
CHAPTER 7

INTRODUCTION TO STOCHASTIC
PROCESSES

What is a stochastic process?

Definition 7.1 Given a probability space (Ω,F ,P), a stochastic process is any
collection of random variables defined on this probability space.

More specifically the collection of random variables {X(t)}t∈I or alternatively
written {X(t) : t ∈ I}, where I is the index set. We will alternate between the
notations Xt and X(t) to denote the value of the stochastic process at time t.

We give here the famous R.A. Fisher quote, who answered the same question:

What is a stochastic process? Oh, it’s just one darn thing after another.

In this chapter we start the study of stochastic processes by presenting common
properties and characteristics. These properties will make the study of stochastic
processes easier and they are generally desirable properties. However, it is not to be
understood that all stochastic processes have these properties. In the second section
of this chapter we present the easiest stochastic process we can imagine: the coin
toss process (the Bernoulli process).
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7.1 GENERAL CHARACTERISTICS OF STOCHASTIC PROCESSES

7.1.1 The index set I
The parameter that indexes the stochastic process determines the type of stochastic
process we are working with.

For example if I = {0, 1, 2 . . .} (or equivalent) we obtain the so-called discrete-
time stochastic processes. We will often write {Xn}n∈N in this case.

If I = [0,∞] we obtain the continuous-time stochastic processes. We shall write
{Xt}t>0 in this case.

If I = Z× Z we may be describing a discrete random field. If I = [0, 1]× [0, 1]
we may be describing the structure of some random material.

These are the most common cases encountered in practice but the index set can
be quite general.

7.1.2 The state space S
This is the space where the random variables Xt which constitute our stochastic
process take values. Since we are talking about random variables and random
vectors, then necessarily S ⊆ R or Rn. Again, we have several important examples.
If S ⊆ Z we say that the process is integer valued or a process with discrete state
space. If S = R then we say that Xt is a real-valued process or a process with a
continuous state space. If S = Rk then Xt is a k-dimensional vector process.

7.1.3 Adaptiveness, filtration, standard filtration

In the special case when the index set I possesses a total order relationship13 we can
talk about the information contained in the process X at some moment t ∈ I. To
quantify this information we introduce the abstract notion of filtration.

Definition 7.2 (Filtration) We say that a probability space (Ω,F ,P) is a filtered
probability space if and only if there exist a sequence of sigma algebras {Ft}t∈I
included in F such that it is an increasing collection i.e.:

Fs ⊆ Ft, ∀s ≤ t, s, t ∈ I.

The filtration is called complete if its first element contains all the null sets. To write
this mathematically, let I = [0,∞), in this case a complete filtration has the property
that

∀N ∈ F , such that P(N) = 0 ⇒ N ∈ F0.

From now on we assume that any filtration defined therein are complete and all
filtered probability spaces are complete.

13i.e., for any two elements x, y ∈ I, either x ≤ y or y ≤ x
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Definition 7.3 (Adapted stochastic process) A stochastic process {Xt}t∈I defined
on a filtered probability space (Ω,F ,P, {Ft}t∈I) is called adapted if and only if
Xt is Ft-measurable for any t ∈ I.

This is an important concept. In general Ft quantifies the flow of information
available at any moment t. By requiring that the process be adapted we insure that
we can calculate probabilities related to Xt based solely on the information available
at time t. Furthermore, since the filtration by definition is increasing this also says
that we can calculate said probabilities at any later moment in time as well.

Remark 7.4 On the other hand, also due to the same increasing property of filtration
it may not be possible to calculate probabilities related to Xt based only on the
information available in Fs for a moment s earlier than t (s < t). This is why the
conditional expectation is important for stochastic processes. Recall that E[Xt|Fs]
is Fs-measurable therefore even if we may not calculate the probabilities related
to Xt we can calculate probabilities related to its best guess based on the current
information E[Xt|Fs].

Definition 7.5 (Standard filtration) In some cases we are only given a standard
probability space (non-filtered). This usually corresponds to the case where we
assume that all the information available at time t comes from the stochastic process
Xt itself. No external sources of information are available. In this case we introduce
the standard filtration generated by the process {Xt}t∈I itself. To this end let:

Ft = σ({Xs : s ≤ t, s ∈ I}),
where we use the notation for the sigma algebra generated by random variables given
in Definition 2.13 on page 44. With this definition the collection of sigma algebras
{Ft}t is increasing and obviously the process {Xt}t is adapted with respect to it.

Notation. In the case when the filtration is not specified we will always construct
the standard filtration and denote it with {Ft}t.

In the special case when I = N the natural numbers, we will sometimes substitute
the notation X1, X2, . . . , Xn instead of Fn, as in:

E[X2
T |Fn] = E[X2

T |Xn, . . . , X0]

7.1.4 Pathwise realizations

Suppose a stochastic process Xt is defined on some probability space (Ω,F ,P).
Recall that by definition for every t ∈ I fixed Xt is a random variable. On the
other hand for every ω0 ∈ Ω fixed we find one realization of these variables for all
t’s: Xt(ω0). Thus, for every ω0 we find a collection of numbers representing the
realization of the stochastic process - a path. Therefore, a realization of the stochastic
process is a path of the Stochastic process:

t 7→ Xt(ω0)
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Figure 7.1 An example of 5
paths corresponding to 5 ω’s for a
certain stochastic process.
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This means that we can identify each ω is a function from I into R and thus Ω is
a subset of all the functions from I into R.

In Figure 7.1 we plot five different paths each corresponding to a different re-
alization ω. Accordingly, calculating probabilities regarding the distribution of the
stochastic processes is equivalent with calculating the distribution of these paths in
space. However, such a calculation is impossible when the state space is infinite or
when the index set is infinite (infinite here = not countable). There is hope however.

7.1.5 The finite distribution of stochastic processes

As we have seen a stochastic process is just a collection of random variables. Thus, we
have to ask: what quantities characterize a random variable? The answer is obviously
its distribution. However, here we are working with a lot of variables. Depending
on the number of elements in the index set I the stochastic process may have a finite
or infinite number of components. In either case we will be concerned with the
joint distribution of a finite sample taken from the process. This is due to practical
consideration and the fact that in general we cannot study jointly a continuum. The
processes that have a continuum structure on the set I serve as subject for a more
advanced topic in Stochastic Differential Equations. However, even in that more
advanced situation, the finite distribution of the process still constitutes a primary
object of study.

Let us clarify what we mean by finite dimensional distribution. Let {Xt}t∈I
be a stochastic process. For any n ≥ 1 and for any subset {t1, t2, . . . , tn} of I
we will write FXt1 ,Xt2 ,...,Xtn

for the joint distribution function of the variables
Xt1 , Xt2 , . . . , Xtn . The statistical properties of the process Xt are completely de-
scribed by the family of distribution functions FXt1 ,Xt2 ,...,Xtn

indexed by the n and
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the ti’s. This is a famous result due to Kolmogorov in the 1930’s, (the exact state-
ment is omitted – the consistency relations are very logical, you can look them up on
any stochastic processes book - for example Karlin and Taylor (1975) or Øksendal
(2003)).

I will restate this result again: If we can describe these finite dimensional joint
distributions we completely characterize the stochastic process. Unfortunately, in
general this is a complicated task. However, there are some properties of the stochastic
processes that makes this calculation task much easier. We discuss them next.

7.1.6 Independent components

This is the most desirable property and the the most useless. Let us explain. This
property implies that for any sample {t1, t2, . . . , tn} of I we obtain the variables
Xt1 , Xt2 , . . . , Xtn independent. Notice that the joint distribution FXt1 ,Xt2 ,...,Xtn

is
just the product of marginals in this case thus very easy to calculate. However, no
reasonable real life processes posses this property. In effect, every new component
being random implies no structure of the process so this is just a noise process.
Generally speaking, in practice, this is the component in a perceived signal that one
wishes to eliminate to get to the real signal process.

7.1.7 Stationary process.

A stochastic process Xt is said to be strictly stationary if the joint distribution
functions of:

(Xt1 , Xt2 , . . . , Xtn) and (Xt1+h, Xt2+h, . . . , Xtn+h)

are the same for all h > 0 and any arbitrary selection {t1, t2, . . . , tn} in I. In
particular the distribution of Xt is the same for all t. Notice that this property
simplifies the calculation of the joint distribution function. The condition implies
that in essence the process is in equilibrium and that the particular times at which we
choose to examine the process are of no relevance.

A stochastic process Xt is said to be wide sense stationary or covariance sta-
tionary if Xt has finite second moments for any t and if the covariance function
Cov(Xt, Xt+h) depends only on h for all t ∈ I. This is a generalization of the
notion of stationarity. A strictly stationary process with finite second moments is co-
variance stationary. The reverse is not true, there are plenty of examples of processes
which are covariance stationary but are not strictly stationary. The notion arose from
real life processes that are covariance stationary but not stationary. Plus typically we
can test the stationarity of covariance but it is very hard to test the strict stationarity.

Many phenomena can be described by stationary processes. Furthermore, many
classes of processes which will be discussed later in this book become eventually
stationary if observed for a long time.

Despite this, some of the most common processes encountered in practice – the
Poisson process and the Brownian motion – are not stationary. Instead they have
stationary (and independent) increments.
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7.1.8 Stationary and Independent Increments

In order to talk about the increments of the process we assume that the set I is totally
ordered.

A stochastic process Xt is said to have independent increments if the random
variables

Xt2 −Xt1 , Xt3 −Xt2 , . . . , Xtn −Xtn−1

are independent for any n and any choice of the sequence {t1, t2, . . . , tn} in I with
t1 < t2 < · · · < tn.

A stochastic process Xt is said to have stationary increments if the distribution
of the random variable Xt+h − Xt depends only on the length h of the increment
and not on the time t. Notice that this is not the same as stationarity of the process
itself. In fact except for the constant process there exist no process with stationary
and independent increments which is also stationary. This is illustrated in the next
Proposition.

Proposition 7.6 If a process {Xt, t ∈ [0,∞)} has stationary and independent in-
crements and Xt ∈ L1, ∀t then

{
E[Xt] = m0 +m1t

V ar[Xt −X0] = V ar[X1 −X0]t,

where m0 = E[X0], and m1 = E[X1]−m0.

Proof : We will give the proof for the variance, the result for means is entirely
similar (see Karlin and Taylor (1975)). Let f(t) = V ar[Xt −X0]. Then for any t, s
we have:

f(t+ s) = V ar[Xt+s −X0] = V ar[Xt+s −Xs +Xs −X0]

= V ar[Xt+s −Xs] + V ar[Xs −X0] (indep. increments)
= V ar[Xt −X0] + V ar[Xs −X0] (stationary increments)
= f(t) + f(s)

or the function f is additive (the above equation is also called Cauchy’s functional
equation). If we assume that the function f obeys some regularity conditions14 then
the only solution is f(t) = f(1)t and the result stated in the proposition holds.

7.1.9 Other properties that characterize specific classes of stochastic
processes

• Point Processes. These are special processes that count rare events. They are
very useful in practice due to their frequent occurrence. For example look at

14these regularity conditions are either (i) f is continuous, (ii) f is monotone, (iii) f is bounded on compact
intervals. In particular the third condition is satisfied by any process with finite second moments. The
linearity of the function under condition (i) was first proven by Cauchy himself Cauchy (1821).
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the process that gives at any time t the number of busses passing on a particular
point on the 1-st street, starting from an initial time t = 0. This is a typical
rare event (“rare” here does not refer to the frequency of the event, rather to
the fact that there are gaps between event occurrence). Or look at the process
that counts the number of defects in a given area of material. A particular case
(and the most important) is the Poisson process which we will be studied later.

• Markov processes. In general terms this is a process with the property that
given Xs, future values of the process (Xt with t > s) do not depend on any
earlier Xr with r < s. Or, put differently the behavior of the process at any
future time when its present state is known exactly is not modified by additional
knowledge about its past behavior. The study of Markov processes constitutes
a big part of this book. Note also that for such a process the finite distribution of
the process simplifies greatly. We explain this. Using conditional distributions,
for a fixed sequence of times t1 < t2 < · · · < tn we can write:

FXt1 ,Xt2 ,...,Xtn
= FXtn |Xtn−1

,...,Xt1
FXtn−1

|Xtn−2
,...,Xt1

· · ·FXt2 |Xt1
FXt1

= FXtn |Xtn−1
FXtn−1

|Xtn−2
· · ·FXt2

|Xt1
FXt1

= FXt1

n∏

i=2

FXti
|Xti−1

which is a much simpler structure. In particular it means that we only need to
describe one step transitions.

• Martingales. This is a process that has the property that the expected value of
the future given the information we have today is going to be equal to the known
value of the process today. These are some of the oldest processes studied in
the history of probability due to their tight connection with gambling. In fact
in French (the origin of the word is due to Paul Lévy) a martingale means a
winning strategy (formula).

7.2 A SIMPLE PROCESS – THE BERNOULLI PROCESS

We will start the study of stochastic processes with a very simple process – tosses of
a (not necessarily fair) coin. This is in fact historically the first process ever studied.

More specifically let Y1, Y2, . . . be iid Bernoulli random variables with parameter
p, i.e.,

Yi =

{
1 with probability p

0 with probability 1− p

To simplify the language say a head appears when Yi = 1 and a tail is obtained at the
i-th toss if Yi = 0. Let

Nk =

k∑

i=1

Yi,
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the number of heads up to thek-th toss, which we know is distributed as a Binomial(k, p)
random variable (Nk ∼ Binom(k, p)).

A sample outcome may look like this:

Table 7.1 Sample Outcome

Yi 0 0 1 0 0 1 0 0 0 0 1 1 1
Ni 0 0 1 1 1 2 2 2 2 2 3 4 5

Let Sn be the time at which n-th head (success) occurred. Mathematically:

Sn = inf{k : Nk = n}
Let Xn = Sn − Sn−1 be the number of tosses to get the n-th head starting from the
(n− 1)-th head. We present a sample image below:

X(1)=3 X(2)=3 X(3)=5 X(4)=1 X(5)=1S(1) S(2) S(3) S(4) S(5)0
Figure 7.2 Failure and Waiting time

Proposition 7.7 We will give some simple results about these processes.

1) "Waiting times" X1, X2 . . . are iid "trials" ∼Geometric(p) r.v.’s.

2) The time at which then-th head occurs is Negative Binomial,Sn ∼ Negative Binomial(n, p).

3) Given Nk = n the distribution of (S1, . . . , Sn) is the same as the distri-
bution of a random sample of n numbers chosen without replacement from
{1, 2, . . . , k}.

4) Given Sn = k the distribution of (S1, . . . , Sn−1) is the same as the distribu-
tion of a random sample of n − 1 numbers chosen without replacement from
{1, 2, . . . , k − 1}.

5) We have as sets:
{Sn > k} = {Nk < n}

6) Central Limit theorems:

Nk −E[Nk]√
V ar[Nk]

=
Nk − kp√
kp(1− p)

D−→ N(0, 1)
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7)
Sn −E[Sn]√

V ar[Sn]
=

Sn − n/p√
n(1− p)/p

D−→ N(0, 1)

8) As p ↓ 0

X1

E[X1]
=

X1

1/p

D−→ Exponential(λ = 1)

9) As p ↓ 0

P
{
N[ tp ]

= j
}
−→ tj

j!
e−t

I will demonstrate by proving several of these properties. The rest are assigned as
exercises.

For 1) and 2) there is nothing to prove since by definition Xi’s are Geometric(p)
random variables and Sn’s are Negative Binomial. We need only to show that the
Xi’s are independent. See problem 7.1.

Proof (Proof for 3)): We will take n = 4 and k = 100 and prove this part only for
these numbers. The general proof is identical, see problem 7.2. A typical outcome
of a Bernoulli process looks like:

ω : 00100101000101110000100

In the calculation of probability we have to have 1 ≤ s1 < s2 < s3 < s4 ≤ 100.
Using the definition of the conditional probability we can write:

P(S1 = s1 . . . S4 = s4|N4 = 100)

=
P(S1 = s1 . . . S4 = s4 and N100 = 4)

P(N100 = 4)

=

P




s1−1︷ ︸︸ ︷
0000 . . . 1

s2−1︷ ︸︸ ︷
0000 . . . 1

s3−1︷ ︸︸ ︷
0000 . . . 1

s4−1︷ ︸︸ ︷
0000 . . . 1

100−s1−s2−s3−s4︷ ︸︸ ︷
0000 . . .




(
100
4

)
p4(1− p)96

=
(1− p)s1−1p(1− p)s2−1p(1− p)s3−1p(1− p)s4−1p(1− p)100−s1−s2−s3−s4

(
100
4

)
p4(1− p)96

=
(1− p)96p4(

100
4

)
p4(1− p)96

=
1(
100
4

) .

The result is significant since it means that if we only know that there have been
4 heads by the 100-th toss then any 4 tosses among these 100 are equally likely to
contain the heads.
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Proof (Proof for 8)):

P

(
X1

1/p
> t

)
= P

(
X1 >

t

p

)
= P

(
X1 >

[
t

p

])

= (1− p)[
t
p ] =

[
(1− p)−

1
p

]−p[ t
p ] → e−t,

since

lim
p→0

−p

[
t

p

]
= lim

p→0
−p

(
t

p
+

[
t

p

]
− t

p

)

= −t+ lim
p→0

p

(
t

p
−
[
t

p

])

︸ ︷︷ ︸
∈[0,1]

= −t

and done since this is the tail of the exponential distribution.

The problems ending this chapter contain a more involved application of the
Borel-Cantelli lemmas 1.21 and 1.22 to the Bernoulli process. The example is due
to Dembo (2008).

Problems

7.1 Prove that the Xi’s and the Si’s in Proposition 7.7 are independent.

7.2 Give a general proof of parts 3) and 4) in Proposition 7.7 for any n, k ∈ N.

7.3 Show the equality of sets in part 5) of Proposition 7.7 by double inclusion.

7.4 Prove parts 6) and 7) of Proposition 7.7 by applying the Central Limit Theorem.

7.5 Prove part 9) of Proposition 7.7.

Exercises due to Amir Dembo The next problems refer to the following situation.
Consider an infinite Bernoulli process with p = 0.5 i.e., an infinite sequence of
random variables {Yi, i ∈ Z} with P(Yi = 0) = P(Yi = 1) = 0.5 for all i ∈ Z. We
would like to study the length of the maximum sequence of 1’s. To this end let us
define some quantities.

Let

lm = max{i ≥ 1 : Xm−i+1 = · · · = Xm = 1},

be the length of the run of 1’s up to the m-th toss and including it. Obviously, lm
will be 0 if the m-th toss is a tail. We are interested in the asymptotic behavior of the
longest such run from 1 to n for large n.
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That is we are interested in the behavior of Ln where:

Ln = max
m∈{1,...,n}

lm

= max{i ≥ 1 : Xm−i+1 = · · · = Xm = 1, for some m ∈ {1, . . . , n}}

7.6 Explain why P(lm = i) = 2−(i+1), for i = 0, 1, 2, . . . and any m.

7.7 Apply the first Borel-Cantelli lemma 1.21 to the events An = {ln > (1 +
ε) log2 n}. Conclude that for each ε > 0, with probability one, ln ≤ (1 + ε) log2 n
for all n large enough.
Take a countable sequence εk ↓ 0 then conclude that:

lim sup
n→∞

Ln

log2 n
≤ 1, a.s.

7.8 Fix ε > 0. Let An = {Ln < kn} for kn = (1− ε) log2 n. Explain why

An ⊆
mn⋂

i=1

Bc
i ,

where mn = [n/kn] (integer part) and Bi = {X(i−1)kn+1 = . . . = Xikn = 1 are
independent events.
Deduce that P(An) ≤ P(Bc

i )
mn ≤ exp(−nε/(2 log2 n)), for all n large enough.

7.9 Apply the first Borel-Cantelli for the eventsAn defined in problem 7.8, followed
by ε ↓ 0, to conclude that:

lim inf
n→∞

Ln

log2 n
≥ 1 a.s.

7.10 Combine problems 7.7 and 7.9 together to conclude that

Ln

log2 n
→ 1 a.s.

Therefore the length of the maximum sequence of Heads is approximately equal to
log2 n when n, the number of tosses, is large enough.


