Chapter 3
Integration Theory

In the previous chapter we learned about random variabléghasir distributions.
This distribution completely characterizes a random ¥deiaBut in general dis-
tributions are very complex functions. The human brain carmomprehend such
things easily. So the human brain wants to talk about one&ypalue. For exam-
ple, one can give a distribution for the random variable@spnting player salaries
in the NBA. Here the variability (probability space) is repented by the specific
player chosen. However, probably one is not interested¢h sudistribution. One
simply wants to know what is the typical salary in the NBA. Terson probably
contemplates a career in sports and wants to find out if ashdet@should go for
basketball or baseball, therefore he is much better serveolmparing only two
numbers. Calculating such a number is hard (which numbbkr?his chapter we
create a theory to calculate any numbers that the persoresvistaradoxically, to
calculate a simple number we need to understand a very cariigery.

3.1 Integral of measurable functions

Recall that the random variables are nothing more than malleufunctions. Let
(Q,.7,P) be a probability space. We wish to define for any measurabietifon f
an integral off with respect to the measuire

Notation. We shall use the following notations for this integral:

/ f(w)P(dw) = / fdp
Q .
forAc 7 we have/ f(w)P(dw):/ fdp = / f1adP
JA JA .
Recall the Dirac Delta we have defined previously? With it lsemmation is

another kind of integral. Lefa,} be a sequence of real numbers. ke R,.7 =
A(R) and the measure on this sedifA) = 5121 & (A).
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60 3 Integration Theory

Then the function — &; is integrable if and only ify & < « and in this case we
have:

nian = ni/o;axdén(x) = /o;axnidén(x) = /:axdé(x)

What is the point of this? The simple argument above shovistha'discrete” ran-
dom variable (in the undergraduate text definition) may eaterd as a “continuous”
random variable. Not that there was any doubt after all thess we made about
it in the previous chapter.

Integral of Simple (Elementary) Functions

If Ae .7 we know that we can define a measurable function by its inolick{.
We define the integral of this measurable functiphh,dP = P(A). We note that
this variable has the same distribution as that of the Bdlirandom variable. The
variable takes values 0 and 1 and we can easily calculatertialpility that the
variable is 1 as:

Pol,1({1}) = P{w: 1a(w) = 1} = P(A).

Therefore the variable is distributed as a Bernoulli randaniable with parameter
p=P(A).

Definition 3.1 (Simple function). f is called asimple(elementary) function if and
only if f can be written as a finite linear combination of indicatorsware specif-
ically there exist seté\, Ay, ..., Ay all in .# and constanta,ay,...,a, in R such

that:

n

f(0) = T ada(®)
k=1

If the constantsy are all positive, therf is a positive simple function.

Note that the set8; do not have to be disjoint but an easy exercise (Protiein
shows thatf could be written in terms of disjoint sets.
For any simple functiorf we define its integral:

n

/ fdP= 3 aP(A) <
b k=1

We adopt the conventions«® = 0 ande x 0 = 0 in the above summation.

We need to check that the above definition is proper. For test many repre-
sentations of a simple function and we need to make sure iiyaguech representa-
tion produces the same integral value. Furthermore, tleatity and monotonicity
properties of the integral may be proven. We skip thesetesince they are simple
to prove and do not bring any additional insight.
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Integral of positive measurable functions

For everyf positive measurable functioh: Q — [0, ) we define:
/ fdP = sup{/th: his a simple functionh < f}

For a given positive measurable function can we find a segueisimple func-
tions that converge to it? The answer is yes and is providetheynext simple
exercise:

Exercise 3.1.Let f : Q — [0,] be a positive, measurable function. Forral 1,

we define:
n2"—-1 k

fn(w) == kzo ?l{%gf(ka_;n;}(w)+n1{f(w)2n} (3.1)

1. Show thatf, is a simple function ofiQ, %), foralln> 1.

2. Show that the sets present in the indicators in equafidij form a partition of
Q,foralln> 1.

3. Show that the sequence of simple functions is increaginggn.1 < f, for all
n>1.

4. Show thagy, T f asn — co. Note that this is not an a.s. statement, it is true for all
we Q.

The solution to this exercise is not complicated and in fistan assigned problem
(Problem3.3).
The following lemma is a very easy to understand and useflll to

Lemma 3.1.If fis a positive measurable function arfid dP = 0 thenP{f >0} =0
(or f =0a.s.).

Proof. We have{f > 0} = Up>o{f > %}. Since the events are increasing by the
monotone convergence property of measure we mustPgie 0} = limp_... P{f >
11.1f we assume by absurd the{ f > 0} > 0 then there must exist ansuch that

P{f > %} > 0. However, in this case by the definition of the integral o$ifiee
measurable functions:

1
/fsz/ﬁl{f>%}dP>O,

contradiction. O

The next theorem is one of the most useful in probabilityrihémour immediate
context it tells us that the integral for positive measuedbhctions is well defined.

Theorem 3.1 (Monotone Convergence Theorem)f f is a sequence of measur-
able positive functions such that f f then:

/fn(a))P(dw)T/f(w)P(dw)
Q Q
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Note: This is all there is to integration theory. The proof of thermatone con-
vergence theorem is not difficult, you may want to look at it.

Proof. lon: Write the proof

Integral of measurable functions

Let f be any measurable function. Then we wifite- f+ — f~ where:

f*(s) = max{f(s),0}
f7(s) = max{—f(s),0}

Thenf* andf~ are positive measurable functions afif= f* + f ~. Since they
are positive measurable their integrals are well definedhbytevious part.

Definition 3.2. We defineL'(Q,.7,P) as being the space of all functiofissuch
that: i _ i
/|f|dP= /f+dP+/f*dP< o
For any f in this space which we will shorten 10'(Q) or even simpler td.* we
define: i _ i
/fdP: /f*dP—/f’dP

Note: With the above it is trivial to show thay fdP| < [|f|dP

Linearity:
If f,gcL(Q)witha,beR, then:
af+bge L1(Q)
/(af+bg)dP: a/fdP+b/gdP

Lemma 3.2 (Fatou’s Lemma for measurable functions)lf one of the following is
true:

a) {fn}n is a sequence of positive measurable functions or
b) {fn} C L1(Q)

then:
/ liminf f,dP < liminf / f.dP

Proof. Note that liminf, fy = limm e iNfr>m fn, where limy_e info>m fn is an in-
creasing sequence.
Letgm = infrn>m fn, andn > m:
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fo > inf fm = gm = /fnsz /gdP:> /gmdpg inf /fndP
n>m n>m
Now gn, increases so we may use the Monotone Convergence Theoreneayet:

/Iim gmdP_ lim /gmdpg lim inf fndP:Iiminf/fndP
m—oo m—oo m— > n

on>m

Theorem 3.2 (Dominated Convergence Theoremi. f,, f are measurable .fw) —
f(w) for all w € Q and the sequence fs dominated by g L1(Q) :

Ifh(w)]<g(w), YweQ,VneN

then: _
fo— f in LY(Q) (i.e./|fn—f|dP—>0)

Thus[f,dP — [fdPandf € LY(Q).

The Standard Argument:

This argument is the most important argument in the protipliieory. Suppose
that we want to prove that some property holds for all funtdio in some space
such ad.}(Q) or the space of measurable functions.

1. Show that the resultis true for all indicator functions.

2. Use linearity to show the result holds true for alimple functions.

3. Use the Monotone Convergence Theorem to obtain the risuiheasurable
positive functions.

4. Finally from the previous step and writirfg= f* — f~ we show that the result
is true for all measurable functions.

3.2 Expectations

Since a random variable is just a measurable function wengestl to particularize
the results of the previous section. An integral with respea probability measure
is called an expectation. Lé®,.%,P) be a probability space.

Definition 3.3. ForX a r.v. inL(Q) define:

E(X):/QXdP:/QX(w)dP(w):/QX(oo)P(dw)

This expectation has the same properties of the integratetbthefore and some
extra ones since the space has finite measure.
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Convergence Theorems:

() Monotone Convergence TheorethX, > 0, X, € L andX, T X thenE(Xy) 1
E(X) < o.

(i) Fatou: E(liminfp_e Xn) < liminfp_e E(Xn)

(i) Dominated Convergence TheoretiX,(w)| < Y(w) on Q with Y € LY(Q)
andXp(w) — X(w) for all w € Q thenE(|X, —X|) — 0.

Now let us present specific properties of the expectatiois iBito be expected
since the space has finite measure therefore we can obtaiapecific properties.
Markov Inequality:

LetZ be ar.v. andlegy: R — [0, ] be anincreasingmeasurable function. Then:

E[9(2)] = E[9(2)1iz5¢] = 9(c)P(Z >¢)

Thus

P(Z>c) <
for all g increasing functions and> 0.

Example 3.1 (Special cases of the Markov inequallfyve takeg(x) = x an in-
creasing function and a positive random variable then we obtain:

P(Z>c) < @
To get rid of the necessity that > 0 takeZ = |X|. Then we obtain the classical
form of the Markov inequality:

E(X))

>c) <
P(X| > 0) < =2

If we takeg(x) = X%, Z = |[X — E(X)| and we use the variance definition (which
we will see in a minute), we obtain the Chebyshev inequality:

Var(X)
cz

P(IX-E(X)[>¢) <

If we denoteE(X) = p andVar(X) = o and we take = ko in the previous inequal-
ity we will obtain the classical Chebyshev inequality presel in undergraduate
courses:

1
P(X—pl=zko) < 7.

If g(x) = €%, with 6 > 0 then
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P(Z >c) < e E(e%),

This inequality states that the tail of the distribution algs exponentially irt if Z
has finite exponential moments. With simple manipulations can obtain Cher-
noff’s inequality using it.

Jensen'’s Inequality for convex functions:

This is just a reminder.

Definition 3.4. A functiong : | — R is called a convex function on(wherel is
any open interval ifR, if its graph lies below any of its chords. Mathematicallyr. f
anyx,y € | and for anya € (0,1) we have

glax+(1—a)y) <ag(x)+(1—a)g(y).
Some examples of convex functions on the wHgiéx|, x> ande®, with 8 > 0.

Lemma 3.3 (Jensen’s Inequality)Let f be a convex function and let X be ar.v. in
LY(Q). Assume thaE(f (X)) < o then:

FE(X)) <E(f(X))

Proof. Skipped. The classical approach indicaterssimple functions— positive
measurable~ measurable is a standard way to prove Jensen.

LP spaces.

We generalize the! notion presented earlier in the following way. Forlp < o
we define the space:

LP(Q,.7,P) = LP(Q) = {x Q- R:E[XP] = /|X|de < oo},

On this space we define a norm called fheorm as:
1
[1X]lp = E[1X|P1'P

Lemma 3.4 (Properties ofLP spaces).

(i) LPis a vector space. (i.e., if ¥ € LP and ab € R then aX+ bY € LP).
(i) LP is complete (every Cauchy sequencefind.convergent)

Lemma 3.5 (Cauchy-Bunyakovsky-Schwarz inequality)If X,Y € L?(Q) then
X,Y € LY(Q) and
[EIXY]] < E[IXY]] < [[X][2[[Y]]2
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A historical remark.This inequality, one of the most famous and useful un any
area of analysis (not only probability) is usually creditedCauchy for sums and
Schwartz for integrals and is usually known as the Cauchys@dz inequality.
However,the Russian mathematician Victor Yakovlevich yakovsky (1804-1889)
discovered and first published the inequality for integnal$859 (when Schwartz
was 16). Unfortunately, he was born in eastern Europe...adewall who are born

in eastern Europe (including myself) learn the inequalitytb proper name.

Proof. The first inequality is clear by Jensen inequality. We neeshtow
E[IXY]) < (E[X?)Y2(E[Y?)*?

LetW = |X| andZ = |Y| thenW,Z > 0.
Truncation:
LetW, =W AnandZ,=ZAnthatis

W(w), ifW(w)<n
n, if W(w) >n

Wn((l)) == {
Clearly, defined in this waW,, Z, are bounded. Led, b € R two constants. Then:
0 < E[(@Wh + bZ,)?] = a?E(W?) + 2abE(WhZy) + b?E(Z32)
If we leta/b = cwe get:

C’E(W?) 4+ 2cE(WhZn) +E(Z2) >0 VYceR

This means that the quadratic functiorcihas to be positive. But this is only possi-
ble if the determinant of the equation is negative and theitepcoefficients (W?)
is strictly positive, the later condition is obviously truehus we must have:

4(E(WhZn))? — 4E(W2)E(Z2) <0
= (E(WhZn))> < EMP)E(Z) < EWA)E(Z?)  vn

If we letn T 0 and use the monotone convergence theorem we get:

(E(W2))? < E(W?)E(Z?).

A more general inequality is:

Lemma 3.6 (Holder inequality). If 1/p+1/q=1, X € LP(Q) and Y€ L9(Q) then
XY € LY(Q) and:

P3 a\a
EIXY[ < [IX][[pllY[lq = (E[X[P)? (E[Y[*)a
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Proof. The proof is simple and uses the following inequality (Youmegquality): if
aandb are positive real numbers agxlq are as in the theorem then:

aP  bd
abg _+_a
P qQ

with equality if and only ifaP = bd.
Taking this inequality as given (not hard to prove) define:

_ X M

= 9= o
X1l I¥1lp

Note that the Holder inequality is equivalent witifg] < 1 (|[X|/p and|Y||q
are just numbers that can be taken in and out of integral blirtkarity property).
To prove this apply the Young inequality fo> 0 andg > 0 and then integrate to
obtain:

1 1 1 1
E[fg < =E[fP]+=E[g)==+==1
[fg = JEIFF+ BT =5+
E[fP] = 1 and similarly forg may be easily checked. Finally, the extreme cases
(p=1,g= o, etc.) may be treated separately. a

Lemma 3.7 (Minkowski Inequality). If X,Y € LP then X+Y € LP and:
IX+Ylp < [IX[lp+1Ylp
Proof. We clearly have:
X+ Y|P < 2P H(X|P+ |Y[P).

For example use the definition of convexity for the functidnwith x = |X| and
y=1Y| anda = 1/2. Now integrating implies thaX +Y € LP. Now we can write:

IX+YIB = ElX+Y[P] < E[(X]+YDIX+Y[P]
= E[IX|IX+Y[PH] +E[[Y][X+Y]P]

" XD MP (B [k i) ) vy (& [x v o))

(o= :pE )

= (IX[lp+ 1Y)

/a

(IXllp+ ¥ ) (EIX + Y [P 5
E[X+ Y]
X+

Now, identifying the left and right hand after simplificat®we obtain the result.
O

Example 3.2 (due to Efi). Suppose there are 17 fence posts around the perimeter
of a field and exactly 5 of them are rotten. Show that irrespedf which of these
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5 are rotten, there should exist a row of 7 consecutive pdstdizh at least 3 are
rotten.

Proof (Solution)First we label the posts 2---17. Now define :

L 1 if postk s rotten
kK= 0 otherwise

For any fixedk, let R¢ denote the number of rotten posts amdng1,--- ,k+7
(starting with the next one). Note that when anykef 1,--- ,k+ 7 are larger than
17 we start again from 1 (i.e., modulo 17 +1).

Now pick a post at random this obviously can be done in 17 waitts @equal
probability. Then after we pick this post we calculate thenber of rotten boards.
We have:

17 1
E(R¢) = z (et +l7) 75

& 17

1 17 7 1 7 17
=71 ltj == 75 ljk

174 le 17 lek;

1 7
=17 5 (the sum is 5 since we count all the rotten posts in the fence)

j=1

35
17

Now, 35/17 > 2 which impliesE(Rx) > 2. ThereforeP(Ry > 2) > 0 (otherwise the
expectation is necessarily bounded by 2) and sitds integer valuedP(R¢ > 3) >
0. So there exists sontesuch thaR, > 3.

Of course now that we see the proof we can play around with eusrdnd see
that there exists a row of 4 consecutive posts in which at teasare rotten, or that
there must exist a row of 11 consecutive posts in which at kease rotten and so
on (row of 14 containing all 5 rotten ones).

3.3 Variance and the correlation coefficient

Definition 3.5. The variance or the Dispersion of a random variable L2(Q) is:
V(X) = E[(X = p)?] = E(X?) — pi?
Wherepu = E(X).

Definition 3.6. Given two random variables,Y we call the covariance betweehn
andY the quantity:

CoMX,Y) = E[(X — px) (Y — ay)]



3.4 Functions of random variables. The Transport Formula. 9 6
Wherepux = E(X) andpy = E(Y).
Definition 3.7. Given random variableX,Y we call the correlation coefficient:

B _CouX,Y)  E[(X—px)(Y — )]
p =Corr(X,Y) = NOXNVY)  VEX - iOZEY — i)

From the Cauchy-Schwartz inequality appliedkte- ux andY — iy we get/p| < 1
orpe[-1,1].

The variableX andY are calleduncorrelated if the covariance (or equivalently
the correlation) between them is zero.

Proposition 3.1 (Properties of expectation)The following are true:

() f X andY are integrable r.v's then for any constantand the rv.aX + Y
is integrable andE[aX + BY] = aEX + BEY.

(i) V (aX +bY) = a?V (X) + bV (Y) + 2abCo\(X, Y)

(iii) If X ,Y are independent the&(XY) = E(X)E(Y) and CoyX,Y) = 0.

(iv) If X(w) = ¢ with probabilityl and ce R a constant thefEX = c.

(V) If X >Y a.s.therEX > EY. Furthermore, if X>Y a.s. andEX = EY then
X=Y a.s.

Proof. Exercise. Please note that the reverse of the part (iii) @monot true, if the
two variables are uncorrelated this does not mean that tieeyndependent. In fact
in Problem3.5you are required to provide a counterexample.

3.4 Functions of random variables. The Transport Formula.

In Section2.40n paget9we showed how to calculate distributions and in particular
p.d.f’s for continuous random variables. We have also [setha more general
result. Well, here it is. This general result allows to comstrandom variables and
in particular distributions in any space. This is the rethdt allows us to claim that
studying random variables aii0, 1], %([0,1]),A) is enough. We had to postpone
presenting the result until this point since we had to least ffiow to integrate.

Theorem 3.3 (General Transport Formula).Let (Q, R, P) be a probability space.
Let f be a measurable function such that:

(2,7) - (89) - (R A(R)),
where(S ¢) is a measurable space. Assuming that at least one of theal$ezxists

we then have:
/q)ofdP:/dePof’l,
Q S

for all ¢ measurable functions.
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Proof. We will use the standard argument technique discussed above

1. Let¢ be the indicator functionp = 1 for A€ ¥4:

1ifweA
1a(w) = {O otherwise

Then we get:
/QlefdP:/QlA(f(w))dP(w) :/Qlfflw(w)dp(w)
— P(f"L(A)) = Po f1(A) = /SlAd(Po i)

recalling the definition of the integral of an indicator.
2. Let¢ be a simple functio = S ; ai1p wherea;’s are constant and; € ¢.

/;2¢ofdP:'/;2<iialei> o fdP
:/Qiia{-(lAiof)dP:iia;/QlAiofdP

(part1) & / 1 g 1 " 1
DS & [10dPo f :/ aladPof =/¢dPof
2,3 J OXhe S

3. Let¢ be a positive measurable function anddgtbe a sequence of simple func-
tions such tha$, ¢ then:

/g¢ o fdP= /Q(r[mo $n)o fdP

— [ 1im (¢no f)dP

JQ n—oo n—oo

monotone convergenCﬁm

/}pno fdp

(part3 lim /¢ndPo f -1 monotone convergencef lim ¢ndPo £
_ / ¢d(Pof1
S

4. Let¢ be a measurable function thér = max(@,0), ~ = max(-¢,0). Which
then gives u® = ¢ " — ¢ . Since at least one integral is assumed to exist we get
that [¢+ and [¢~ exist. Also note that:

9 of(w)=9¢"(f () =maxd(f(w)),0)
max(@ o f(w),0) = (9o f)"(w)

Then:
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/q)*dPof*l:/d;*ofdP:/(q)of)*dP
/¢’dPof*l:/¢*ofdP:/(¢of)*dP

These equalities follow from part 3 of the proof. After swaatiing both:

/q)dPof*l:/d;ofdP

Exercise 3.2If X andY are independent random variables defined @nR, P)
with X,Y € L1(Q) thenXY € L}(Q):

/.XY(:P: /XdP/YdP (E(XY) = E(X)E(Y))
Q JQ JQ

Proof (Solution)This is an exercise that you have seen before, here is pegsent
exercise the standard approach.

Example 3.3Let us solve the previous exercise using the transport flarnhet us
takef : Q — R?, f(w) = (X(w),Y(w)); and¢ : R? — R, ¢(x,y) = xy. Then we
have from the transport formula:

/ X (@)Y (w)dP(w) 2 / xydPo (X,Y) 1
Q R2

The integral on the left i€(XY), while the integral on the right can be calculated
as:

/ xyd(PoX L Poy 1) :/ deOX*l/ ydPoy1
JR? R R
@/ X(oo)dP(w)/ Y (w)dP(w) = E(X)E(Y)
Q Q
Example 3.4Finally we conclude with an application of the transportnfioita

which will produce one of the most useful formulas. Rétbe a r.v. defined on
the probability spacéQ, .7, P) with distribution functionF (x). Show that:

E(X):/ xdF(x),
R
where the integral is understood in Riemann-Stieltjesesens

Proving the formulais immediate. Take Q — R, f(w) = X(w) and¢ : R — R,
#(x) = x. Then from the transport formula:

E(X):/K'?X(w)dp(w):'/éxOX(w)dP(w)@/ﬂ%xdpowl(x):/ﬂ%xdF(x)

Clearly if the distribution functionF(x) is derivable with%(x) = f(x) or
dF(x) = f(x)dx we obtain the lower level classes formula for calculatingesx
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tation of a “continuous” random variable:

E(X) = /ﬂ;\]xf(x)dx

3.5 Applications. Exercises in probability reasoning.

The next two theorems are presented to observe the proag.ara both early exer-
cises in probability. We will present later much strongesiens of these theorems
(and we will also see that these convergence types have vecjsp definitions),
but for now we lack the tools to give general proofs to thesmngfer versions.

Theorem 3.4 (Law of Large Numbers).Let (Q,.%,P) be a probability space and
let {Xn}n be a sequence of i.i.d random variables vEitX; ) = [, X dP = . Assume
that the fourth moment of these variables is finite El(\l{i“) = Ky for all i. Then:

X — Zin:n1xi _ X1+-r-]-+xn E’N

Proof. Recall what it means for a statement to hold almost surely)(dn our
specific context if we denot®, = X; + - - - + X then we need to show thBtS,/n —

p)=1.

First step.Let us show that we can reduce to the cas&@f;) = u = 0. Take
Yi = X — . If we prove thatYlJr%n'+Yn — 0 then substituting back we shall obtain
@ — 0, or % — W. Which gives our result. Thus we assume tBgX;) = u =0.

Second stepiVe want to show tha > 0. We have:

E(S) =E((Xa+--+Xn)*) :E< ><i><j><k><4>

i, J5K|

If any factor in the sum above appears with power one, frorefpretidence we will
haveE(XXjXX) = E(X)E(XjXX) = 0. Thus, the only terms remaining in the
sum above are those with power larger than one.

N _ 4 4 2y 2
- (u, ,IX'XJXle> - (ZK +% (2>)§ XJ)
= SEX)*+6 E(XXP)

i<]
Using the Cauchy-Schwartz inequality we get:
E(XXF) < EOYZE(X) Y2 = Ky < o0

Then:
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E(S) = iE(m“%_z EOG?X]) < nK4+6(2) Ka

i<]

= (n+3n(n—1))Ks= (3n® — 2n)K4 < 3n%K,4

Therefore:

©/s\Y 2 EE) 23K 2K
E(nzl(ﬁ) >_nzl n4 SnZ:L n4 _nzlﬁ<oo

Since the expectation of the random variable is finite themuwst have the random
variable finite with the exception of a set of measure 0 (otiwr the expectation

will be infinite). This implies:
4
> (E) <o as.
n

n

But a sum can only be convergent if the term under the sum cgesedo zero.

Therefore: 4
lim (E) =0 a.s.

n—oo n

and consequently:
S’] a.s
20
n
O

Example 3.5I cannot resist giving a simple application of this theorémt A be

an event that appears with probabilRyA) = p € (0, 1]. For example, roll a fair six
sided die and leA be the eventroll a 1 or a 8({1,6}) = 1/3). Let y, denote the
number of timed\ appears im independentepetitions of the experiment. Then :

lim ¥ —
n—o N

p

This is an important example for statistics. Suppose foramse that we do not
know that the die is fair but we have our suspicions. How doegt? All we have
to do is roll the die many timesi(— ) and look at the average number of times
1 or 6 appears. If this number stabilizes around a differahterthan ¥3 then the
die is tricked. The next theorem will also tell how many tinbesoll the dies to be
confident in our assessment.

To prove the result we simply apply the previous theorem.r2efj as:

X — 1 if eventA appears in repetition
~ ] 0 otherwise
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ThenP(X; =1)=pandP(X;=0)=1—-psothatE(Xj))=1-p+0-(1—p)=p.
Clearly, the fourth moment is finite as well and applying thearem:y, = S ; X;.
will converge to the stated value.

A Basic Central Limit Theorem: The DeMoivre-Laplace Theorem:

In order to prove the theorem we need:

Lemma 3.8 (Stirling’s Formula). For large n it can be shown that:
n ~+v2m-n"e "
The proof of this theorem is only of marginal interest to us.

Theorem 3.5 (DeMoivre-Laplace).Let &; --- &, be n independent r.v's each tak-
ing valuel with probability p and0 with probability 1 — p (Binomial(p) random

variables). Let
n

SnZiZifi

S$S—ES)__S—np
VV(S)  /np(l-p)

and

SJ; =
then for any x, % € R, X3 < Xo:

lim P(x; < S, <x2) = ®(x2) — P(x1)

n—oo
X2 1
B X1 Vv 27T

Note that® is the distribution function of &l(0, 1) random variable. This is exactly
the statement of the regular Central Limit Theorem apple®é¢rnoulli random
variables.

e /2dx

Proof. Notice thatS, ~ Binomial(h, p) and §, = —np)/y/np(l—p) is dis-
tributed equidistantly in the total mtervpcl\/”i_p M] The length between

two such consecutive valuesdx=1/+/np(1— p).
Fork large anch — k large:



3.5 Applications. Exercises in probability reasoning. 75

P(Sh = k) = (E) PL-P" = (nn!_ P
V2m-nhe™"

= ki1 ~\n—k
B \/ﬁ kke*k\/m, (n _ k)”*ke*(n*k) p (1 p) (32)

-l () (550)

Term | Term Il

(3.2 follows from Stirling’s Formula. Remember that f&; = k the x value of

S = (Sy—np)//np(l—p)is:

k—np
X=————=k=np+Xx,/np(l-p)
Vnp(1-p)
1-p

k
= —=1+X/—=
np np

Likewise we may express:

n—k=n—-np—xy/np(l—p)=n—k=n(l-p)—xy/np(l—p)
n—k p

ni-p ~ \n@-p

Using these two expressions in the Term Il of equat®g)(
lo (@)k =P\ _ K (n—Klog =K
I\ % n—k B 95 p g n(l—p)

_ [1-p\ B p
= klog<1+x np) (n k)log(l X n(l—p))

. 2 .
~ a -
If we approximate logl + a) ~ a — %- we continue:

N 1-p xX1-p P X p
—‘k<x\/n—p‘fn—p>‘<”‘”<‘x e za) ©9

Finally, we substitut& andn — k and after calculations (skipped) we obtain:

. npyk/nL-p\"*
mios(5E) () =

Also note that:
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n N n B 1
\/k(n—k> - \/np-n(l— P /np(l—p)

Putting both terms together we obtain:

1 2
lim P(S; = x) = ——e */2Ax
n—oo ($ ) \/Z-[
whereAx = 1
V/Nnp(1-p)
Thus:
1 2
lim P(x < § < %) = lim P(S,=X) = lim § ——=e */2Ax
n—oo n*}wxlﬁzﬁxz ni,ooz \/ZT
1 X2 7X2/2
= — e dx
\/27'r/><1

Problems

3.1.1t is well-known that 23 “random” people have a probabilitiyatout 1/2 of

having at least 1 shared birthday. There are 365 x 24 x 60 =6B8R5ninutes in

a year. (We'll ignore leap days.) Suppose each person iseldtiy the minute in
which the person was born, so that there are 525,600 posali#ts. Assume that
a “random” person is equally likely to have any of the 525, @dlfels, and that
different “random” people have independent labels.

a) About how many random people are needed to have a prdgapifiater than
1/2 of at least one shared birth-minute? (A numerical vadueduired.)

b) About how many random people are needed to have a prdiyajater than 1/2
of at least one birth-minute shared by three or more peoplg&if, a numerical
value is required. You can use heuristic reasoning, buaéxgbur thinking.)

3.2.Show that any simple functioh can be written a§; bj1g, with B; disjoint sets
(i.e.BiNB; =0, if i # j).

3.3.Prove the 4 assertions in Exercidd on pages1.

3.4.Give an example of two variablesandY which are uncorrelated but not inde-
pendent.

3.5.Prove the properties (i)-(v) of the expectation in ProposiB.1on pages9.



