
Chapter 3
Integration Theory

In the previous chapter we learned about random variables and their distributions.
This distribution completely characterizes a random variable. But in general dis-
tributions are very complex functions. The human brain cannot comprehend such
things easily. So the human brain wants to talk about one typical value. For exam-
ple, one can give a distribution for the random variable representing player salaries
in the NBA. Here the variability (probability space) is represented by the specific
player chosen. However, probably one is not interested in such a distribution. One
simply wants to know what is the typical salary in the NBA. Theperson probably
contemplates a career in sports and wants to find out if as an athlete should go for
basketball or baseball, therefore he is much better serve bycomparing only two
numbers. Calculating such a number is hard (which number?).In this chapter we
create a theory to calculate any numbers that the person wishes. Paradoxically, to
calculate a simple number we need to understand a very complex theory.

3.1 Integral of measurable functions

Recall that the random variables are nothing more than measurable functions. Let
(Ω ,F ,P) be a probability space. We wish to define for any measurable function f
an integral off with respect to the measureP.

Notation. We shall use the following notations for this integral:
∫

Ω
f (ω)P(dω) =

∫
f dP

for A∈F we have
∫

A
f (ω)P(dω) =

∫

A
f dP =

∫
f 1AdP

Recall the Dirac Delta we have defined previously? With its help summation is
another kind of integral. Let{an} be a sequence of real numbers. LetΩ = R,F =
B(R) and the measure on this set isδ (A) = ∑∞

i=1 δi(A).
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60 3 Integration Theory

Then the functioni 7→ ai is integrable if and only if∑ai < ∞ and in this case we
have:

∞

∑
n=1

an =
∞

∑
n=1

∫ ∞

−∞
axdδn(x) =

∫ ∞

−∞
ax

∞

∑
n=1

dδn(x) =

∫ ∞

−∞
axdδ (x)

What is the point of this? The simple argument above shows that any “discrete” ran-
dom variable (in the undergraduate text definition) may be treated as a “continuous”
random variable. Not that there was any doubt after all the big fuss we made about
it in the previous chapter.

Integral of Simple (Elementary) Functions

If A ∈ F we know that we can define a measurable function by its indicator 1A.
We define the integral of this measurable function

∫
1AdP = P(A). We note that

this variable has the same distribution as that of the Bernoulli random variable. The
variable takes values 0 and 1 and we can easily calculate the probability that the
variable is 1 as:

P◦1−1
A ({1}) = P{ω : 1A(ω) = 1}= P(A).

Therefore the variable is distributed as a Bernoulli randomvariable with parameter
p = P(A).

Definition 3.1 (Simple function). f is called asimple(elementary) function if and
only if f can be written as a finite linear combination of indicators or, more specif-
ically there exist setsA1,A2, . . . ,An all in F and constantsa1,a2, . . . ,an in R such
that:

f (ω) =
n

∑
k=1

ak1Ak(ω)

If the constantsak are all positive, thenf is a positive simple function.

Note that the setsAi do not have to be disjoint but an easy exercise (Problem3.1)
shows thatf could be written in terms of disjoint sets.

For any simple functionf we define its integral:

∫
f dP =

n

∑
k=1

akP(Ak) < ∞

We adopt the conventions 0∗∞ = 0 and∞∗0 = 0 in the above summation.
We need to check that the above definition is proper. For thereexist many repre-

sentations of a simple function and we need to make sure that any such representa-
tion produces the same integral value. Furthermore, the linearity and monotonicity
properties of the integral may be proven. We skip these results since they are simple
to prove and do not bring any additional insight.
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Integral of positive measurable functions

For everyf positive measurable functionf : Ω −→ [0,∞) we define:

∫
f dP = sup

{∫
hdP : h is a simple function, h≤ f

}

For a given positive measurable function can we find a sequence of simple func-
tions that converge to it? The answer is yes and is provided bythe next simple
exercise:

Exercise 3.1.Let f : Ω → [0,∞] be a positive, measurable function. For alln≥ 1,
we define:

fn(ω) :=
n2n−1

∑
k=0

k
2n1{ k

2n≤ f (ω)< k+1
2n }(ω)+n1{ f (ω)≥n} (3.1)

1. Show thatfn is a simple function on(Ω ,F ), for all n≥ 1.
2. Show that the sets present in the indicators in equation (3.1) form a partition of

Ω , for all n≥ 1.
3. Show that the sequence of simple functions is increasinggn ≤ gn+1 ≤ f , for all

n≥ 1.
4. Show thatgn ↑ f asn→∞. Note that this is not an a.s. statement, it is true for all

ω ∈Ω .

The solution to this exercise is not complicated and in fact it is an assigned problem
(Problem3.3).

The following lemma is a very easy to understand and useful tool.

Lemma 3.1.If f is a positive measurable function and
∫

f dP= 0 thenP{ f > 0}= 0
(or f = 0 a.s.).

Proof. We have{ f > 0} =
⋃

n≥0{ f > 1
n}. Since the events are increasing by the

monotone convergenceproperty of measure we must haveP{ f > 0}= limn→∞ P{ f >
1
n}. If we assume by absurd thatP{ f > 0} > 0 then there must exist ann such that
P{ f > 1

n} > 0. However, in this case by the definition of the integral of positive
measurable functions:

∫
f dP≥

∫
1
n

1{ f> 1
n}

dP > 0,

contradiction. ⊓⊔

The next theorem is one of the most useful in probability theory. In our immediate
context it tells us that the integral for positive measurable functions is well defined.

Theorem 3.1 (Monotone Convergence Theorem).If f is a sequence of measur-
able positive functions such that fn ↑ f then:

∫

Ω
fn(ω)P(dω) ↑

∫

Ω
f (ω)P(dω)
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Note: This is all there is to integration theory. The proof of the monotone con-
vergence theorem is not difficult, you may want to look at it.

Proof. Ion: Write the proof

Integral of measurable functions

Let f be any measurable function. Then we writef = f +− f− where:

f +(s) = max{ f (s),0}
f−(s) = max{− f (s),0}

Then f + and f− are positive measurable functions and| f |= f + + f−. Since they
are positive measurable their integrals are well defined by the previous part.

Definition 3.2. We defineL1(Ω ,F ,P) as being the space of all functionsf such
that: ∫

| f |dP =

∫
f +dP+

∫
f−dP < ∞

For any f in this space which we will shorten toL1(Ω) or even simpler toL1 we
define: ∫

f dP =

∫
f +dP−

∫
f−dP

Note: With the above it is trivial to show that|∫ f dP| ≤ ∫| f |dP

Linearity:

If f ,g∈ L1(Ω) with a,b∈R , then:

a f +bg∈ L1(Ω)
∫

(a f +bg)dP= a
∫

f dP+b
∫

gdP

Lemma 3.2 (Fatou’s Lemma for measurable functions).If one of the following is
true:

a) { fn}n is a sequence of positive measurable functions or
b) { fn} ⊂ L1(Ω)

then: ∫
lim inf

n
fndP≤ lim inf

n

∫
fndP

Proof. Note that liminfn fn = limm→∞ infn≥m fn, where limm→∞ infn≥m fn is an in-
creasing sequence.

Let gm = infn≥m fn, andn≥m :
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fn ≥ inf
n≥m

fm = gm⇒
∫

fndP≥
∫

gdP⇒
∫

gmdP≤ inf
n≥m

∫
fndP

Now gm increases so we may use the Monotone Convergence Theorem andwe get:
∫

lim
m→∞

gmdP= lim
m→∞

∫
gmdP≤ lim

m→∞
inf
n≥m

∫
fndP = lim inf

n

∫
fndP

Theorem 3.2 (Dominated Convergence Theorem).If fn, f are measurable, fn(ω)→
f (ω) for all ω ∈Ω and the sequence fn is dominated by g∈ L1(Ω) :

| fn(ω)| ≤ g(ω), ∀ω ∈Ω ,∀n∈ N

then:

fn→ f in L1(Ω)

(
i.e.

∫
| fn− f |dP→ 0

)

Thus
∫

fndP→
∫

f dP and f ∈ L1(Ω).

The Standard Argument:

This argument is the most important argument in the probability theory. Suppose
that we want to prove that some property holds for all functions h in some space
such asL1(Ω) or the space of measurable functions.

1. Show that the result is true for all indicator functions.
2. Use linearity to show the result holds true for allf simple functions.
3. Use the Monotone Convergence Theorem to obtain the resultfor measurable

positive functions.
4. Finally from the previous step and writingf = f +− f− we show that the result

is true for all measurable functions.

3.2 Expectations

Since a random variable is just a measurable function we justneed to particularize
the results of the previous section. An integral with respect to a probability measure
is called an expectation. Let(Ω ,F ,P) be a probability space.

Definition 3.3. ForX a r.v. inL1(Ω) define:

E(X) =

∫

Ω
XdP=

∫

Ω
X(ω)dP(ω) =

∫

Ω
X(ω)P(dω)

This expectation has the same properties of the integral defined before and some
extra ones since the space has finite measure.
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Convergence Theorems:

(i) Monotone Convergence Theorem:If Xn ≥ 0, Xn ∈ L1 andXn ↑ X thenE(Xn) ↑
E(X)≤ ∞.

(ii) Fatou:E(lim infn→∞ Xn)≤ lim infn→∞ E(Xn)
(iii) Dominated Convergence Theorem:If |Xn(ω)| ≤ Y(ω) on Ω with Y ∈ L1(Ω)

andXn(ω)→ X(ω) for all ω ∈Ω thenE(|Xn−X|)→ 0.

Now let us present specific properties of the expectation. This is to be expected
since the space has finite measure therefore we can obtain more specific properties.

Markov Inequality:

Let Z be a r.v. and letg : R−→ [0,∞] be anincreasingmeasurable function. Then:

E [g(Z)]≥ E
[
g(Z)1{Z≥c}

]
≥ g(c)P(Z≥ c)

Thus

P(Z≥ c)≤ E[g(Z)]

g(c)

for all g increasing functions andc > 0.

Example 3.1 (Special cases of the Markov inequality).If we takeg(x) = x an in-
creasing function andX a positive random variable then we obtain:

P(Z≥ c)≤ E(Z)

c
.

To get rid of the necessity thatX ≥ 0 takeZ = |X|. Then we obtain the classical
form of the Markov inequality:

P(|X| ≥ c)≤ E(|X|)
c

.

If we takeg(x) = x2, Z = |X−E(X)| and we use the variance definition (which
we will see in a minute), we obtain the Chebyshev inequality:

P(|X−E(X)| ≥ c)≤ Var(X)

c2 .

If we denoteE(X) = µ andVar(X) = σ and we takec= kσ in the previous inequal-
ity we will obtain the classical Chebyshev inequality presented in undergraduate
courses:

P(|X− µ | ≥ kσ)≤ 1
k2 .

If g(x) = eθx, with θ > 0 then
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P(Z≥ c)≤ e−θcE(eθz),

This inequality states that the tail of the distribution decays exponentially inc if Z
has finite exponential moments. With simple manipulations one can obtain Cher-
noff’s inequality using it.

Jensen’s Inequality for convex functions:

This is just a reminder.

Definition 3.4. A function g : I −→ R is called a convex function onI (whereI is
any open interval inR, if its graph lies below any of its chords. Mathematically: for
anyx,y∈ I and for anyα ∈ (0,1) we have

g(αx+(1−α)y)≤ αg(x)+ (1−α)g(y).

Some examples of convex functions on the wholeR: |x|, x2 andeθx, with θ > 0.

Lemma 3.3 (Jensen’s Inequality).Let f be a convex function and let X be a r.v. in
L1(Ω). Assume thatE( f (X)) ≤ ∞ then:

f (E(X)) ≤ E( f (X))

Proof. Skipped. The classical approach indicators→ simple functions→ positive
measurable→ measurable is a standard way to prove Jensen.

Lp spaces.

We generalize theL1 notion presented earlier in the following way. For 1≤ p≤ ∞
we define the space:

Lp(Ω ,F ,P) = Lp(Ω) =

{
X : Ω −→R : E [|X|p] =

∫
|X|pdP < ∞

}
,

On this space we define a norm called thep-norm as:

||X||p = E [|X|p]1/p

Lemma 3.4 (Properties ofLp spaces).

(i) Lp is a vector space. (i.e., if X,Y ∈ Lp and a,b∈R then aX+bY∈ Lp).
(ii) L p is complete (every Cauchy sequence in Lp is convergent)

Lemma 3.5 (Cauchy-Bunyakovsky-Schwarz inequality).If X ,Y ∈ L2(Ω) then
X,Y ∈ L1(Ω) and

|E[XY]| ≤ E[|XY|]≤ ||X||2||Y||2
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A historical remark.This inequality, one of the most famous and useful un any
area of analysis (not only probability) is usually creditedto Cauchy for sums and
Schwartz for integrals and is usually known as the Cauchy-Schwartz inequality.
However,the Russian mathematician Victor Yakovlevich Bunyakovsky (1804-1889)
discovered and first published the inequality for integralsin 1859 (when Schwartz
was 16). Unfortunately, he was born in eastern Europe... However, all who are born
in eastern Europe (including myself) learn the inequality by its proper name.

Proof. The first inequality is clear by Jensen inequality. We need toshow

E[|XY|]≤ (E[X2])1/2(E[Y2])1/2

LetW = |X| andZ = |Y| thenW,Z≥ 0.
Truncation:

LetWn = W
∧

n andZn = Z
∧

n that is

Wn(ω) =

{
W(ω), if W(ω) < n

n, if W(ω)≥ n

Clearly, defined in this wayWn,Zn are bounded. Leta,b∈ R two constants. Then:

0≤ E[(aWn +bZn)
2] = a2E(W2

n )+2abE(WnZn)+b2E(Z2
n)

If we let a/b = c we get:

c2E(W2
n )+2cE(WnZn)+E(Z2

n)≥ 0 ∀c∈ R

This means that the quadratic function inc has to be positive. But this is only possi-
ble if the determinant of the equation is negative and the leading coefficientE(W2

n )
is strictly positive, the later condition is obviously true. Thus we must have:

4(E(WnZn))
2−4E(W2

n )E(Z2
n)≤ 0

⇒ (E(WnZn))
2 ≤ E(W2

n )E(Z2
n)≤ E(W2)E(Z2) ∀n

If we let n ↑ ∞ and use the monotone convergence theorem we get:

(E(WZ))2 ≤ E(W2)E(Z2).

⊓⊔

A more general inequality is:

Lemma 3.6 (Hölder inequality). If 1/p+1/q= 1, X∈ Lp(Ω) and Y∈ Lq(Ω) then
XY∈ L1(Ω) and:

E|XY| ≤ ‖X‖p‖Y‖q = (E|X|p)
1
p (E|Y|q)

1
q
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Proof. The proof is simple and uses the following inequality (Younginequality): if
a andb are positive real numbers andp, q are as in the theorem then:

ab≤ ap

p
+

bq

q
,

with equality if and only ifap = bq.
Taking this inequality as given (not hard to prove) define:

f =
|X|
‖X‖p

, g =
|Y|
‖Y‖p

.

Note that the Hölder inequality is equivalent withE[ f g] ≤ 1 (‖X‖p and‖Y‖q
are just numbers that can be taken in and out of integral by thelinearity property).
To prove this apply the Young inequality tof ≥ 0 andg≥ 0 and then integrate to
obtain:

E[ f g]≤ 1
p

E[ f p]+
1
q

E[gq] =
1
p

+
1
q

= 1

E[ f p] = 1 and similarly forg may be easily checked. Finally, the extreme cases
(p = 1, q = ∞, etc.) may be treated separately. ⊓⊔

Lemma 3.7 (Minkowski Inequality). If X ,Y ∈ Lp then X+Y ∈ Lp and:

‖X +Y‖p≤ ‖X‖p+‖Y‖p

Proof. We clearly have:

|X +Y|p≤ 2p−1(|X|p + |Y|p).

For example use the definition of convexity for the functionxp with x = |X| and
y = |Y| andα = 1/2. Now integrating implies thatX +Y ∈ Lp. Now we can write:

‖X +Y‖p
p = E[|X +Y|p]≤ E

[
(|X|+ |Y|)|X +Y|p−1]

= E
[
|X||X +Y|p−1]+E

[
|Y||X +Y|p−1]

Hölder
≤ (E [|X|p])1/p

(
E
[
|X +Y|(p−1)q

])1/q
+(E [|Y|p])1/p

(
E
[
|X +Y|(p−1)q

])1/q

(
q= p

p−1

)

= (‖X‖p+‖Y‖p)(E [|X +Y|p])1− 1
p

= (‖X‖p+‖Y‖p)
E [|X +Y|p]
‖X +Y‖p

Now, identifying the left and right hand after simplifications we obtain the result.
⊓⊔

Example 3.2 (due to Erd́os).Suppose there are 17 fence posts around the perimeter
of a field and exactly 5 of them are rotten. Show that irrespective of which of these
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5 are rotten, there should exist a row of 7 consecutive posts of which at least 3 are
rotten.

Proof (Solution).First we label the posts 1,2· · ·17. Now define :

Ik =

{
1 if postk is rotten
0 otherwise

For any fixedk, let Rk denote the number of rotten posts amongk+ 1, · · · ,k+ 7
(starting with the next one). Note that when any ofk+ 1, · · · ,k+ 7 are larger than
17 we start again from 1 (i.e., modulo 17 +1).

Now pick a post at random this obviously can be done in 17 ways with equal
probability. Then after we pick this post we calculate the number of rotten boards.
We have:

E(Rk) =
17

∑
k=1

(Ik+1 + · · ·+ Ik+7)
1
17

=
1
17

17

∑
k=1

7

∑
j=1

Ik+ j ==
1
17

7

∑
j=1

17

∑
k=1

I j+k

=
1
17

7

∑
j=1

5 (the sum is 5 since we count all the rotten posts in the fence)

=
35
17

Now, 35/17> 2 which impliesE(Rk) > 2. Therefore,P(Rk > 2) > 0 (otherwise the
expectation is necessarily bounded by 2) and sinceRk is integer valuedP(Rk≥ 3) >
0. So there exists somek such thatRk ≥ 3.

Of course now that we see the proof we can play around with numbers and see
that there exists a row of 4 consecutive posts in which at least two are rotten, or that
there must exist a row of 11 consecutive posts in which at least 4 are rotten and so
on (row of 14 containing all 5 rotten ones).

3.3 Variance and the correlation coefficient

Definition 3.5. The variance or the Dispersion of a random variableX ∈ L2(Ω) is:

V(X) = E[(X− µ)2] = E(X2)− µ2

Whereµ = E(X).

Definition 3.6. Given two random variablesX,Y we call the covariance betweenX
andY the quantity:

Cov(X,Y) = E[(X− µX)(Y− µY)]



3.4 Functions of random variables. The Transport Formula. 69

WhereµX = E(X) andµY = E(Y).

Definition 3.7. Given random variablesX,Y we call the correlation coefficient:

ρ = Corr(X,Y) =
Cov(X,Y)√
V(X)V(Y)

=
E[(X− µX)(Y− µY)]√

E[(X− µX)2]E[(Y− µY)2]

From the Cauchy-Schwartz inequality applied toX−µX andY−µY we get|ρ |< 1
or ρ ∈ [−1,1].

The variableX andY are calleduncorrelated if the covariance (or equivalently
the correlation) between them is zero.

Proposition 3.1 (Properties of expectation).The following are true:

(i) If X andY are integrable r.v.’s then for any constantsα andβ the r.v.αX+βY
is integrable andE[αX + βY] = αEX + βEY.

(ii) V (aX+bY) = a2V(X)+b2V(Y)+2abCov(X,Y)
(iii) If X ,Y are independent thenE(XY) = E(X)E(Y) and Cov(X,Y) = 0.
(iv) If X(ω) = c with probability1 and c∈ R a constant thenEX = c.
(v) If X ≥Y a.s. thenEX ≥ EY. Furthermore, if X≥Y a.s. andEX = EY then
X = Y a.s.

Proof. Exercise. Please note that the reverse of the part (iii) above is not true, if the
two variables are uncorrelated this does not mean that they are independent. In fact
in Problem3.5you are required to provide a counterexample.

3.4 Functions of random variables. The Transport Formula.

In Section2.4on page49we showed how to calculate distributions and in particular
p.d.f.’s for continuous random variables. We have also promised a more general
result. Well, here it is. This general result allows to construct random variables and
in particular distributions in any space. This is the resultthat allows us to claim that
studying random variables on([0,1],B([0,1]),λ ) is enough. We had to postpone
presenting the result until this point since we had to learn first how to integrate.

Theorem 3.3 (General Transport Formula).Let (Ω ,R,P) be a probability space.
Let f be a measurable function such that:

(Ω ,F )
f−→ (S,G )

ϕ−→ (R,B(R)),

where(S,G ) is a measurable space. Assuming that at least one of the integrals exists
we then have: ∫

Ω
ϕ ◦ f dP=

∫

S
ϕdP◦ f−1,

for all ϕ measurable functions.
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Proof. We will use the standard argument technique discussed above.

1. Letϕ be the indicator function.ϕ = 1A for A∈ G :

1A(ω) =

{
1 if ω ∈ A
0 otherwise

Then we get:
∫

Ω
1A ◦ f dP =

∫

Ω
1A( f (ω))dP(ω) =

∫

Ω
1f−1(A)(ω)dP(ω)

= P( f−1(A)) = P◦ f−1(A) =

∫

S
1Ad(P◦ f−1)

recalling the definition of the integral of an indicator.
2. Letϕ be a simple functionϕ = ∑n

i=1ai1Ai whereai ’s are constant andAi ∈ G .

∫

Ω
ϕ ◦ f dP=

∫

Ω

(
n

∑
i=1

ai1Ai

)
◦ f dP

=
∫

Ω

n

∑
i=1

ai(1Ai ◦ f )dP=
n

∑
i=1

ai

∫

Ω
1Ai ◦ f dP

(part 1)
=

n

∑
i=1

ai

∫

S
1Ai dP◦ f−1 =

∫

S

n

∑
i=1

ai1Ai dP◦ f−1 =

∫

S
ϕdP◦ f−1

3. Letϕ be a positive measurable function and letϕn be a sequence of simple func-
tions such thatϕnր ϕ then:

∫

Ω
ϕ ◦ f dP =

∫

Ω
( lim
n→∞

ϕn)◦ f dP

=

∫

Ω
lim
n→∞

(ϕn◦ f )dP
monotone convergence

= lim
n→∞

∫
ϕn ◦ f dP

(part 2)
= lim

n→∞

∫
ϕndP◦ f−1 monotone convergence

=

∫
lim
n→∞

ϕndP◦ f−1

=

∫

S
ϕd(P◦ f−1)

4. Letϕ be a measurable function thenϕ+ = max(ϕ ,0),ϕ− = max(−ϕ ,0). Which
then gives usϕ = ϕ+−ϕ−. Since at least one integral is assumed to exist we get
that

∫
ϕ+ and

∫
ϕ− exist. Also note that:

ϕ+ ◦ f (ω) = ϕ+( f−1(ω)) = max(ϕ( f (ω)),0)

max(ϕ ◦ f (ω),0) = (ϕ ◦ f )+(ω)

Then:
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∫
ϕ+dP◦ f−1 =

∫
ϕ+ ◦ f dP=

∫
(ϕ ◦ f )+dP

∫
ϕ−dP◦ f−1 =

∫
ϕ− ◦ f dP=

∫
(ϕ ◦ f )−dP

These equalities follow from part 3 of the proof. After subtracting both:
∫

ϕdP◦ f−1 =
∫

ϕ ◦ f dP

Exercise 3.2.If X andY are independent random variables defined on(Ω ,R,P)
with X,Y ∈ L1(Ω) thenXY∈ L1(Ω):

∫

Ω
XYdP =

∫

Ω
XdP

∫

Ω
YdP (E(XY) = E(X)E(Y))

Proof (Solution).This is an exercise that you have seen before, here is presented to
exercise the standard approach.

Example 3.3.Let us solve the previous exercise using the transport formula. Let us
take f : Ω → R2, f (ω) = (X(ω),Y(ω)); andϕ : R2→ R, ϕ(x,y) = xy. Then we
have from the transport formula:

∫

Ω
X(ω)Y(ω)dP(ω)

(T)
=

∫

R2
xydP◦ (X,Y)−1

The integral on the left isE(XY), while the integral on the right can be calculated
as:

∫

R2
xyd(P◦X−1,P◦Y−1) =

∫

R
xdP◦X−1

∫

R
ydP◦Y−1

(T)
=
∫

Ω
X(ω)dP(ω)

∫

Ω
Y(ω)dP(ω) = E(X)E(Y)

Example 3.4.Finally we conclude with an application of the transport formula
which will produce one of the most useful formulas. LetX be a r.v. defined on
the probability space(Ω ,F ,P) with distribution functionF(x). Show that:

E(X) =

∫

R
xdF(x),

where the integral is understood in Riemann-Stieltjes sense.
Proving the formula is immediate. Takef : Ω→R, f (ω) = X(ω) andϕ : R→R,

ϕ(x) = x. Then from the transport formula:

E(X) =

∫

Ω
X(ω)dP(ω) =

∫

Ω
x◦X(ω)dP(ω)

(T)
=

∫

R
xdP◦X−1(x) =

∫

R
xdF(x)

Clearly if the distribution functionF(x) is derivable with dF
dx (x) = f (x) or

dF(x) = f (x)dx we obtain the lower level classes formula for calculating expec-
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tation of a “continuous” random variable:

E(X) =
∫

R
x f(x)dx

3.5 Applications. Exercises in probability reasoning.

The next two theorems are presented to observe the proofs. They are both early exer-
cises in probability. We will present later much stronger versions of these theorems
(and we will also see that these convergence types have very precise definitions),
but for now we lack the tools to give general proofs to these stronger versions.

Theorem 3.4 (Law of Large Numbers).Let (Ω ,F ,P) be a probability space and
let{Xn}n be a sequence of i.i.d random variables withE(Xi) =

∫
Ω XidP= µ . Assume

that the fourth moment of these variables is finite andE(X4
i ) = K4 for all i. Then:

X̄ =
∑n

i=1Xi

n
=

X1 + · · ·+Xn

n
a.s−→ µ

Proof. Recall what it means for a statement to hold almost surely (a.s.). In our
specific context if we denoteSn = X1+ · · ·+Xn then we need to show thatP(Sn/n→
µ) = 1.

First step.Let us show that we can reduce to the case ofE(Xi) = µ = 0. Take
Yi = Xi − µ . If we prove thatY1+···+Yn

n → 0 then substituting back we shall obtain
Sn−nµ

n → 0, or Sn
n → µ . Which gives our result. Thus we assume thatE(Xi) = µ = 0.

Second step.We want to show thatSn
n

a.s−→ 0. We have:

E
(
S4

n

)
= E

(
(X1 + · · ·+Xn)

4)= E

(

∑
i, j ,k,l

XiXjXkXl

)

If any factor in the sum above appears with power one, from independence we will
haveE(XiXjXkXl ) = E(Xi)E(Xj XkXl ) = 0. Thus, the only terms remaining in the
sum above are those with power larger than one.

E

(

∑
i, j ,k,l

XiXjXkXl

)
= E

(

∑
i

X4
i + ∑

i< j

(
4
2

)
X2

i X2
j

)

= ∑
i

E(Xi)
4 +6∑

i< j
E(X2

i X2
j )

Using the Cauchy-Schwartz inequality we get:

E(X2
i X2

j )≤ E(X4
i )1/2E(X4

j )
1/2 = K4 < ∞

Then:
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E(S4
n) =

n

∑
i=1

E(Xi)
4 +6∑

i< j
E(X2

i X2
j )≤ nK4 +6

(
n
2

)
·K4

= (n+3n(n−1))K4 = (3n2−2n)K4≤ 3n2K4

Therefore:

E

(
∞

∑
n=1

(
Sn

n

)4
)

=
∞

∑
n=1

E(S4
n)

n4 ≤
∞

∑
n=1

3n2K
n4 =

∞

∑
n=1

3K
n2 < ∞

Since the expectation of the random variable is finite then wemust have the random
variable finite with the exception of a set of measure 0 (otherwise the expectation
will be infinite). This implies:

∑
n

(
Sn

n

)4

< ∞ a.s.

But a sum can only be convergent if the term under the sum converges to zero.
Therefore:

lim
n→∞

(
Sn

n

)4

= 0 a.s.

and consequently:
Sn

n
a.s−→ 0

⊓⊔

Example 3.5.I cannot resist giving a simple application of this theorem.Let A be
an event that appears with probabilityP(A) = p∈ (0,1]. For example, roll a fair six
sided die and letA be the event roll a 1 or a 6 (P({1,6}) = 1/3). Let γn denote the
number of timesA appears inn independentrepetitions of the experiment. Then :

lim
n→∞

γn

n
= p

This is an important example for statistics. Suppose for instance that we do not
know that the die is fair but we have our suspicions. How do we test? All we have
to do is roll the die many times (n→ ∞) and look at the average number of times
1 or 6 appears. If this number stabilizes around a different value than 1/3 then the
die is tricked. The next theorem will also tell how many timesto roll the dies to be
confident in our assessment.

To prove the result we simply apply the previous theorem. DefineXi as:

Xi =

{
1 if eventA appears in repetitioni
0 otherwise
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ThenP(Xi = 1) = p andP(Xi = 0) = 1− p so thatE(Xi) = 1 · p+ 0 · (1− p) = p.
Clearly, the fourth moment is finite as well and applying the theorem:γn = ∑n

i=1Xi .
will converge to the stated value.

A Basic Central Limit Theorem: The DeMoivre-Laplace Theorem:

In order to prove the theorem we need:

Lemma 3.8 (Stirling’s Formula). For large n it can be shown that:

n! ∼
√

2πn·nne−n

The proof of this theorem is only of marginal interest to us.

Theorem 3.5 (DeMoivre-Laplace).Let ξ1 · · ·ξn be n independent r.v.’s each tak-
ing value1 with probability p and0 with probability 1− p (Binomial(p) random
variables). Let

Sn =
n

∑
i=1

ξi

and

S∗n =
Sn−E(Sn)√

V(Sn)
=

Sn−np√
np(1− p)

then for any x1,x2 ∈ R, x1 < x2:

lim
n→∞

P(x1 ≤ S∗n ≤ x2) = Φ(x2)−Φ(x1)

=

∫ x2

x1

1√
2π

e−x2/2dx

Note thatΦ is the distribution function of aN(0,1) random variable. This is exactly
the statement of the regular Central Limit Theorem applied to Bernoulli random
variables.

Proof. Notice thatSn ∼ Binomial(n, p) and S∗n = (Sn− np)/
√

np(1− p) is dis-
tributed equidistantly in the total interval[ −np√

np(1−p)
, n−np√

np(1−p)
]. The length between

two such consecutive values is∆x = 1/
√

np(1− p).
Fork large andn−k large:



3.5 Applications. Exercises in probability reasoning. 75

P(Sn = k) =

(
n
k

)
pk(1− p)n−k =

n!
k!(n−k)!

pk(1− p)k

=

√
2πn·nne−n

√
2πk·kke−k

√
2π(n−k) · (n−k)n−ke−(n−k)

pk(1− p)n−k (3.2)

=
1√
2π

√
n

k(n−k)
︸ ︷︷ ︸

Term I

(np
k

)k
(

n(1− p)

n−k

)n−k

︸ ︷︷ ︸
Term II

(3.2) follows from Stirling’s Formula. Remember that forSn = k the x value of
S∗n = (Sn−np)/

√
np(1− p) is:

x =
k−np√
np(1− p)

⇒ k = np+x
√

np(1− p)

⇒ k
np

= 1+x

√
1− p
np

Likewise we may express:

n−k = n−np−x
√

np(1− p)⇒ n−k= n(1− p)−x
√

np(1− p)

⇒ n−k
n(1− p)

= 1−x
√

p
n(1− p)

Using these two expressions in the Term II of equation (3.2):

log

((np
k

)k
(

n(1− p)

n−k

)n−k
)

=−k log
k

np
− (n−k) log

n−k
n(1− p)

=−k log

(
1+x

√
1− p
np

)
− (n−k) log

(
1−x

√
p

n(1− p)

)

If we approximate log(1+ α)≃ α− α2

2 we continue:

≃−k

(
x

√
1− p
np
− x2

2
1− p
np

)
− (n−k)

(
−x
√

p
n(1− p)

− x2

2
p

n(1− p)

)
(3.3)

Finally, we substitutek andn−k and after calculations (skipped) we obtain:

lim
n→∞

log
(np

k

)k
(

n(1− p)

n−k

)n−k

=−x2

2

Also note that:
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√
n

k(n−k)
≃
√

n
np·n(1− p)

=
1√

np(1− p)

Putting both terms together we obtain:

lim
n→∞

P(S∗n = x) =
1√
2π

e−x2/2∆x

where∆x = 1√
np(1−p)

Thus:

lim
n→∞

P(x1≤ S∗n ≤ x2) = lim
n→∞ ∑

x1≤x≤x2

P(S∗n = x) = lim
n→∞∑ 1√

2π
e−x2/2∆x

=
1√
2π

∫ x2

x1

e−x2/2dx

⊓⊔

Problems

3.1. It is well-known that 23 “random” people have a probability of about 1/2 of
having at least 1 shared birthday. There are 365 x 24 x 60 = 525,600 minutes in
a year. (We’ll ignore leap days.) Suppose each person is labeled by the minute in
which the person was born, so that there are 525,600 possiblelabels. Assume that
a “random” person is equally likely to have any of the 525,600labels, and that
different “random” people have independent labels.

a) About how many random people are needed to have a probability greater than
1/2 of at least one shared birth-minute? (A numerical value is required.)

b) About how many random people are needed to have a probability greater than 1/2
of at least one birth-minute shared by three or more people? (Again, a numerical
value is required. You can use heuristic reasoning, but explain your thinking.)

3.2.Show that any simple functionf can be written as∑i bi1Bi with Bi disjoint sets
(i.e.Bi ∩B j = /0, if i 6= j).

3.3.Prove the 4 assertions in Exercise3.1on page61.

3.4.Give an example of two variablesX andY which are uncorrelated but not inde-
pendent.

3.5.Prove the properties (i)-(v) of the expectation in Proposition 3.1on page69.


