof works because the distribution is uniform and furthermore
the points are chosen independently of each other. However if the distribution is
anything else we need to go through the whole calculation. Weshall see how to
do this after we define joint probability. We need this to define the independence
concept.
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2.3.1 Joint distribution

We talked aboutσ -algebras in Chapter1. Let us come back to them. If there is
any hope of rigorous introduction into probability and stochastic processes, they are
unavoidable. Later, when we will talk about stochastic processes we willfind out
the crucial role they play in quantifying the information available up to a certain
time. For now let us play a bit with them.

Definition 2.7 (σ -algebra generated by a random variable).For a r.v.X we de-
fine theσ -algebra generated by X, denotedσ(X) or sometimeFX , the smallest
σ -field G such thatX is measurable on(Ω ,G ). It is the σ -algebra generated by
the pre-images of Borel sets throughX (recall that we have already presented this
concept earlier in definition1.3on page9). Because of this we can easily show4:

σ(X) = σ({ω |X(ω)≤ x}, asx varies inR).

Similarly, given X1,X2, . . . ,Xn random variables, we define the sigma algebra
generated by them as the smallest sigma algebra such that allare measurable with
respect to it. It turns out we can show easily that it is the sigma algebra generated by
the union of the individual sigma algebras or put more specifically σ(Xi , i ≤ n) is the
smallest sigma algebra containing allσ(Xi), for i = 1,2, . . . ,n, or σ(X1)∨σ(X2)∨
·· ·∨σ(Xn), again recall proposition1.2on page10.

In Chapter1 we defined Borel sigma algebras corresponding to any spaceΩ .
We consider the special case whenΩ = Rn. This allows us to define a random
vector on(Rn,B(Rn),P) as (X1,X2, . . . ,Xn) where eachXi is a random variable.
The probabilityP is defined onB(Rn).

We can talk about its distribution (the”joint distribution” of the variables
(X1,X2, . . . ,Xn)) as the function:

F(x1,x2, . . . ,xn) = P◦ (X1,X2, . . . ,Xn)
−1 ((−∞,x1]×·· ·× (−∞,xn])

= P(X1≤ x1,X2≤ x2, . . . ,Xn≤ xn),

which is well defined for anyx = (x1,x2, . . . ,xn) ∈Rn

In the special case whenF can be written as:

F(x1,x2, . . . ,xn) =

∫ x1

−∞

∫ x2

−∞
· · ·
∫ xn

−∞
fX(t1, · · · ,tn)dt1 · · ·dtn,

we say that the vectorX has ajoint densityand fX is the joint probability density
function of the random vectorX.

4 Remember that the Borel sets are generated by intervals of the type(−∞,x]
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Definition 2.8 (Marginal Distribution). Given the joint distribution of a random
vectorX = (X1,X2, . . . ,Xn) we define the marginal distribution ofX1:

FX1(x1) = lim
x2→∞

...
xn→∞

FX(x1 · · ·xn)

and similarly for all the other variables.5

2.3.2 Independence of random variables

We can now introduce the notions of independence and joint independence using
the definition in Section1.3, the probability measure= P◦ (X1,X2, . . . ,Xn)

−1 and
any Borel sets. Writing more specifically that definition is transformed here:

Definition 2.9. The variables(X1,X2, . . . ,Xn, . . .) are independent if for every subset
J = { j1, j2, . . . , jk} of {1,2,3, . . .} we have:

P
(
Xj1 ≤ x j1,Xj2 ≤ x j2, . . . ,Xjk ≤ x jk

)
= ∏

j∈J
P(Xj ≤ x j)

Remark 2.3.The formula in the Definition2.8allows to obtain the marginal distri-
butions from the joint distribution. The converse is generally false meaning that if
we know the marginal distributions we cannot regain the joint.

However, there is one case when this is possible: whenXi are independent. In
this caseFX(x) = ∏n

i=1FXi (xi). That is why the i.i.d case is the most important in
probability (we can regain the joint from the marginals without any other special
knowledge).

Independence (specialized cases)

(i) If X andY are discrete r.v.’s with joint probability mass functionpX,Y(·, ·) then
they are independent if and only if

pX,Y(x,y) = pX(x)pY(y), ∀x,y

(ii) If X andY are continuous r.v.’s with joint probability density function f then
they are independent if and only if

fX,Y(x,y) = fX(x) fY(y), ∀x,y

where we used obvious notations for marginal distributions. The above definition
can be extended ton dimensional vectors in an obvious way.

5 We can also define it simpler as
∫ x1
−∞
∫ ∞
−∞· · ·

∫ ∞
−∞ fX(t1, · · · , tn)dt1 · · ·dtn if the joint pdf exists.
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I.I.D. r.v. ’s: (Independent Identically Distributed Random Variables). Many of
the central ideas in probability involve sequences of random variables which
are independent and identically distributed. That is a sequence of random vari-
ables{Xn} such thatXn are independent and all have the same distribution
function sayF(x).

Finally, we answer the question we asked in the earlier example: What to do if
the variablesξ1, ξ2 are not uniformly distributed?

Suppose thatξ1 had distributionFξ1
andξ2 had distributionFξ2

. Assuming that
the two variables are independent we obtain the joint distribution:

Fξ1ξ2
(x1,x2) = Fξ1

(x1)Fξ2
(x2)

(If they are not independent we have to be given or infer the joint distribution).
The probability we are looking for is the area of the surface

{(ξ1,ξ2)|ξ1 ∈ [0,L],ξ2 ∈ [0,L],ξ1−1≤ ξ2≤ ξ1 +1} .

We shall find out how to calculate this probability using general distribution func-
tionsFξ1

andFξ2
in the next chapter. For now let us assume that the two variables

have densitiesf1 and f2. Then, the desired probability is:

∫ L

0

∫ L

0
1{x1−1≤x2≤x1+1}(x1,x2) fξ1

(x1) fξ2
(x2)dx1dx2

which can be further calculated:

• WhenL−1 < 1 or 1< L < 2:
∫ L−1

0

∫ x1+1

0
fξ1

(x1) fξ2
(x2)dx2dx1 +(2−L)L+

∫ L

1

∫ L

x1−1
fξ1

(x1) fξ2
(x2)dx2dx1

• WhenL−1 > 1 orL > 2:

∫ 1

0

∫ x1+1

0
fξ1

(x1) fξ2
(x2)dx2dx1 +

∫ L−1

1

∫ x1+1

x1−1
fξ1

(x1) fξ2
(x2)dx2dx1

+
∫ L

L−1

∫ L

x1−1
fξ1

(x1) fξ2
(x2)dx2dx1

Above is given to remind about the calculation of a two dimensional integral.
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2.4 Functions of random variables. Calculating distributions

Measurable functions allow us to construct new random variables. These new ran-
dom variables possess their own distribution. This sectionis dedicated to calculating
this new distribution. At this time it is not possible to workwith abstract spaces (for
that we will give a general theorem - the Transport formula inthe next chapter) so
all our calculations will be done inRn.

One dimensional functions

Let X be a random variable defined on some probability space(Ω ,F ,P). Let g :
R −→ R be a Borel measurable function. LetY = g(X) which is a new random
variable. Its distribution is deduced as:

P(Y ≤ y) = P(g(X)≤ y) = P(g(X) ∈ (−∞,y]) = P
(
X ∈ g−1((−∞,y])

)

= P
(
{ω : X(ω) ∈ g−1((−∞,y])}

)

whereg−1((−∞,y]) is the preimage of(−∞,y] through the functiong, i.e.,:

{x∈R : g(x)≤ y}.

If the random variableX has p.d.ff then the probability has a simpler formula:

P(Y ≤ y) =

∫

g−1(−∞,y]
f (x)dx

Example 2.6.Let X be a random variable distributed as a Normal (Gaussian) with
mean zero and variance 1,X ∼ N(0,1). Let g(x) = x2, and takeY = g(X) = X2.
Then:

P(Y ≤ y) = P(X2≤ y) =

{
0 if y < 0
P(−√y≤ X ≤√y) if y≥ 0

Note that the preimage of(−∞,y] through the functiong(x) = x2 is either /0 if
y < 0 or [−√y,

√
y] if y≥ 0. This is how we obtain above. In the nontrivial case

y≥ 0 we get:

P(Y ≤ y) = Φ(
√

y)−Φ(−√y) = Φ(
√

y)− [1−Φ(
√

y)] = 2Φ(
√

y)−1,

whereΦ is the c.d.f ofX, aN(0,1) random variable. In this caseΦ(x)=
∫ x
−∞

1√
2π

e−t2/2dt.
Since the functionΦ is derivableY has a p.d.f. which can be obtained:
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fY(y) =
d
dy

[2Φ(
√

y)] = 2Φ ′(
√

y)
1

2
√

y

=
1√
y

Φ ′(
√

y) =
1√
y

1√
2π

e−y/2

=
1√
2πy

e−y/2

⊓⊔

We note that a random variableY with the p.d.f. described above is said to have
a chi-squared distribution with one degree of freedom (the notation isχ2

1).

Two and more dimensional functions

If the variableX does not have a p.m.f or a p.d.f there is not much we can do. The
same relationship holds as in the 1 dimensional case. Specifically, if X is a n-dim
random vector andg : Rn −→ Rn is a measurable function which defines a new
random vectorY = g(X) then its distribution is determined using:

P(Y ≤ y) = P(g(X)≤ y) = P
(
{ω : X(ω) ∈ g−1((−∞,y])}

)

and this is the same relationship as before.
In the case when the vectorX has a density then things become more specific.

We will exemplify usingR2 but the same calculation works inn dimensions with no
modification (other than the dimension of course). Suppose that a two dimensional
random vector(X1,X2) has joint densityf . Let g : R2−→R2 be a measurable func-
tion:

g(x1,x2) = (g1(x1,x2),g2(x1,x2))

Suppose first that the functiong is one-to-one6

Define a random vectorY = (Y1,Y2) = g(X1,X2). First we find the support set of
Y (i.e. the points whereY has nonzero probability). To this end let

A= {(x1,x2) : f (x1,x2) > 0}
B = {(y1,y2) : y1 = g1(x1,x2) andy2 = g2(x1,x2), for some(x1,x2) ∈A}

ThisB is the image ofA throughg, it is also the support set ofY. Sinceg is one-
to-one, when restricted tog :A→B it is also surjective, therefore forms a bijection
betweenA andB. Thus, the inverse functiong−1(y1,y2) = (g−1

1 (y1,y2),g
−1
2 (y1,y2))

is a unique, well defined function.

6 this is why we use the same dimensionn for bothX andY vectors



2.4 Functions of random variables. Calculating distributions 51

To calculate the density ofY we need the derivative of thisg−1 and that role
is played by the Jacobian of the transformation (the determinant of the matrix of
partial derivatives):

J = Jg−1(y1,y2) =

∣∣∣∣∣∣

∂g−1
1

∂y1
(y1,y2)

∂g−1
2

∂y1
(y1,y2)

∂g−1
1

∂y2
(y1,y2)

∂g−1
2

∂y2
(y1,y2)

∣∣∣∣∣∣

Then, the joint p.d.f. of the vectorY is given by:

fY(y1,y2) = f
(
g−1

1 (y1,y2),g
−1
2 (y1,y2)

)
|J| 1B(y1,y2)

where we used the indicator notation and|J| is the absolute value of the Jacobian.

Suppose that the functiong is not one-to-one

In this case we recover the previous one-to-one case by restricting the func-
tion. Specifically, define the setsA andB as before. Now, the restricted function
g : A→ B is surjective. We partitionA into A0,A1,A2, . . . ,Ak. The setA0 may
contain several points which are difficult to deal with, the only condition is that
P((X1,X2) ∈ A0) = 0 (it is a null set). Furthermore, for alli 6= 0, each restric-
tion g : Ai → B is one-to one. Thus, for each suchi ≥ 1, an inverse can be found
g−1

i (y1,y2) = (g−1
i1 (y1,y2),g

−1
i2 (y1,y2)). This i-th inverse gives for any(y1,y2) ∈B a

unique(x1,x2) ∈ Ai such that(y1,y2) = g(x1,x2). Let Ji be the Jacobian associated
with the i-th inverse transformation. Then the joint p.d.f. ofY is:

fY(y1,y2) =
k

∑
i=1

f
(
g−1

i1 (y1,y2),g
−1
i2 (y1,y2)

)
|Ji | 1B(y1,y2)

Example 2.7.Let (X1,X2) have some joint p.d.f.f (·, ·). Calculate the density of
X1X2.

Let us takeY1 = X1X2 andY2 = X1 i.e. g(x1,x2) = (x1x2, x1) = (y1,y2). The
function thus constructedg : R2→R2 is bijective soB= R2. To calculate its inverse:

x1 = y2

x2 =
y1

x1
=

y1

y2
,

which gives:

g−1(y1,y2) =

(
y2,

y1

y2

)

We then get the Jacobian:



52 2 Random Variables

Jg−1(y1,y2) =

∣∣∣∣∣
0 1

y2

1 − y1
y2
2

∣∣∣∣∣= 0− 1
y2

=− 1
y2

Thus, the joint p.d.f ofY = (Y1,Y2) is:

fY(y1,y2) = f

(
y2,

y1

y2

)∣∣∣∣
1
y2

∣∣∣∣ ,

where f is the given p.d.f. ofX. To obtain the distribution ofX1X2 = Y1 we simply
need the marginal p.d.f. obtained immediately by integrating outY2:

fY1(y1) =
∫ ∞

−∞
f

(
y2,

1
y2

)
· 1
|y2|

dy2

⊓⊔

Example 2.8 (A more specific example).Let X1, X2 be independent Exp(λ ). Find the
joint density ofY1 = X1+X2 andY2 = X1

X2
. Also show that the variablesY1 andY2 are

independent.

Let g(x1,x2) =
(

x1 +x2,
x1
x2

)
= (y1,y2). Let us calculate the domain of the trans-

formation.
Remember that the p.d.f of the exponential distribution is:

f (x) = λe−λ x1(0,∞)(x),

thusA = (0,∞)× (0,∞). Sincex1,x2 > 0 we get thatx1 + x2 > 0 and x1
x2

> 0, and

soB = (0,∞)2 as well. The functiong restricted to this sets is bijective as we can
easily show by solving the equations:y1 = x1 +x2 andy2 = x1

x2
. We obtain:

x1 = x2y2⇒ y1 = x2y2 +x2

⇒ x2 =
y1

1+y2

⇒ x1 =
y1y2

1+y2

Since the solution is unique the functiong is one-to-one. Since the solution exists
for all (y1,y2) ∈ (0.∞)2 the function is surjective. Its inverse is precisely:

g−1(y1,y2) =

(
y1y2

1+y2
,

y1

1+y2

)

Furthermore, the Jacobian is:

Jg−1(y1,y2) =

∣∣∣∣∣

y2
1+y2

1
1+y2y1

(1+y2)2 − y1
(1+y2)2

∣∣∣∣∣=−
y1y2

(1+y2)3 −
y1

(1+y2)3 =− y1

(1+y2)2
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Thus the desired p.d.f is:

fY(y1,y2) = f

(
y1y2

1+y2
,

y1

1+y2

)∣∣∣∣−
y1

(1+y2)2

∣∣∣∣1(y1,y2)∈(0,∞)2

= λe
−λ y1y2

1+y2 λe
− y1

1+y2
y1

(1+y2)2 1{y1,y2>0}

= λ 2e−λ y1
y1

(1+y2)2 1{y1,y2>0}

Finally, to end the example it is enough to recognize that thep.d.f. of Y can be
decomposed into a product of two functions, one of them only in the variabley1 and
the other only a function of the variabley2. Thus, if we apply the next lemma the
example is solved. ⊓⊔

Lemma 2.2.If the joint distribution f of a random vector(X,Y) factors as a product
of functions of only x and y, i.e., there exist g,h : R→R such that f(x,y) = g(x)h(y)
then the variables X,Y are independent.

Proof. Problem2.12.

Example 2.9.Let X, Y be two random variables with joint p.d.f.f (·, ·). Calculate
the density ofX +Y.

Let (U,V) = (X +Y,Y). We can easily calculate the domain and the inverse
g−1(u,v) = (u−v,v). The Jacobian is:

Jg−1(u,v) =

∣∣∣∣
1 −1
0 1

∣∣∣∣= 1

As a result the desired p.d.f. is:

fU(u) =

∫ ∞

−∞
f (u−v,v)dv

We will observe this particular example later when we talk about convolutions.

Example 2.10.Let X1 andX2 be i.i.d.N(0,1) random variables. Consider the func-

tion g(x1,x2) =
(

x1
x2

, |x2|
)

. Calculate the joint distribution ofY = g(X) and the dis-

tribution of the ratio of the two normals:X1/X2.

First,A = R2 andB = R× (0,∞). Second, note that the transformation is not
one-to-one. Also note that we have a problem whenx2 = 07. Fortunately, we know

7 0 is inA since fX2(0) > 0
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how to deal with this situation. Take a partition ofA as follows:

A0 = {(x1,0) : x1 ∈ R}, A1 = {(x1,x2) : x2 < 0}, A1 = {(x1,x2) : x2 > 0}.

A0 has the desired property sinceP((X1,X2) ∈ A0) = P(X2 = 0) = 0 (X2 is a
continuous random variable). Restricted to eachAi the functiong is bijective and
we can calculate its inverse in both cases:

g−1
1 (y1,y2) = (−y1y2,−y2)

g−1
2 (y1,y2) = (y1y2,y2)

In either case the Jacobian is identicalJ1 = J2 = y2. Using the p.d.f. of a normal with
mean zero and variance 1 (f (x) = 1√

2π e−x2/2), and thatX1 andX2 being independent
the joint p.d.f. is the product of marginals we obtain:

fY(y1,y2) =

(
1

2π
e−(−y1y2)

2/2e−(−y2)
2/2|y2|+

1
2π

e−(y1y2)2/2e−(y2)
2/2|y2|

)
1{y2>0}

=
y2

π
e−

(y2
1+1)y2

2
2 1{y2>0}, y1 ∈ R,

and this is the desired joint distribution. To calculate thedistribution ofX1/X2 we
calculate the marginal ofY1 by integrating outy2:

fY1(y1) =

∫ ∞

0

y2

π
e−

(y2
1+1)y2

2
2 dy2 ( Change of variablesy2

2 = t)

=

∫ ∞

0

1
2π

e−
(y2

1+1)

2 tdt =
1

2π
2

y2
1 +1

=
1

π(y2
1+1)

, y1 ∈R

But this is the distribution of a Cauchy random variable. Thus we have just proven
that the ratio of two independentN(0,1) rv’s has a Cauchy distribution. ⊓⊔

We conclude this chapter with a non-trivial application of the Borel-Cantelli lem-
mas. We have postponed this example until this point since weneeded to learn about
independent random variables first.

Example 2.11.Let {Xn} a sequence of i.i.d. random variables, each exponentially
distributed with rate 1, i.e.:

P(Xn > x) = e−x, x > 0.

We wish to study how large are these variables whenn→ ∞. To this end take
x = α logn, for someα > 0 and for anyn≥ 1. Substitute into the probability above
to obtain:



2.4 Functions of random variables. Calculating distributions 55

P(Xn > α logn) = e−α logn = n−α =
1

nα .

But we know that the sum∑n
1

nα is divergent for the exponentα ≤ 1 and convergent
for α > 1. So we can apply the Borel-Cantelli lemmas since the eventsin question
are independent. Thus,

If α ≤ 1 the sum is divergent and so∑nP(Xn > α logn) = ∞, thus:

P
(

Xn

logn
> α i.o.

)
= 1

If α > 1 the sum is convergent, and∑nP(Xn > α logn) < ∞, thus:

P
(

Xn

logn
> α i.o.

)
= 0

We can express the same thing in terms of limsup like so:

P
(

limsup
n

Xn

logn
> α

)
=

{
0 , if α > 1

1 , if α ≤ 1

Since for allα ≤ 1 we have thatP
(

limsupn
Xn

logn > α
)

= 1, then we necessarily

have:

P
(

limsup
n

Xn

logn
≥ 1

)
= 1

Takeα = 1+ 1
k and look at the other implication:P

(
limsupn

Xn
logn > 1+ 1

k

)
= 0,

and this happens for allk∈ N, . But we can write:
{

limsup
n

Xn

logn
> 1

}
=
⋃

k∈N

{
limsup

n

Xn

logn
> 1+

1
k

}
,

and since any countable union of null sets is itself a null set, the probability of the
event on the left must be zero. Therefore, limsupn

Xn
logn ≤ 1 a.s. and combining with

the finding above:

limsup
n

Xn

logn
= 1, a.s.

This is very interesting since as we will see in the chapter dedicated to the Poisson
process, theseXn are the inter-arrival times of this process. The example above tells
us that if we look at the realizations of such a process then they form a sequence of
numbers that has the upper limiting point equal to 1, or put differently there is no
subsequence of inter-arrival times that in the limit is greater than the logn.
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Problems

2.1.Prove the Proposition2.1. That is prove that the functionF in Definition 2.4
is increasing, right continuous and taking values in the interval [0,1], using only
proposition1.3on page13.

2.2.Show that any piecewise constant function is Borel measurable. (see description
of piecewise constant functions in Definition2.6

2.3.Give an example of two distinct random variables with the same distribution
function.

2.4. Buffon’s needle problem.
Suppose that a needle is tossed at random onto a plane ruled with parallel lines a
distanceL apart, where by a “needle” we mean a line segment of lengthl ≤ L.
What is the probability of the needle intersecting one of theparallel lines?

Hint: Consider the angle that is made by the needle with the parallel lines as a
random variableα uniformly distributed in the interval[0,2π ] and the position of
the midpoint of the needle as another random variableξ also uniform on the interval
[0,L]. Then express the condition “needle intersects the parallel lines” in terms of
the position of the midpoint of the needle and the angleα. Do a calculation similar
with example2.5.

2.5.A random variableX has distribution function

F(x) = a+barctan
x
2

,−∞ < x < ∞

Find:
a) The constantsa andb
b) The probability density function ofX

2.6.What is the probability that two randomly chosen numbers between 0 and 1
will have a sum no greater than 1 and a product no greater than15

64?

2.7.We know that the random variablesX andY have joint densityf (x,y). Assume
thatP(Y = 0) = 0. Find the densities of the following variables:
a)X +Y
b) X−Y
c) XY
d) X

Y

2.8.Choose a pointA at random in the interval[0,1]. Let L1 (respectivelyL2) be
the length of the bigger (respectively smaller) segment determined by A on[0,1].
Calculate:
a)P(L1 ≤ x) for x∈ R.
b) P(L2 ≤ x) for x∈R.
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2.9.Two friends decide to meet at the Castle gate of Stevens Institute. They each
arrive at that spot at some random time betweena anda+ T. They each wait for
15 minutes then leave if the other did not appear. What is the probability that they
meet?

2.10.LetX1,X2, . . . ,Xn be independentU(0,1) random variables. LetM = max1≤i≤nXi .
Calculate the distribution function ofM.

2.11.The random variable whose probability density function is given by:

f (x) =

{
1
2λeλ x , if x≤ 0
1
2λe−λ x , if x > 0,

is said to have a Laplace, sometimes called adouble exponential, distribution.
a) Verify that the density above defines a proper probabilitydistribution.
b) Find the distribution functionF(x) for a Laplace random variable.

Now, let X andY be independent exponential random variables with parameter λ .
Let I be independent ofX andY and equally likely to be 1 or−1.

c) Show thatX−Y is a Laplace random variable.
d) Show thatIX is a Laplace random variable.
e) Show thatW is a Laplace random variable where:

W =

{
X , if I = 1

−Y , if I =−1.

2.12.Give a proof of the lemma2.2on page53.


