Chapter 2
Random Variables

All the definitions with sets presented in Chapteare consistent, however if we
wish to calculate and compute numerical values related stradt spaces we need
to standardize the spaces. The first step is to give the foltpdefinition.

Definition 2.1 (Measurable Function (m.f.)).Let (Q1,.%1), (Q2,.%2) be two mea-
surable spaces. Ldt: Q; — Q, be a functionf is called a measurable function
if and only if for any seB € .%, we havef*l(B) € ;. The inverse function is a
set function defined in terms of the pre-image. Explicitty, & given seB € %5,

f1(B)={w € Q1: f(w) € B}

Note: This definition makes it possible to extend probability meas to other
spaces. For instance, létbe a measurable function and assume that there exists a
probability measur®; on the first spacéQ;,.#1). Then we can construct a proba-
bility measure on the second spdce,,.%,) by (Q2,.%,P1 0 f*l). Note that since
f is measurablé —1(B) is in .%1, thusPy o f ~1(B) = Py(f~%(B)) is well defined.

Reduction toR. Random variables

Definition 2.2. Any measurable function with codomaif,, .%,) = (R, A(R)) is
called a random variable.

ConsequenceSince the Borel sets iR are generated by—,x| then we can
have the definition of a random variable directly by:

f: Q1 — Rsuch thatf "1(—w,x € .Z or {w: f(w) <x} € .Z,¥xeR.

We shall sometimes usé(w) < x to denotef~%(—o,x). Traditionally, the
random variables are denoted with capital letters from thé ef the alphabet
X,Y,Z,... and their values are denoted with corresponding smalftettg, z,. ...
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36 2 Random Variables

Definition 2.3 (Distribution of Random Variable). Assume that on the measur-
able spac€Q,.#) we define a probability measuReso that it becomes a proba-
bility space(Q,.7,P). If a random variabl&X : Q — R is defined then we call its
distribution, the set functiop defined on the Borel sets &: .Z(R), with values in
[0,1]:

u(B) =P({w:X(w) € B}) =P (X !(B)) =PoX *(B)

Remark 2.1First note that the measuye is defined on sets iR and takes val-
ues in the interval0, 1]. Therefore, the random variabXeallows us to apparently
eliminate the abstract spac® However, this is not the case since we still have to
calculate probabilities using in the definition ofu above.

However, there is one simplification we can make. If we rettediresult of the
exercisesl.6 andl.7, we know that all Borel sets are generated by the same type
of sets. Using the same idea as before it is enough to deduoilveto calculate
u for the generators. We could of course specify any type otgming sets we
wish (open sets, closed sets, etc) but it turns out the sshplay is to use sets of
the form(—e0,X], since we only need to specify one end of the interval (therath
always—oo). With this observation we only need to specify the meagugePo X1
directly on the generators to completely characterize thbahility measure.

Definition 2.4. [The distribution function of a random variable] The distriion
function of a random variabl¥ is F : R — [0, 1] with:

F(X) = p(—0,X =P({w: X(w) € (—o,X}) = P({w: X(w) <x})

But wait a minute, this is exactly the definition of the cuniivia distribution
function (cdf) which you can find in any lower level probatyilclasses. It is ex-
actly the same thing except that in an effort to dumb down (ffromvever opinion
it was to teach the class that way) the meaning is lost and weotgroceed with
more complicated things. From the definition above we caudedll the elemen-
tary properties of the cdf that you have learned (right-cuity, increasing, taking
values between 0 and 1). In fact let me ask you to prove thizeéncése .

Proposition 2.1.The distribution function for any random variable X has tbé f
lowing properties:

(i) F is increasing (i.e. if x< y then F(x) < F(y))*
(ii) F is right continuous (i.elimp o F (x+h) = F(x))
(iii)) limy__oF(x) =0andlimy_.F(x)=1

Example 2.1 (Indicator random variabldRecall the indicator function from Def-
inition 1.10. Let 15 be the indicator function of a sé& C Q. This is a function

1 In other math books a function with this property is callechutecreasing. | do not like the
negation and | prefer to call a function like this increasimgh the distinction that a function
with the following propertyx <y impliesF (x) < F(y) is going to be called atrictly increasing
function
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defined onQ with values inR. Therefore, it may be a random variable. According
to the definition it is a random variable if the function is reeable. It is simple
to show that this happens if and onlyAfe .% the g-algebra associated with the
probability space. Assuming thate .%, what is the distribution function of this
random variable?

According to the definition we have to calcul&@e1,*((—o,x]) for anyx. How-
ever, the function A only takes two values 0 and 1. We can calculate immediately:

0 ,ifx<O
L ((—o0, X)) =< A° | if xe[0,1).
Q ,ifx>1
Therefore,
0 ,ifx<0
F(x)= < P(A®) |ifxe[0,1).
1 ,ifx>1

Proving the following lemma is elementary using the prapsrmf the probability
measure (Propositioh.3) and is left as an exercise.

Lemma 2.1.Let F be the distribution function of X. Then:

() P(X=x) =1-F(x)

(i) P(x< X <y) =F(x) = F(y)

(i) P(X =x) = F(x) — F(x—), where fx—) = limy ~F(y) the left limit of F

at x.

Above, we define a random variable as a measurable functithcsdomain
(R,%2(R)). A more specific case is obtained when the random variabléhleago-
main also equal tdR,.Z(R)). In this case the random variable is called a Borel
function.

Definition 2.5 (Borel measurable function).A functiong: R — R is called Borel
(measurable) function @ is a measurable function fro(®R, Z(R)) into (R, Z(R)).

Example 2.2Show that any continuous functign R — R is Borel measurable.

Solution 2.1.This is very simple. Recall that the Borel sets are genetayenpen
sets. So it is enough to see what happens to the pre-imagepdraseB. But g
is a continuous function therefoge(B) is an open set and thgs*(B) € Z(R).
Therefore by definitiory is Borel measurable.

2.1 Discrete and Continuous Random Variables

Definition 2.6 (pdf pmf and all that). Note that the distribution functiol always
exists. In general the distribution functiénis not necessarily derivable. However,
if itis, we call its derivativef (x) the probability density functioigpdf):
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X
F(x):/ f(2)dz

Traditionally, a variable X with this property is callaccontinuous random variable

Furthermore ifF is piecewise constant (i.e., constant almost everywherai,
other words there exist a countable sequefaeay, ... } such that the functiof
is constant for every point except themé and we denotg; = F(a) — F(ai—),
then the collection ofy’s is the traditionalprobability mass functiorfpmf) that
characterizes discrete random variabfe

Remark 2.2Traditional undergraduate textbooks segregate betwesmete and

continuous random variables. Because of this segregdimnadre the only vari-

ables presented and it appears that all the random varial#esither discrete or
continuous. In reality these are the only types that can esgmted without follow-

ing the general approach we take here. The definitions wepted here cover any
random variable. Furthermore, the treatment of randomakbées is the same, no
more segregation.

Important. So what is the point of all this? What did we just accomplish here?

The answer is: we successfully moved from the abstract sffacé , P) to some-
thing perfectly equivalent but defined ¢R, %(R)). Because of this we only need
to define probability measures @hand show that anything coming from the orig-
inal abstract space is equivalent with one of these digidba onR. We have just
constructed our first model.

Example 2.3 (Indicator r.v. (continued)Jhis indicator variable is also called the
Bernoulli random variable. Notice that the variable onlges values 0 and 1 and
the probability that the variable takes the value 1 may b#yeeaculated using the
previous definitions:

Pol,1({1}) = P{w: 1a(w) = 1} = P(A).

Therefore the variable is distributed as a Bernoulli randanable with parame-
ter p= P(A). Alternately, we may obtain this probability using the poasly com-
puted distribution function:

P{w: 1a(w) =1} = F(1) - F(1-) = 1— P(A° = P(A)

Example 2.4Roll a six sided fair die. SaX(w) = 1 if the die shows 1¢ = 1),
X = 2 if the die shows 2, etc. Finl(x) = P(X < X).

Solution 2.2 (Solution).
If x<1thenP(X <x)=0

2 Again we used the notatiof(x—) for the left limit of functionF atx or in a more traditional
notation lim_y z«xF (2).
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If xe [1,2) thenP(X <x)=P(X=1)=1/6
If x € [2,3) thenP(X < x) = P(X(w) € {1,2}) =2/6

We continue this way to get:
Oifx<1
F(x) =14 i/6ifxefii+1)withi=15
lifx>6

Exercise 2.1 (Mixture of continuous and discrete random vaiable). Say a game
asks you to toss a coin. If the coin lands Tail you lose 13, iéHthen you draw a
number from[1,2] at random and gain that number. Furthermore, suppose that th
coins lands a Head with probabilify. Let X be the amount of money won or lost
after 1 game. Find the distribution of X.

Solution 2.3 (Solution).Let w = (i, w,) wherew, € {HeadTail} andw; in the
defining experiment space for the Uniform distribution. Nasfine a random vari-
ableY (wy) on the uniform[1,2] space. Then the random variaBles defined as:

-1 , if wy = Tall
(@) = o
Y(wp) if wn =Head

If xe [-1,1) we get:
P(X<x)=P(X=-1)=P(w =Tail) =1-p
If x € [1,2) we get:

PX<x)=P(X=-1orXe[1,x))=1—p+P(wn = headsY <Xx)

the two events are disjoint

=1-p+pP(Y€[1Xx))

Uniform[1,2]

X
=1-p+ |O/1 1dy=1-p+p(x—-1)
=1-2p+ px

Note that if the two parts of the game are not independentai-e¢her we cannot
calculate this distribution.
Finally, we obtain:

Oifx<—1
1-pifxe[-1,1)
1-2p+pxifxe[1,2)
lifx>2

F(x) =
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Checking that our calculation is corretitis always a good idea to check the re-
sult. We can verify the distribution function propertiesdave can plot the function
to confirm this.

Examples of commonly encountered Random Variables:

Discrete random variables

For discrete random variables we give the probability masstfon and it will de-
scribe completely the distribution (recall that the dimtition function is piecewise
linear).

(i) Bernoulli Distribution the random variable only takes two values:

X — 1 withP(X=1)=p
10 withP(X=0)=1-p
We denote a random variab¥ewith this distribution withX ~ Bernoulli(p).

(i) Binomialn, p) distribution the random variable takes valueNrwith:

P(X — k) — (1) p*(1—p)Kfor anyke€ {0,1,2,...,n}
0 otherwise
Note: X has the same distribution &g+ - - - Y, whereY; ~ Bernoulli(p)
We denote a random variab¥ewith this distribution withX ~ Binom(n, p).
(iii) Geometric(p) distributiorn

. [(@-pKlpforanyke {1,2---}
PX =k = { 0 otherwise
This is sometimes called Geometric “number of trials” disttion. We can also
talk about Geometric “number of failures distribution” wiution, defined:

PY —k—1) = { (1- p)k*18 foranyk € {1,2--}
otherwise
Most of the time when we writ¥X ~ Geometri¢p) we mean thaX has a Geo-
metric number of trials distribution. In the rare cases wiveruse the other one
we will specify very clearly.
(iv) Negative Binomialr, p) distribution

P(X =k) = (*H(a—p)*p foranyke {rr+1,...}
0 otherwise
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Similarly with theGeometri¢p) distribution we can talk about “number of fail-
ures” distribution, but I will not give that definition.

Let us stop for a moment and see where these distributionscanéng from.
Suppose we do a simple experiment, we repeat an experimenttimees. This ex-
periment only has two possible outcomes “success” withglodity p and “failure”
with probability 1— p.

e The variableX that takes value 1 if the experiment is a success and O otherwi
has aBernoulli(p) distribution.

e Repeat the experimenttimes in such a way that no experiment influences the
outcome of any other experimérand we count how many of therepetition
actually resulted in success. L¥tbe the variable denoting this number. Then
Y ~ Binom(n, p).

e If instead of repeating the experiment a fixed number of tinvesrepeat the
experiment as many times as are needed to see the first subessthe number
of trials needed is going to be distributed aSeometri¢p) random variable. If
we count failures until the first success we obtain@eometri¢p) “number of
failures” distribution.

e If we repeat the experiment until we sesuccesses, the number of trials needed
is aNegativeBinomidl, p)

(v) Hypergeometric distribution(N,m,n,p)
) (hi0)
[tlen)
N
(n)
This may be thought of as drawimgalls from an urn containing white balls
andN — m black balls, whereX represents the number of white balls in the

sample.
(vi) Poisson Distributionthe random variable takes valuesNn

P(X=k) = ke {0,1---m}

Continuous Random Variables.
In this case every random variable has a pdf and we will spéki§ function di-
rectly.

(i) Uniform Distribution[a,b], the random variable represents the position of a
point taken at random (without any preference) within thenval[a, bJ.

3 this is the idea of independence which we will discuss a bérla



42 2 Random Variables

l .
_ 5z, ifxelab)
9 = { 0 ,otherwise

(i) Exponential Distributio(8)
f(x) = %e*"/e, x>0

(iif) Normal Distributior{u, o)

1 ~(x=p)?
e 202

f(x) =

ot , XeR

There are many more distributions, for our purpose the f@sgmted will suffice.

A special random variable: Dira¢ Delta distribution

For a fixeda real number, consider the following distribution function

0 ifx<a
Fs(X) =
5 {1 ifx>a

Fig. 2.1 A distribution func-
tion.

This function is plotted in Figur@.1 Note that the function has all the proper-
ties of a distribution function (increasing, right contous and limited by 0 and 1).
However, the function is not derivable (the distributioredamot have a pdf).

The random variable with this distribution is called a Dirarpulse function at
a. It can only be described using measures. We will come badkisofunction
when we develop the integration theory but for now let us kay if we define the

associated set function: _
1ifacA

Ofa}(A) = {0 otherwise
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this is in fact a probability measure with the property:

/h f(X)ddya) (x) = f(a), forall continuous function$

This will be written later ag%= [f] = f(a). (In other sciencedy, (f) = f(a)).
Also note that,) (A) is a set functiond is fixed) and has the same value as the
indicatorla(a) which is a regular function/is fixed).

2.2 Existence of random variables with prescribed distribdion.
Skorohod representation of a random variable

In the previous section we have seen that any random varede distribution
functionF, what is called in other classes the c.d.f. Recall the esdgmbperties
of this function from Propositio2.1 on page36: right-continuity, increasing, tak-
ing values between 0 and 1. An obvious question is given atifum& with these
properties can we construct a random variable with the eésiistribution?

In fact yes we can and this is the first step in a very importaabdtem we shall
see later in this course: the Skorohod representationéheddowever, recall that
a random variable has to have as domain some probabilityesfiaactually is true
that we can construct random variables with the prescristdlalition on any space
but recall that the purpose of creating random variablestavagave a uniform way
of treating probability. It is actually enough to give thedghod’s construction on
the probability spacé0,1], %([0,1]),A), whereA is the Lebesque measure.

On this space define the following random variables:

XT(w) =inf{ze R:F(2) > w}
X (w)=inf{ze R:F(2) > w}

Note that in statisticX ™~ would be called theo-quantile of the distributiof.

For most of the outcome® the two random variables are identical. Indeed, if
at z with w = F(z) the functionF is non-constant then the two variables take the
same valueX ™ (w) = X~ (w) = z The two important cases when the variables take
different values are depicted in Figl2e

We need to show that the two variables have the desiredulitih. To this end
letx € R. Then we have:

{we[0,1]: X~ (w) <x} =[0,F(x)]

Indeed, ifw is in the left set therX ™ (w) < x. By the definition ofX~ then
w < F(x) and we have the inclusiofi. If on the other handv € [0,F(x)] then
w < F(x) and again by definition and right continuity Bf X~ (w) < x, thus we
obtainD. Therefore, the distribution is:
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1 1
Wr-——""""""- i Wr----"-""--
0 | 0
X" (@) =X (@) X (@) z X" (@)

(a) A point of discontinuity fof~ (b) An interval where the functioR is constant

Fig. 2.2 Points where the two variablée"™ may have different outcomes

A{we[0,1]: X~ (w) <x}) =A([0,F(x)]) = F(x) —0=F(x).
Finally, X also has distribution functiof and furthermore:
AXT#£XT)=0.
By definition of X *:
{wel0,1]: X (w) <x} D[0,F(x)),
and soA (X < x) > F(x). Furthermore, sinc¥~ < X* we have:

{weR: X (w) #X (W)} = [J{weR: X (w) <x< X (w)}
xeQ

But for every suchx € Q:
A{weR: X (w) <x< XT(@)})=A{X" <x}\{XT<x})<F(X)—F(x)=0

SinceQ is countable and any countable union of null sets is a nultteetesult
follows.

2.3 Independence

In this section we extend the idea of independence origiregfined for events to
random variables. In order to do this we have to explain tl jdistribution of
several variables.
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Example 2.5 (The idea of joint distributior§uppose 2 pointé;, &, are tossed at
random and independently onto a line segment of lehdify, &, are i.i.d.). What
is the probability that the distance between the 2 points do¢exceed 1?

Solution 2.4 (Solution).If L < 1 then the probability is trivially equal to 1.

Assume that > 1 (the following also works if 1 is substituted by & L). What
is the distribution ofé; and &? They are botinif[0,L]. We want to calculate
P(|&1— &2/ < 1).

Fig. 2.3 The area we need to g
calculate. The blue parts need 2
to be deleted.

L-1

1 L g,

We plot the surface we need to calculate in Fig2u& The area within the rect-
angle and not shaded is exactly the area we need. If we picka@iny from within
this area it will have the property thgf; — &»| < 1. Since the points are chosen
uniformly from within the rectangle the chance of a pointigechosen is the ratio
between the “good” area and the total area.

2

The unshaded area from within the rectangld.fs- % — % =2L-1.
Therefore, the desired probability is:

2L—-1
P(|€1—-&|<1) = Iz
O

This geometrical proof works because the distribution ifoum and furthermore
the points are chosen independently of each other. Howéke idistribution is
anything else we need to go through the whole calculation st see how to
do this after we define joint probability. We need this to defihe independence
concept.
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2.3.1 Joint distribution

We talked about-algebras in Chaptet. Let us come back to them. If there is
any hope of rigorous introduction into probability and s$tastic processes, they are
unavoidable Later, when we will talk about stochastic processes we finitl out
the crucial role they play in quantifying the information available wpa certain
time. For now let us play a bit with them.

Definition 2.7 (o-algebra generated by a random variable)For a r.v.X we de-
fine the o-algebra generated by X, denotedX) or sometimeZx, the smallest
o-field ¢ such thatX is measurable 0oiQ,¥). It is the g-algebra generated by
the pre-images of Borel sets through(recall that we have already presented this
concept earlier in definitioh.3on paged). Because of this we can easily sHow

0(X) = o({w|X(w) < x}, asx varies inR).

Similarly, given Xy, Xo,...,X, random variables, we define the sigma algebra
generated by them as the smallest sigma algebra such tlzaieatieasurable with
respect to it. It turns out we can show easily that it is thesiglgebra generated by
the union of the individual sigma algebras or put more sp=adlfi o (X;,i < n) is the
smallest sigma algebra containing allX;), fori =1,2,...,n, oro(X1) Vo(X2) Vv
.-+ 0(Xn), again recall propositioh.2on pagelO.

In Chapterl we defined Borel sigma algebras corresponding to any s@ace
We consider the special case whén= R". This allows us to define a random
vector on(R", Z(R"),P) as (X1,Xz,...,X%n) where eachX is a random variable.
The probabilityP is defined onZ(R").

We can talk about its distribution (tHgoint distribution” of the variables
(X1,X2,...,%n)) as the function:

F (X1, %2, ..., Xn) = Po (Xg,Xa,. .., Xn) " ((—00,Xq] X - -+ X (—00,%])
— P(Xl leaxz S X27-"7Xn S Xn)7

which is well defined for any = (x1,X,...,X,) € R"

In the special case whéhcan be written as:

X1 X Xn
F(xl,xz,...,xn):/ / fy (t1, -+ ,tn)dty - - dtn,

we say that the vectoX has ajoint densityand fx is the joint probability density
function of the random vectof.

4 Remember that the Borel sets are generated by intervale oyjle(—oo, x|



2.3 Independence a7

Definition 2.8 (Marginal Distribution). Given the joint distribution of a random
vectorX = (X1,Xp,...,%Xn) we define the marginal distribution f:

P (x1) = lim Fx(X1--%n)
Xn—s00

and similarly for all the other variablés.

2.3.2 Independence of random variables

We can now introduce the notions of independence and joid@pgandence using
the definition in Sectiorl.3, the probability measure: Po (X1, Xy, ... ,Xn)*1 and
any Borel sets. Writing more specifically that definitionrertsformed here:

Definition 2.9. The variable$X;, Xy, ..., Xn,...) are independent if for every subset
J={j1]2,...,Jk} 0f {1,2,3,... } we have:

P (Xjy < Xjp, Xip < Xjpy - Xjy <Xy ) = I_LP(XJ <X)
Je

Remark 2.3The formula in the Definitior2.8 allows to obtain the marginal distri-
butions from the joint distribution. The converse is geitgifalse meaning that if
we know the marginal distributions we cannot regain thetjoin

However, there is one case when this is possible: wkeare independent. In
this casex (x) = [iL; Fx (X). That is why the i.i.d case is the most important in
probability (we can regain the joint from the marginals with any other special
knowledge).

Independence (specialized cases)

(i) If X andY are discrete r.v.'s with joint probability mass functipry (-, -) then
they are independent if and only if

Px.y(X,Y) = px(X)pv(y), Xy

(i) If X andY are continuous r.v.'s with joint probability density furat f then
they are independent if and only if

fxy(xy) = fx(X)fy(y), Vxy

where we used obvious notations for marginal distributidriee above definition
can be extended todimensional vectors in an obvious way.

0

5 We can also define it simpler g8, [, -- [, fx(t1,---,tn)dt; - - -dt, if the joint pdf exists.
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I.I.D. r.v.’s: (Independent Identically Distributed Random Variaf)lélany of

the central ideas in probability involve sequences of ramdariables which
are independent and identically distributed. That is asege of random vari-
ables{X,} such thatX, are independent and all have the same distribution
function sayF (x).

Finally, we answer the question we asked in the earlier el@niphat to do if
the variables;, &, are not uniformly distributed?

Suppose tha§; had distributiorFs, andé; had distributionFs,. Assuming that
the two variables are independent we obtain the joint distion:

Fe e, (X1, %2) = Fg, (X1)Fe, (X2)

(If they are not independent we have to be given or infer thr pistribution).
The probability we are looking for is the area of the surface

{(61,82)[61€[0,L],62 € [O,L], &1 —1< & < &1+ 1}

We shall find out how to calculate this probability using gehdistribution func-
tionsFg, andF, in the next chapter. For now let us assume that the two vasabl
have densitie$; and f,. Then, the desired probability is:

L L
L[ Lo 10011y 0030 ey 00 sy ()b

which can be further calculated:

e WhenL—1<lorl<L<2:
L1 x4l L oL
/ / fe, (xa) f, (x2)dxpdxq + (2— L)L + / / fe, (%) f, (x2) e g
JO 0 J1 Jx—1
e WhenL—1>1orL > 2:
1 ma+l L-1 /x1+1
L b feeded+ [ [ "t )ty Go)dsd
x1—1
L L
+ e, (X1) fz, (Xo)dxdX
Jf s Tt el

Above is given to remind about the calculation of a two dinmenal integral.
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2.4 Functions of random variables. Calculating distributions

Measurable functions allow us to construct new random biégga These new ran-
dom variables possess their own distribution. This sedsidedicated to calculating
this new distribution. At this time it is not possible to waslith abstract spaces (for
that we will give a general theorem - the Transport formulthi next chapter) so
all our calculations will be done iR".

One dimensional functions

Let X be a random variable defined on some probability sgare”,P). Letg:
R — R be a Borel measurable function. Lét= g(X) which is a new random
variable. Its distribution is deduced as:
P(Y <y) = P(g(X) <y) = P(g(X) € (—,)]) =P (X € g *((—,¥]))
=P({w:X(w) € g H((—=,¥)})

whereg=1((—oo,y]) is the preimage of—,y] through the functiom, i.e.,:

{xeR:g(x) <y}.

If the random variabl& has p.d.ff then the probability has a simpler formula:

P(Y <y)= /7 f(x)dx
g 1(7°°1y]

Example 2.6Let X be a random variable distributed as a Normal (Gaussian) with
mean zero and variance X,~ N(0,1). Let g(x) = x?, and takeY = g(X) = X2.
Then:

0 ify<O

P(Yéy)=P(X2§Y>:{P(—ﬁgxgﬂ) ify>0

Note that the preimage df-c,y] through the functiorg(x) = x? is either 0 if
y <0 or[—-,/,/Yl if y> 0. This is how we obtain above. In the nontrivial case
y > 0 we get:

PY <y) = &(\y) - @(=vYy) = () - [1 - 2(\y)] = 2@(\y) - 1,

where@ is the c.d.foiX, aN(0, 1) random variable. In this case(x) = [* \/%Te*tz/zdt.
Since the function® is derivableY has a p.d.f. which can be obtained:
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d 1
fy(y) = d—y[ch(\/y)] =20 (\/9)2—\/)—/
I P e I e
BT AR
1 e
= 2nye

O

We note that a random variabYewith the p.d.f. described above is said to have
a chi-squared distribution with one degree of freedom (tbtation isxlz).

Two and more dimensional functions

If the variableX does not have a p.m.f or a p.d.f there is not much we can do. The
same relationship holds as in the 1 dimensional case. Sgaljfiif X is an-dim
random vector ang : R" — R" is a measurable function which defines a new
random vecto¥ = g(X) then its distribution is determined using:

P(Y <y) =P(g(X) <y) =P ({w: X(w) € g~ H((~=,y])})

and this is the same relationship as before.

In the case when the vectirhas a density then things become more specific.
We will exemplify usingR? but the same calculation worksirdimensions with no
modification (other than the dimension of course). Supploaea two dimensional
random vectofXy, X) has joint densityf. Letg: R> — R? be a measurable func-
tion:

g(x1,%2) = (91(X1,%2),92(X1, %2))
Suppose first that the functiog is one-to-oné

Define a random vectdf = (Y1, Y2) = g(X1,X2). First we find the support set of
Y (i.e. the points wher¥ has nonzero probability). To this end let

A= {(x1,%2) 1 f(x1,%2) > O}
B ={(y1,¥2) : y1 = 01(X1,X2) andy, = go(X1,X2), for some(xy,x2) € A}

This B is the image of4 throughg, it is also the support set &f. Sinceg is one-
to-one, when restricted @: A — B itis also surjective, therefore forms a bijection
betweend andB. Thus, the inverse functiayn * (y1,y2) = (g7 *(y1,Y2), G5 L (Y1,Y2))

is a unique, well defined function.

6 this is why we use the same dimensiofor both X andY vectors
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To calculate the density of we need the derivative of thig~! and that role
is played by the Jacobian of the transformation (the deteantiof the matrix of
partial derivatives):

agrt agy*
F=(V1,Y2) G (y1Y2)

99 (y1,y2) %% (y1,y5)
ay; W1.Y2) 5y (Y1,¥2

Then, the joint p.d.f. of the vectdf is given by:

fy(yr.y2) = f (971 (Y1, ¥2). G M (Y. ¥2)) 9] 1s(y1.Y2)

where we used the indicator notation ddflis the absolute value of the Jacobian.
Suppose that the functiolg is not one-to-one

In this case we recover the previous one-to-one case byictexirthe func-
tion. Specifically, define the setd and 5 as before. Now, the restricted function
g: A — B is surjective. We partitiord into Ag, A1, Ao, ..., Ax. The setdg may
contain several points which are difficult to deal with, th@yocondition is that
P((X1,X2) € Ag) = 0 (it is a null set). Furthermore, for alls 0, each restric-
tion g: A; — B is one-to one. Thus, for each suick 1, an inverse can be found
g Y(y1,y2) = (911 (1,¥2), 951 (Y1, ¥2))- Thisi-th inverse gives for angys,y2) € B a
unique(xg,X2) € Aj such thaty1,y2) = g(x1,%2). LetJ; be the Jacobian associated
with thei-th inverse transformation. Then the joint p.d.fYofs:

k
fyv (y1,y2) = .Zf (9 (V1 Y2). G2 (Y1, ¥2)) 131 15(y1.¥2)

Example 2.7Let (X1,X2) have some joint p.d.ff(-,-). Calculate the density of
X1Xo.

Let us takeY; = X1X; andY, = X; i.e. g(Xl,Xz) = (XaX2, X1) = (Y1,¥2). The
function thus constructegl: R? — R? is bijective sa3 = R?. To calculate its inverse:

X1=Y2
Xzzﬁzﬁa
X1 Y2

which gives:

g ty1,y2) = <y2, ﬂ)
Y2

We then get the Jacobian:



52 2 Random Variables

J _ s = Y. = O— _— = ——
-1 (Y1 Y2) = |1 _% %Y
Thus, the joint p.d.f o = (Y1, Y>) is:
yi) |1l
f ) - f 3 )
v(Y1:Y2) <Y2 y2> v

wheref is the given p.d.f. oK. To obtain the distribution aX1 X, = Y; we simply
need the marginal p.d.f. obtained immediately by integratiutY>:

d 1 1
fy,(y1) = '/%of <YZa y—2> : deZ
O

Example 2.8 (A more specific examplegt X3, X, be independent Exp(. Find the
joint density ofY; = X3 + Xz andY, = X—; Also show that the variablég andY, are
independent.

Letg(xy,xp) = (x1+ X2, %) = (y1,Y2). Let us calculate the domain of the trans-

formation.
Remember that the p.d.f of the exponential distribution is:

f(x)=A e*“l((,,m) (x),

thus.A = (0,) x (0,0). Sincexz, Xz > 0 we get thak; +x2 > 0 and% >0, and
soB = (0,0)? as well. The functiorg restricted to this sets is bijective as we can
easily show by solving the equations:= x; + X andy, = % We obtain:

X1 =XoY2 = Y1 =XoY2+ X2

Y1
= Xp =
2 1+ys
y1y2
=X =
1 1+yo

Since the solution is unique the functigiis one-to-one. Since the solution exists
for all (y1,y2) € (0.00)? the function is surjective. Its inverse is precisely:

-1 [ Y1iy2 Y1
g “(yny2) = (1+y2’ 1+y2)

Furthermore, the Jacobian is:

1y2 I 1
+Y2 +Y2
yi Y1

(1+y2)?  (L+y2)?

yiya v N
(14y2)°3 (1+yy)?® (14y2)?

Jg*1 (Y17YZ) =
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Thus the desired p.d.fis:

y1y2 Y1 Y1
f = f - 1
v(Y1,Y2) <1+y2’ 1+y2> ‘ (1+y2)2 (Y1.y2)€(0,20)2
e et N g
=A€ 2Ae T2 (1+y2)2 {y1.y2>0}
32,22 Y1
=A% ylml{ymw}

Finally, to end the example it is enough to recognize thatgluef. of Y can be
decomposed into a product of two functions, one of them antiaé variabley; and
the other only a function of the variabje. Thus, if we apply the next lemma the
example is solved. a

Lemma 2.2.If the joint distribution f of arandom vectdX,Y) factors as a product
of functions of only x and y, i.e., there exishgR — R such that {x,y) = g(x)h(y)
then the variables X are independent.

Proof. Problem2.12

Example 2.9Let X, Y be two random variables with joint p.df(-,-). Calculate
the density oiX + Y.

Let (U,V) = (X+Y,Y). We can easily calculate the domain and the inverse
g %(u,v) = (u—v,v). The Jacobian is:

1-1

Jy1(u,v) = ‘O 1

g ‘—1

As a result the desired p.d.f. is:
fu(u) = / f(u—v,v)dv

We will observe this particular example later when we talkwlconvolutions.

Example 2.10Let X; andX; be i.i.d.N(0, 1) random variables. Consider the func-
tion g(x1,X2) = (%, |x2|). Calculate the joint distribution of = g(X) and the dis-
tribution of the ratio of the two normal&; /X,.

First, A = R and B = R x (0,»). Second, note that the transformation is not
one-to-one. Also note that we have a problem wkes 0. Fortunately, we know

7 0is in.A sincefx,(0) >0
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how to deal with this situation. Take a partition.dfas follows:
Ao ={(x1,0) : xq € R}, A1 = {(X1,%2) : X2 < 0}, A1 = {(x1,%2) : X2 > 0}.

Ap has the desired property sinBg¢(Xi,Xz) € Ag) =P(X2=0)=0 (X2 is a
continuous random variable). Restricted to eAclhe functiong is bijective and
we can calculate its inverse in both cases:

91 (Y1, Y2) = (—y1y2, —Y2)
9, 1 (y1.y2) = (Y2, Y2)

In either case the Jacobian is identidgak J, = y». Using the p.d.f. of a normal with
mean zero and variance (&) = \/%Tea@/z), and thatX; andX, being independent
the joint p.d.f. is the product of marginals we obtain:

1 e 1 _
fy(y1,y2) = (Z_[e (—y1y2)?/2g( Y2)2/2|y2|+5_[e (1y2)?/2g (y2)2/2|y2|) Liy,=0}

v3+1y3
= Eei . : 1{)/2>0}1 yl € Ra

and this is the desired joint distribution. To calculate dhgtribution of X; /X, we
calculate the marginal of; by integrating out/,:

o Vi+1y5
fvl(Y1):/0 y—ﬁe’ “z7dy, ( Change of variableg =1)
roo (3+1)
0 21 2y +1
1

=————, V1€R
n(y?+1) "
But this is the distribution of a Cauchy random variable. §ke have just proven
that the ratio of two independeNt{0, 1) rv's has a Cauchy distribution. O

We conclude this chapter with a non-trivial applicationta Borel-Cantelli lem-
mas. We have postponed this example until this point sinceegeed to learn about
independent random variables first.

Example 2.11Let {X,} a sequence of i.i.d. random variables, each exponentially
distributed with rate 1, i.e.:
PXh>x)=€% x>0.

We wish to study how large are these variables when c. To this end take
x = alogn, for somea > 0 and for anyn > 1. Substitute into the probability above
to obtain:
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1

P(X, > alogn) = e 909" — n=@ — =

But we know that the surg, nia is divergent for the exponent < 1 and convergent
for a > 1. So we can apply the Borel-Cantelli lemmas since the evermgestion
are independent. Thus,

If a <1 the sum is divergent and §6,P(X, > alogn) = oo, thus:

P(ﬁ >ai.o.) =1
logn

If a > 1 the sum is convergent, afyg, P(X, > alogn) < o, thus:

P(i >ai.o.) =0
logn

We can express the same thing in terms of lim sup like so:

P(Iimsupﬁ>a)_ 0 ’ffa>1
n  logn 1 ,ifa<1

Since for alla < 1 we have thaP (Iim sup, % > a) =1, then we necessarily
have:

P (Iimsupi > 1) =1
n logn

Takea = 1+ & and look at the other implicatiof (Iim SUP g > 1+ %) =0,
and this happens for dlle N, . But we can write:

{Iimsupﬁ > 1} = {Iimsupi > 1+}},
n logn o n - logn K
and since any countable union of null sets is itself a nullthet probability of the

event on the left must be zero. Therefore, Iim@% <1 a.s. and combining with
the finding above:

Iimsupﬁzl, a.s.
n  logn

Thisis very interesting since as we will see in the chaptdiadged to the Poisson
process, thesk, are the inter-arrival times of this process. The exampleabells
us that if we look at the realizations of such a process they fibrm a sequence of
numbers that has the upper limiting point equal to 1, or pfi€intly there is no
subsequence of inter-arrival times that in the limit is ¢geethan the log.
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Problems

2.1.Prove the Propositiod.1 That is prove that the functioR in Definition 2.4
is increasing, right continuous and taking values in theril [0, 1], using only
propositionl.3on pagel3.

2.2.Show that any piecewise constant function is Borel measeirédee description
of piecewise constant functions in Definiti@ré

2.3.Give an example of two distinct random variables with the eatistribution
function.

2.4. Buffon’s needle problem

Suppose that a needle is tossed at random onto a plane rulegavallel lines a
distancel apart, where by a “needle” we mean a line segment of lehgth.
What is the probability of the needle intersecting one ofghrallel lines?

Hint: Consider the angle that is made by the needle with thallehlines as a
random variablex uniformly distributed in the intervalD, 2r1 and the position of
the midpoint of the needle as another random vari&lakso uniform on the interval
[0,L]. Then express the condition “needle intersects the patalés” in terms of

the position of the midpoint of the needle and the angl®o a calculation similar
with example2.5.

2.5.A random variableX has distribution function

F(x)=a+ barctang , =00 < X< 00
Find:
a) The constanta andb
b) The probability density function of

2.6.What is the probability that two randomly chosen numbersvbet O and 1
will have a sum no greater than 1 and a product no greater%tifhn

2.7.We know that the random variabl¥sandY have joint densityf (x,y). Assume
thatP(Y = 0) = 0. Find the densities of the following variables:

a)X+Y

b) X -Y

c) XY

d) é

2.8.Choose a poinA at random in the intervdD, 1]. Let L; (respectivelyl,) be
the length of the bigger (respectively smaller) segmergrdgned by A on[0,1].

Calculate:

a)P (L1 <x)forxeR.

b) P(L, <x) forx € R.



2.4 Functions of random variables. Calculating distritoi 57

2.9.Two friends decide to meet at the Castle gate of StevengutestiThey each
arrive at that spot at some random time betwaenda-+ T. They each wait for
15 minutes then leave if the other did not appear. What is tbbability that they
meet?

2.10.LetXq,Xz,..., X, be independefd (0, 1) random variables. Lé#l = max<ij<p X;.
Calculate the distribution function oA.

2.11.The random variable whose probability density functioniveqg by:

f(x)_{%/\eAX . ifx<0

l - .
IAeM | if x>0,

is said to have a Laplace, sometimes calletbable exponentiabistribution.
a) Verify that the density above defines a proper probaldiggribution.
b) Find the distribution functiof (x) for a Laplace random variable.

Now, letX andY be independent exponential random variables with paramete
Let| be independent of andY and equally likely to be 1 o¢1.

¢) Show thaX — Y is a Laplace random variable.

d) Show thaiX is a Laplace random variable.

e) Show thaW is a Laplace random variable where:

W X , !flzl
if | =—1.

)

2.12.Give a proof of the lemma.2on pages3.



