Chapter 4

Product spaces. Conditional Distribution and
Conditional Expectation

In this chapter we look at the following type of problems: I& \wnow something
extra about the experiment, how does that change our pildpalailculations. An
important part of statistics (Bayesian statistics) isdoih conditional distributions.
However, what about the more complex and abstract notioomditional expecta-
tion?

Why do we need conditional expectation?

Conditional expectation is a fundamental concept in therhef stochastic pro-
cesses. The simple idea is the following: suppose we havafooation about a
certain variable then our best guess about it would be som@toegular expec-
tation. However, in real life it often happens that we havasgartial information
about the random variable (or in time we come to know more gitprhen what
we should do is every time there is new information the sarapéeeQ or theo-
algebraZ is changing so they need to be recalculated. That will in tinange the
probability P which will change the expectation of the variable. The ctodal ex-
pectation provides a way to recalculate the expectationeofandom variable given
any new “consistent” information without going through th&uble of recalculating
(Q,.7,P) every time.

It is also easy to reason that since we calculate with respegtore precise
information it will be depending on this more precise infation, thus it is going
to be a random variable itself, “adapted” to this informatio

4.1 Product Spaces

Let (Q1, F1, 1) and(Q2, %, o) be twoo-finite measure spaces. Define:

Q = Q41 x Q, the cartesian product
F = O'({Bl xBy:Bg € e91782 S yz})

Let f : Q — R be.Z measurable such that
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Ve € Q1 f(wy,-) is #, measurable 0@,
Vap € Qp T(-,ap) is .71 measurable 0@,

Then we define:
II(M):/QZf(aa,aa)uz(daw
sz(a&):/glf(aa,aa)ul(dm

which are a kind of partial integrals, well defined by the meability of the restric-
tions.

Theorem 4.1 (Fubini's theorem).Define a measure:
HE) = [ 16 (e, w0 pa(den)pe(dey)
1/,

Thenp is the unique measure defined @@,.7) called the product measungith
the property:
H(ALx Ag) = (A p(R2) VA € F,

and as a consequence:

/fdu/l H(dan) = /I

Proof. Skipped. Apply the standard argument. Note that the firg Eealready
given.

Example 4.1 (Application of Fubini’'s Theorerhgt X be a positive r.v. o0Q,.% | P).
ConsiderP x A on (Q,.%) x ([0,), Z((0,0])), whereA is the Lebesgue measure.
LetA:= {(w,x) : 0 < x < X(w)}. Note thatA is the region under the graph of the
random variable&X. Let the indicator of this set be denoted wiith- 15. Then:

. . X(w)
1(w) = /{M (00,X)dA (x /1{0<x<x (9aA(0 = [~ dA (9 = X(@)

/ 1a(w,x)dP(w / Lo<xex(w)} (W)dP(w) = P{w: X(w) > X},

sinceX is a positive r.v.
We now apply Fubini’'s Theorem and we get :

H(A) // 1 (%, 0)du () dP(w)

—/x w)dP(w /Px>x

Thus reading the last line above:
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00
E(X) = / P(X > x)dx
0

This result is actually so useful that we will state it sepelsa

Corollary 4.1. If X is a positiverandom variable with distribution function ()
and we denot& (x) = 1— F(x), we have:

E(X) = /Ooof(x)dx

4.2 Conditional distribution and expectation. Calculation in
simple cases

We shall give a general formulation of conditional expeaotathat will be most use-

ful in the second part of this textbook. But, until then welilesent the cases that

actually allow the explicit calculation of conditional thisution and expectation.
Let X andY be two discrete variables q2,.7, P).

Definition 4.1 (Discrete Conditional Distribution). The conditional distribution
of Y givenX = x: Fyjx (+[x) is:
Frix (Y1) = P(Y < yIX = x)
The conditional probability mass function 6fX is:
fX,Y (X7 y)
fx (%)
Note: In the case wheR(X = x) = 0 we cannot define the conditional probability.

Definition 4.2 (Discrete Conditional Expectation).Let ¢(x) = E(Y|X = x) then
Y(X) = E[Y|X] is called the conditional expectation.

fyx (X)) =P(Y = y|X =x) =

Remark 4.1The conditional expectation is a random variable.

Definition 4.3 (Continuous Conditional Distribution). Let X,Y be two continu-
ous random variables. The conditional distribution is defins:

Ry = [ X0 g,

—o00 f)( (X)
The functionfy|x (y|X) = ff)((x&’)) is the conditional probability density function.
Definition 4.4 (Continuous Conditional Expectation).The conditional expecta-

tion for two continuous random variablesyg X) = E[Y|X] where the functiony
is calculated:

W09 =ECrX =x) = [ yhx(yixdy
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Example 4.2A point is picked uniformly from the surface of the unit spbeket
L =longitude angleéd and letl = latitude anglep. Let us find the distribution func-
tions of 6| andg|O.

Let C be a set on the sphere (or generallRi). The surface area of the sphere is
47?2 = 4. The set of points from which we sampleS€0,1) = {(x,Y,2) : X2 +y?+
Z = 1}. Then, since we pick the points uniformly the position of apiehosen has
distribution:

1
P((Xa Y, Z) € C) - /C El{x2+y2+22:1} (X, Y, Z)dXdde

Since we are interested in longitude and latitude we chaongpotar coordi-
nates to obtain the distribution of these variables. We thieetransformation:
X =rcosfcosp, Y =rsinfcosp andZ = rsing. To obtain the distribution we
calculate the new integral. The Jacobian of the transfaomé:

—rsinf@cosp —rcosf sing cosb cosgp
J=| rcosfcosp —rsin@sing sinBcosy
0 r cosgp sing

=r2¢os @+ r2sir? pcosp = r2 cosy

Note that the indicator is 1 if and onlyiif= 1. We conclude that

1
P((x.2) €C) = | _-|cospldode,

wherelmC is the set ofpolar coordinates that make the s&tTherefore, the joint
distribution function is

1
f(0,¢) = EICOS@OI, pe[-m/2,m/2],0 € [0,2m].

Now, we get the marginal ap:

and the marginal of:

o) = [0 2 do= " L cospdp=
o )—/ 23 O w—/ﬁn/zﬁcosrp =5

Thus, we calculate immediately the conditional distribns:
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1

fe\(p(e|(p) = Z_ln 0 e [0,27'[]
co

foio(916) = 2. ge[-m/2.m/2

We note thai and ¢ are independent (the product of marginals is equal to the
joint distribution) but the conditionals are different dteethe parameterizations
(this particular example is known &se Borel paradox Also note that the condi-
tional expectations are equal to the regular expectatibisss of course because the
variables are independent. We will obtain this propertyeneyal in the following
section.

Example 4.3Many clustering algorithms are based on random projectiorssim-
plicity we consider the direction of the first coordinatetuector €; as the best
possible projection. However, the probability of findingsttlirection exactly is zero
so we consider a tolerance angleand we say that a projection is “good enough”
if it makes an angle less than with ?1.

We want to calculate the probability that a random directiakes an angle less
thana with €.

The example is ifR® but we can easily generalize it to any dimension. We assume
that 0< ae < 11/2, otherwise the problem becomes trivial.

Directions inR?® are equivalent to points on the unit sphere. Therefore, tbie-p
ability to be calculated is twice the probability that a gaihosen at random on the
sphere belongs to the cone of anglecentered at the origin. Why twice? Because
we do not care if the angle formed by the random direction thve, or —€;.
Thus, we calculate the probability by taking the ratio of #nea of the intersection
of the said cone and the sphere and the total surface area spltere.

The area of the unit sphere B is readily calculated a% (e.g.,Kendall
(2009, I (x) = [y t*"le'dt is the gamma function). In the particular case when
d=3 (I'(%) = 4) we obtain the well known arear#

To compute the support area of the cone we switch to poladauates:

X1 = rcosf,;
X2 = r sin6; cosb,
X3 = rsinB; sinb,

where € [0,),6; € [0, 11,0, € [0,271].

The points of interest can be found whes: 1 and6; <€ [0, ae|, and we need to
double the final area found to take into account symmetridesngith respect to
€.

One can check immediately, that the Jacobian of this chahgear@bles is
r?sin6; and that the probability needed is easily calculated as:
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. o Oe
2sirt —
2

If we now consideK projections then the probability that at least one is a “good
enough projection” is:

1—(1—2sinz%)K

Note that the example is extendable to the more intere&ingase but in that
case we do not obtain an exact formula instead only boun@do8egive citation
once it exists.

4.3 Conditional expectation. General definition

To summarize the previous sectionXfandY are two random variables we have
defined the conditional distribution and conditional extpgon of onewith respect
to the other. In fact, we have defined more: the conditional expectatfamewith
respect to the information contained in the other

More precisely, in the previous subsection we defined theasgtion ofX con-
ditioned by theo-algebra generated by: o(Y). Thus, we may write without a
problem:

E[X|Y] =E[X|o(Y)].

This notion may be generalized to define conditional expiectavith respect
to any kind of of information §-algebra). As definition we shall use the following
theorem. We will skip the proof.

Theorem 4.2.Let (Q,.%#,P) be a probability space, and leZ” C .% a subo-
algebra. Let X be a random variable d®2,.%,P) such that either X is positive
or X € LY(Q). Then, there exists a random variable Y, measurable witheesto
2 with the property:

/YdP: /XdP VA X
A JA

This Y is defined to be the conditional expectation of X wisheet ta’#” and is
denotedE[X|.7].

Remark 4.2We note that the conditional expectation, unlike the regedaectation
is a random variable measurable with respect to the signebedgunder which is
conditioned. In simple language it has adapted itself tortf@mation contained in
the o-algebra#". In the simple cases presented in the previous section thai-co
tional expectation is measurable with respeai (¥ ). But since this is a very simple
sigma algebra then it has to be in fact a functioiy of

Note: We will take this theorem as a definition.
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Proposition 4.1 (Properties of the Conditional Expectatim). Let (Q,.#,P) a
probability space, and le¥", %1, %5 sub-o-algebras. Let X and Y be random vari-
ables of the probability space. Then we have:

(1) If & ={2,Q} thenE[X|.#| = EX = const
(2) E[aX + BY|#'] = aE[X|# |+ BE[Y|#] for a, B real constants.
(3) If X <Y a.s.therE[X|.7] <E[Y|#] a.s.
(4) E[EX|.7]] = EX
(5) If o1 C 45 then
E[E[X|#4]| 2] = E[E[X|.%5]| #4) = E[X|.74]

(6) If X is independent af#” then

E[X|#] = E[X]
(7) If Y is measurable with respect g then

E[XY|#] = YE[X|.#]

After proving these properties (see Probldrg) they will become essential in
working with conditional expectation. In fact the definitits never used anymore.

Example 4.4Let us obtain a weak form of the Wald’s equation (an equatiat t
serves a fundamental role in the theory of stochastic psesgsight now by a sim-
ple argument. LeXy, Xp, ..., Xy, ... be i.i.d. with finite mearu and letN be a ran-

dom variable taking values in strictly positive integers amdependent oX; for all

i. For exampleX's may be the results of random experiments Bhghay be some
stopping strategy established in advance. et X1+ Xo+ - - - + Xy. FINdE(Sy).

Let
d(n) =E[NIN=n]=E[Xg+Xo+---+Xy|N =n]

- 3 EXIN =1 = 5 EX) = n

by independence. Therefoi[Sy|N] = ¢ (N) = Nu. Finally, using the properties
of conditional expectation:

E(Sw) = E[E[SuIN]] = EINy] = HEIN].

Note that we have not used any distribution form only the prtes of the condi-
tional expectation.
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Problems

4.1.Prove the Fubini’'s Theorerh 1 on pages0.

4.2.Using the Theorem-Definitiofh.2 on page84 prove the seven properties of the
conditional expectation in Propositid@nl.

4.3.Let X be arandom variable on the probability spa@e.#,P). Leta seA € .%
and the sigma algebra generated by the set dermtéy What isE[X|c(A)]? Let
1, denote the indicator A. What isE[X|14]?

4.4.Let X,Y,Z be three random variables with joint distribution
PX=kY=mzZ=n)=p3q"3

for integersk,m,n satisfying 1< k < m< n, where O< p< 1, p+qg= 1. Find

E{Z|X,Y}.

4.5. A circular dartboard has a radius of 1 foot. Thom throws 3gattthe board
until all 3 darts are sticking in the board. The locationshef8 darts are independent
and uniformly distributed on the surface of the board. TgtT,, and Tz be the
distances from the center to the closest dart, the nextstialset, and the farthest
dart, respectively, so thdj < T, < Ts. FindE[Ty].

4.6.Let Xy, Xo,...,X1000be i.i.d. each taking on both 0 and 1 with probabiﬁnPut
Sv=X1+- -+ Xn. FINAE [(S1000— S300)1{570-400}] @NAE [(S1000— S300)%1(s,05-200} ]



