Midterm
 FE 610 Stochastic Calculus for Financial Engineers

posted October 12, 2012
to be handed in on October 22, 2012

1. Suppose that Y_{1}, Y_{2}, \ldots are independent and identically distributed random variables with $P\left\{Y_{1}=1\right\}=p$ and $P\left\{Y_{1}=-1\right\}=1-p$, for some $0<p<1 / 2$. Let

$$
S_{n}=\sum_{i=1}^{n} Y_{i}
$$

denote their partial sums so that $\left\{S_{n}\right\}_{n}, n=0,1,2, \ldots$ is a biased random walk. (Note that S_{n} is no longer a simple random walk.)
(a) Is $X_{n}=S_{n}-n(2 p-1)$ a martingale?
(b) Is $M_{n}=X_{n}^{2}-4 n p(1-p)$ a martingale?
(c) Is $M_{n}=\sum_{i=1}^{n} X_{i}^{2}-4 n p(1-p)$ a martingale?
(d) Is $Z_{n}=\left(\frac{1-p}{p}\right)^{S_{n}}$ a martingale?
2. Choose a point A at random in the interval $[0,1]$ (i.e., the position of A is Uniformly distributed on the interval $[0,1]$). Let L_{1} (respectively L_{2}) be the length of the bigger (respectively smaller) segment determined by A on $[0,1]$. Calculate the cumulative distribution function for both these variables, i.e.:
(a) $F_{L_{1}}(x)=\mathbf{P}\left(L_{1} \leq x\right)$ for $x \in \mathbb{R}$.
(b) $F_{L_{2}}(x)=\mathbf{P}\left(L_{2} \leq x\right)$ for $x \in \mathbb{R}$.
3. Give an example of two random variables X and Y such that $\mathbf{E}(X Y)=$ $\mathbf{E}(X) \mathbf{E}(Y)$ however X and Y are NOT independent.
4. Let $P_{t}, t<T$, denote the price of a zero-coupon bond maturing at time $t=T$, with principal $P_{t}=1$. Thus P_{t} is the price of an instrument that pays one dollar at time T and nothing in between (zero coupon). We consider the following model for the evolution of the price of this bond:

$$
d P_{t}=r_{t} P_{t} d t+\sigma(T-t) P_{t} d B_{t}
$$

where r_{t} is the short-term interest rate and σ is a known constant. We note that the volatility is $\sigma_{t}=\sigma(T-t)$.
(a) Use Itô's lemma to find the SDE for $\log P_{t}$.
(b) Find a solution for $\log P_{t}$. That is, express $\log P_{t}$ in terms of P_{0} and $\left(r_{s}, B_{s}\right)_{\{0 \leq s \leq t\}}$ only. This type of solution is called a strong solution.
(c) The yield-to-maturity is defined as

$$
R_{t}=-\frac{\log P_{t}}{T-t}
$$

Find the SDE for R_{t}. Express the volatility (the coefficient of the Brownian motion component) of R_{t} as a function of $(T-t)$.
(d) Find the SDE for the discounted bond price $Z_{t}=P_{t} / \beta_{t}$, where $\beta_{t}=e^{\int_{0}^{t} r_{s} d s}$, and show that it is a martingale.
5. A fair six sided die is rolled. If a 1,2 , or 3 shows up, stop. If not keep rolling until one of those three numbers comes up.
(a) Let X be a random variable of the result of the die when you stop. What is the sample space and distribution of X?
(b) Adam has an appointment in the city. He has three options of getting there from Hoboken: the bus, the PATH, or the ferry. Each has its own value of a random variable for time it will take him to get into the city denoted by $Y_{b u s}, Y_{P A T H}$, and $Y_{\text {ferry }}$ and the distributions are as follows:

- $Y_{\text {bus }}$ is exponentially distributed with mean 30 minutes
- $Y_{P A T H}$ is uniformly distributed between 15 minutes and 50 minutes
- $Y_{\text {ferry }}$ has the distribution $f_{Y_{\text {ferry }}}(y)=2(1-y), 0<y<1$ in hours

Adam can't make up his mind as to how to get in the city and decides to roll a die as in the previous part (a) with 1 being for the bus, 2 for the PATH train, and 3 for the ferry.
(c) What is the expected amount of time it takes Adam to get to into the city?
(d) His appointment is in half an hour. What is the probability that he makes it in time assuming that as long as he makes it into the city he makes it.
6. Check whether the following processes are martingales with respect to \mathscr{F}_{t} :
(a) $X_{t}=B_{t}+4 t$
(b) $X_{t}=B_{t}^{2}$
(c) $X_{t}=t^{2} B_{t}-2 \int_{0}^{t} s B_{s} d s$
(d) $X_{t}=B_{1}(t) B_{2}(t)$, where $B_{1}(t), B_{2}(t)$ are independent Brownian motions.
7. Write the following stochastic processes X_{t} in the standard Itô process form:

$$
d X_{t}=\mu(t, \omega) d t+\sigma(t, \omega) d B_{t}
$$

for suitable choices of $\mu \in \mathbb{R}^{n}, \sigma \in \mathbb{R}^{n \times m}$ and dimensions n and m :
(a) $X_{t}=B_{t}^{2}$, where B_{t} is one dimensional
(b) $X_{t}=1+t^{2}+e^{B_{t}}$, where B_{t} is one dimensional
(c) $X_{t}=B_{1}^{2}(t)+B_{2}^{2}(t)$, where $\left(B_{1}, B_{2}\right)$ is two dimensional
(d) $X_{t}=\left(4+\sin t, B_{t}\right)$, where B_{t} is one dimensional
(e) $X_{t}=\left(B_{1}(t)+B_{2}(t)+B_{3}(t), B_{2}(t)-B_{1}(t) B_{3}(t)\right)$, where $\left(B_{1}, B_{2}, B_{3}\right)$ is three dimensional
8. Consider the following SDE:

$$
d Y_{t}=-\frac{Y_{t}}{1-t} d t+d B_{t}
$$

where $t \in(0,1)$ and $Y_{0}=0$.
Verify that the solution is:

$$
Y_{t}=(1-t) \int_{0}^{t} \frac{d B_{s}}{1-s}
$$

and prove that $\lim _{t \rightarrow 1} Y_{t}=0$ a.s.. This particular process is called the Brownian bridge.
Bonus: Generate and plot 4 different paths of this process.

