
Chapter 4
Product spaces. Conditional Distribution and
Conditional Expectation

In this chapter we look at the following type of problems: If we know something
extra about the experiment, how does that change our probability calculations. An
important part of statistics (Bayesian statistics) is build on conditional distributions.
However, what about the more complex and abstract notion of conditional expecta-
tion?

Why do we need conditional expectation?
Conditional expectation is a fundamental concept in the theory of stochastic pro-

cesses. The simple idea is the following: suppose we have no information about a
certain variable then our best guess about it would be some sort of regular expec-
tation. However, in real life it often happens that we have some partial information
about the random variable (or in time we come to know more about it). Then what
we should do is every time there is new information the samplespaceΩ or theσ -
algebraF is changing so they need to be recalculated. That will in turnchange the
probabilityP which will change the expectation of the variable. The conditional ex-
pectation provides a way to recalculate the expectation of the random variable given
any new “consistent” information without going through thetrouble of recalculating
(Ω ,F ,P) every time.

It is also easy to reason that since we calculate with respectto more precise
information it will be depending on this more precise information, thus it is going
to be a random variable itself, “adapted” to this information.

4.1 Product Spaces

Let (Ω1,F1,µ1) and(Ω2,F2,µ2) be twoσ -finite measure spaces. Define:

Ω = Ω1×Ω2 the cartesian product

F = σ({B1×B2 : B1 ∈F1,B2 ∈F2})

Let f : Ω →R beF measurable such that
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80 4 Product spaces. Conditional Distribution and Conditional Expectation

∀ω1 ∈Ω1 f (ω1, ·) is F2 measurable onΩ2

∀ω2 ∈Ω2 f (·,ω2) is F1 measurable onΩ1

Then we define:

I f
1 (ω1) =

∫

Ω2

f (ω1,ω2)µ2(dω2)

I f
2 (ω2) =

∫

Ω1

f (ω1,ω2)µ1(dω1)

which are a kind of partial integrals, well defined by the measurability of the restric-
tions.

Theorem 4.1 (Fubini’s theorem).Define a measure:

µ(F) =
∫

Ω1

∫

Ω2

1F(ω1,ω2)µ1(dω1)µ2(dω2).

Thenµ is the unique measure defined on(Ω ,F ) called the product measurewith
the property:

µ(A1×A2) = µ1(A1)µ2(A2) ∀Ai ∈Fi ,

and as a consequence:
∫

Ω
f dµ =

∫

Ω1

I f
1 (ω1)µ(dω1) =

∫

Ω2

I f
2 (ω2)µ(dω2)

Proof. Skipped. Apply the standard argument. Note that the first step is already
given.

Example 4.1 (Application of Fubini’s Theorem).LetX be a positive r.v. on(Ω ,F ,P).
ConsiderP×λ on (Ω ,F )× ([0,∞),B((0,∞])), whereλ is the Lebesgue measure.
Let A := {(ω ,x) : 0≤ x< X(ω)}. Note thatA is the region under the graph of the
random variableX. Let the indicator of this set be denoted withh= 1A. Then:

Ih
1(ω) =

∫

[0,∞)
1A(ω ,x)dλ (x) =

∫ ∞

0
1{0≤x<X(ω)}(x)dλ (x) =

∫ X(ω)

0
dλ (x) = X(ω)

Ih
2(x) =

∫

Ω
1A(ω ,x)dP(ω) =

∫

Ω
1{0≤x<X(ω)}(ω)dP(ω) = P{ω : X(ω)> x},

sinceX is a positive r.v.
We now apply Fubini’s Theorem and we get :

µ(A) =
∫

Ω

∫

[0,∞)
1A(x,ω)dµ(x)dP(ω)

=

∫

Ω
X(ω)dP(ω) =

∫ ∞

0
P(X > x)dx

Thus reading the last line above:
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E(X) =

∫ ∞

0
P(X > x)dx

This result is actually so useful that we will state it separately.

Corollary 4.1. If X is a positiverandom variable with distribution function F(x)
and we denoteF(x) = 1−F(x), we have:

E(X) =

∫ ∞

0
F(x)dx

4.2 Conditional distribution and expectation. Calculation in
simple cases

We shall give a general formulation of conditional expectation that will be most use-
ful in the second part of this textbook. But, until then we will present the cases that
actually allow the explicit calculation of conditional distribution and expectation.

Let X andY be two discrete variables on(Ω ,F ,P).

Definition 4.1 (Discrete Conditional Distribution). The conditional distribution
of Y givenX = x: FY|X(·|x) is:

FY|X(y|x) = P(Y ≤ y|X = x)

The conditional probability mass function ofY|X is:

fY|X(y|x) = P(Y = y|X = x) =
fX,Y(x,y)

fX(x)

Note: In the case whenP(X = x) = 0 we cannot define the conditional probability.

Definition 4.2 (Discrete Conditional Expectation).Let ψ(x) = E(Y|X = x) then
ψ(X) = E[Y|X] is called the conditional expectation.

Remark 4.1.The conditional expectation is a random variable.

Definition 4.3 (Continuous Conditional Distribution). Let X,Y be two continu-
ous random variables. The conditional distribution is defined as:

FY|X(y|x) =
∫ y

−∞

fX,Y(x,v)
fX(x)

dv

The functionfY|X(y|x) = f (x,y)
fX(x)

is the conditional probability density function.

Definition 4.4 (Continuous Conditional Expectation).The conditional expecta-
tion for two continuous random variables isψ(X) = E[Y|X] where the functionψ
is calculated:

ψ(x) = E(Y|X = x) =
∫ ∞

−∞
y fY|X(y|x)dy
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Example 4.2.A point is picked uniformly from the surface of the unit sphere. Let
L =longitude angleθ and letl = latitude angleφ . Let us find the distribution func-
tions ofθ |φ andφ |θ .

Let C be a set on the sphere (or generally inR3). The surface area of the sphere is
4πr2 = 4π . The set of points from which we sample isS(0,1) = {(x,y,z) : x2+y2+
z2 = 1}. Then, since we pick the points uniformly the position of a point chosen has
distribution:

P((x,y,z) ∈C) =
∫

C

1
4π

1{x2+y2+z2=1}(x,y,z)dxdydz

Since we are interested in longitude and latitude we change to polar coordi-
nates to obtain the distribution of these variables. We takethe transformation:
X = r cosθ cosφ , Y = r sinθ cosφ andZ = r sinφ . To obtain the distribution we
calculate the new integral. The Jacobian of the transformation is:

J =

∣∣∣∣∣∣

−r sinθ cosφ −r cosθ sinφ cosθ cosφ
r cosθ cosφ −r sinθ sinφ sinθ cosφ

0 r cosφ sinφ

∣∣∣∣∣∣

= r2 cos3 φ + r2sin2 φ cosφ = r2 cosφ

Note that the indicator is 1 if and only ifr = 1. We conclude that

P((x,y,z) ∈C) =
∫

Im C

1
4π
|cosφ |dθdφ ,

whereImC is the set ofpolar coordinates that make the setC. Therefore, the joint
distribution function is

f (θ ,φ) =
1

4π
|cosφ |, φ ∈ [−π/2,π/2],θ ∈ [0,2π ].

Now, we get the marginal ofφ :

fφ (φ) =
∫ 2π

0

1
4π
|cosφ |dθ =

|cosφ |
2

,

and the marginal ofθ :

fθ (θ ) =
∫ π/2

−π/2

1
4π
|cosφ |dφ =

∫ π/2

−π/2

1
4π

cosφdφ =
1

2π

Thus, we calculate immediately the conditional distributions:
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fθ |φ (θ |φ) =
1

2π
, θ ∈ [0,2π ]

fφ |θ (φ |θ ) =
cosφ

2
, φ ∈ [−π/2,π/2]

We note thatθ andφ are independent (the product of marginals is equal to the
joint distribution) but the conditionals are different dueto the parameterizations
(this particular example is known asthe Borel paradox). Also note that the condi-
tional expectations are equal to the regular expectations,this is of course because the
variables are independent. We will obtain this property in general in the following
section.

Example 4.3.Many clustering algorithms are based on random projections. For sim-
plicity we consider the direction of the first coordinate unit vector−→e 1 as the best
possible projection. However, the probability of finding this direction exactly is zero
so we consider a tolerance angleαe and we say that a projection is “good enough”
if it makes an angle less thanαe with −→e 1.

We want to calculate the probability that a random directionmakes an angle less
thanα with −→e 1.

The example is inR3 but we can easily generalize it to any dimension. We assume
that 0< αe < π/2, otherwise the problem becomes trivial.

Directions inR3 are equivalent to points on the unit sphere. Therefore, the prob-
ability to be calculated is twice the probability that a point chosen at random on the
sphere belongs to the cone of angleαe centered at the origin. Why twice? Because
we do not care if the angle formed by the random direction is with −→e 1 or −−→e 1.
Thus, we calculate the probability by taking the ratio of thearea of the intersection
of the said cone and the sphere and the total surface area of the sphere.

The area of the unit sphere inRd is readily calculated as2πd/2

Γ (d/2) (e.g.,Kendall

(2004), Γ (x) =
∫ ∞

0 tx−1e−tdt is the gamma function). In the particular case when

d = 3 (Γ (3
2) =

√
π

2 ) we obtain the well known area 4π .
To compute the support area of the cone we switch to polar coordinates:

x1 = r cosθ1

x2 = r sinθ1cosθ2

x3 = r sinθ1sinθ2

wherer ∈ [0,∞),θ1 ∈ [0,π ],θ2 ∈ [0,2π ].
The points of interest can be found whenr = 1 andθ1 ∈ [0,αe], and we need to

double the final area found to take into account symmetric angles with respect to
−→e 1.

One can check immediately, that the Jacobian of this change of variables is
r2sinθ1 and that the probability needed is easily calculated as:
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2sin2 αe

2

If we now considerK projections then the probability that at least one is a “good
enough projection” is:

1−
(

1−2sin2 αe

2

)K

Note that the example is extendable to the more interestingRd case but in that
case we do not obtain an exact formula instead only bounds. See Ion: give citation
once it exists.

4.3 Conditional expectation. General definition

To summarize the previous section, ifX andY are two random variables we have
defined the conditional distribution and conditional expectation of onewith respect
to the other. In fact, we have defined more: the conditional expectation of onewith
respect to the information contained in the other.

More precisely, in the previous subsection we defined the expectation ofX con-
ditioned by theσ -algebra generated byY: σ(Y). Thus, we may write without a
problem:

E[X|Y] = E[X|σ(Y)].

This notion may be generalized to define conditional expectation with respect
to any kind of of information (σ -algebra). As definition we shall use the following
theorem. We will skip the proof.

Theorem 4.2.Let (Ω ,F ,P) be a probability space, and letK ⊆ F a sub-σ -
algebra. Let X be a random variable on(Ω ,F ,P) such that either X is positive
or X ∈ L1(Ω). Then, there exists a random variable Y, measurable with respect to
K with the property:

∫

A
YdP=

∫

A
XdP ,∀A∈K

This Y is defined to be the conditional expectation of X with respect toK and is
denotedE[X|K ].

Remark 4.2.We note that the conditional expectation, unlike the regular expectation
is a random variable measurable with respect to the sigma algebra under which is
conditioned. In simple language it has adapted itself to theinformation contained in
theσ -algebraK . In the simple cases presented in the previous section the condi-
tional expectation is measurable with respect toσ(Y). But since this is a very simple
sigma algebra then it has to be in fact a function ofY.

Note: We will take this theorem as a definition.
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Proposition 4.1 (Properties of the Conditional Expectation). Let (Ω ,F ,P) a
probability space, and letK ,K1,K2 sub-σ -algebras. Let X and Y be random vari-
ables of the probability space. Then we have:

(1) If K = {∅,Ω} thenE[X|K ] = EX = const.
(2) E[αX+βY|K ] = αE[X|K ]+βE[Y|K ] for α,β real constants.
(3) If X ≤Y a.s. thenE[X|K ]≤ E[Y|K ] a.s.
(4) E [E[X|K ]] = EX
(5) If K1 ⊆K2 then

E [E[X|K1]|K2] = E [E[X|K2]|K1] = E[X|K1]

(6) If X is independent ofK then

E[X|K ] = E[X]

(7) If Y is measurable with respect toK then

E[XY|K ] =YE[X|K ]

After proving these properties (see Problem4.2) they will become essential in
working with conditional expectation. In fact the definition is never used anymore.

Example 4.4.Let us obtain a weak form of the Wald’s equation (an equation that
serves a fundamental role in the theory of stochastic processes) right now by a sim-
ple argument. LetX1,X2, . . . ,Xn, . . . be i.i.d. with finite meanµ and letN be a ran-
dom variable taking values in strictly positive integers and independent ofXi for all
i. For example,Xi ’s may be the results of random experiments andN may be some
stopping strategy established in advance. LetSN = X1+X2+ · · ·+XN. FindE(SN).

Let

ϕ(n) = E[SN|N = n] = E[X1+X2+ · · ·+XN|N = n]

=
n

∑
i=1

E[Xi |N = n] =
n

∑
i=1

E[Xi ] = nµ

by independence. Therefore,E[SN|N] = ϕ(N) = Nµ . Finally, using the properties
of conditional expectation:

E(SN) = E[E[SN|N]] = E[Nµ ] = µE[N].

Note that we have not used any distribution form only the properties of the condi-
tional expectation.
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Problems

4.1.Prove the Fubini’s Theorem4.1on page80.

4.2.Using the Theorem-Definition4.2on page84prove the seven properties of the
conditional expectation in Proposition4.1.

4.3.Let X be a random variable on the probability space(Ω ,F ,P). Let a setA∈F

and the sigma algebra generated by the set denotedσ(A). What isE[X|σ(A)]? Let
1A denote the indicator ofA. What isE[X|1A]?

4.4.Let X,Y,Z be three random variables with joint distribution

P(X = k,Y = m,Z = n) = p3qn−3

for integersk,m,n satisfying 1≤ k < m< n, where 0< p < 1, p+ q = 1. Find
E{Z|X,Y}.

4.5.A circular dartboard has a radius of 1 foot. Thom throws 3 darts at the board
until all 3 darts are sticking in the board. The locations of the 3 darts are independent
and uniformly distributed on the surface of the board. LetT1, T2, andT3 be the
distances from the center to the closest dart, the next closest dart, and the farthest
dart, respectively, so thatT1 ≤ T2≤ T3. FindE[T2].

4.6.Let X1,X2, . . . ,X1000be i.i.d. each taking on both 0 and 1 with probability1
2. Put

Sn=X1+ · · ·+Xn. FindE
[
(S1000−S300)1{S700=400}

]
andE

[
(S1000−S300)

21{S700=400}
]
.


