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Section 1:
Introduction:

Our group hopes to achieve a definite correlation between a group of data sets 
involving specific counties in the state of New Jersey. These data sets concern children 
(under the age of 18) and families in the state that have children. They are: Juvenile 
Arrests, Child Poverty, Population Density, Child Abuse/Neglect Referrals, Median 
Family Income, Total School Enrollment, and Special Education Enrollments. Using the 
population, we need to transform all of our data into percentages in order to better 
compare each county’s statistics. We predict that child abuse, family income, and poverty 
numbers will contribute to the level of school enrollment in each area. We further predict 
that the school enrollment, combined with special education enrollment and population 
density, will explain the number of arrests in each county. Using several statistical 
functions in R, we will be able to test our predictions and evaluate the relevance of our 
data.

Findings and Conclusion:
After performing some analysis on our data, we found that some of our 

predictions held, while others did not. Our prediction that school enrollment could be 
described as a function of child abuse, family income and poverty was not entirely 
correct. In fact, it seems that school enrollment is relatively unrelated to many of the 
other variables. On the other hand, we found that there was a strong correlation between 
juvenile arrests and a number of the other variables, namely: the number of reported 
cases of child abuse, the number of children enrolled in special education and the number 
of children enrolled in school. Specifically, the number of arrests is strongly, positively 
correlated with reported cases of child abuse; weakly, positively correlated with children 
enrolled in special education; and weakly, negatively correlated with children enrolled in 
school. The specific model we found is:
log(Arrests) = 0.956301 + 0.086790(sped) +0.236819(abuse) -0.028434(school)



Section 2:
Data Acquisition:

We gathered the raw data from the web site:
http://www.kidscount.org/cgi-bin/cliks.cgi?action=rawdata_results&subset=NJ
and put it into the data into a basic spreadsheet. (attached as rawData.csv)
We then adjusted the data by dividing most of the columns by their respective total 
populations to get percentages that can apply to one another. (attached as basicData.csv)
We then edited the data to make it more easily managed by R. (attached as RData.csv)

> data = read.csv(‘c:\\tmp\\RData.csv’)
> attach(data)

Section 3:
Single variable study:
First we do a preliminary study of each variable that we are going to analyze. This will 
give us a good understanding of each variable, its distribution, and what it may be used 
for. It will also let us know of possible problems we may run into. 



> hist(Data$Abuse)

plot(Data$Abuse)



> qqnorm(Data$Abuse)
> qqline(Data$Abuse)

Our group believes that child abuse is a good indicator of school enrollment 
because that in a household bolds for a terrible environment in which to raise children. 
This environment leads to family problems and definitely does not help the enrollment 
level.

The histogram and scatter plot for child abuse/neglect referrals show a skew to the 
left.  There are a much higher percentage of counties with between 1% and 3% referrals 
than any other amount.  The Q-Q plot shows us that the distribution is close to normal in 
the middle, but very far from normal at the ends.



hist(Data$Sped)

plot(Data$Sped)



> qqnorm(Data$Sped)
> qqline(Data$Sped)

We believe the percentage of children enrolled in special education correlates 
to the number of juvenile arrests in any particular county.  This is because we 
associate special education needs with poor family situations and shabby upbringings. 
These factors lead to bad influences like drugs, gangs, and violence.

The histogram and scatter plot for Special Education Enrollment show a very 
sharp skew to the left.  There are many more instances of counties having smaller 
than 16% of children enrolled than that which have more than 16%.  The Normal Q-Q 
plot shows close to a normal distribution with slight skews on both ends of the plot.



hist(Data$Arrests)

plot(Data$Arrests)



> qqnorm(Data$Arrests)
> qqline(Data$Arrests)

Our group aims to show that the level of juvenile arrests in any county can be 
explained as a function of a specific combination of our variable data sets.  We 
believe the variables we have chosen show a special correlation to arrests and, when 
combined, will justify the differences in percentage of juvenile arrests in each county.

The histogram and scatter plot for juvenile arrests show a very uneven 
distribution.  There is quite a random assortment of values for percent of juvenile 
arrests in each county, with between 2 and 3 being the highest by a lot.  The Q-Q plot 
stays very true to normal until the end when it is not even close to a normal 
distribution.



hist(Data$Income)

plot(Data$Income)



> qqnorm(Data$Income)
> qqline(Data$Income)

The average family income in each county will provide more reasoning for the 
differences in school enrollment.  We believe poorer areas will have a lower 
percentage of enrollments.

The histogram and scatter plot for average family income show almost a bell 
curve with two huge valleys on either side of between 7000 and 8000.  The Normal 
Q-Q plot shows a fairly normal distribution in the middle with a few outliers at the 
beginning.



hist(Data$Poverty)

plot(Data$Poverty)



> qqnorm(Data$Poverty)
> qqline(Data$Poverty)

We believe that the level of child poverty will directly coincide with the 
percentage of juvenile arrests per county.  Areas with more poverty and poor living 
conditions will almost certainly provide more instances of crime.

The histogram and scatter plot for child poverty show a small skew to the left, 
with most of the counties’ poverty frequencies between 5% and 8%.  The Q-Q plot 
shows close to a normal distribution except for an outlier in the very beginning.



hist(Data$Density)

plot(Data$Density)



> qqnorm(Data$Density)
> qqline(Data$Density)

Population is an important statistic for our purposes.  To compare the 
counties, every variable must be changed to a percentage.  One of the reasons we 
believe population density contributes to the educational enrollment is because more 
densely populated areas are usually inner cities which have a lower percentage of 
enrollment.

The histogram and scatter plot for population density show a huge skew to the 
left.  Almost every county has a population density under 500.  There is an extreme 
outlier above 3500.  The Q-Q plot shows nothing near a normal distribution, with 
both ends being completely skewed.

Some of the population density numbers may be misleading due to the way 
we divided up the state of New Jersey.  Some counties with cities exhibiting extreme 
population densities might also include a lot of rural, area skewing the statistics.  A 
more accurate measure of population density would have to be done using individual 
towns and cities.



hist(Data$School)

> plot(Data$School)



> qqnorm(Data$School)
> qqline(Data$School)

Our group aims to show that the level of school enrollment can be explained 
as a function of the variables income, poverty, and child abuse.  We believe that these 
variables exhibit a strong correlation to each other and enrollment.  We hope to then 
use school enrollment as a variable to explain the number of juvenile arrests per 
county.  Areas with a lower percentage of children enrolled in school will have higher 
crime rates and more arrests.

The histogram and scatter plot for school enrollment are fairly close to a bell 
curve, with a little skew to the left.  The Q-Q plot shows the closest thing we have so 
far to a normal distribution, with a slight outlier in the beginning.

The percentage of school enrollment is skewed for every county because 
children aged 1-4 are obviously not enrolled in school yet.  Although this changes the 
actual data, it remains relatively accurate for our project because it has similar effect 
on each county.



Minimum Maximum Mean Median Standard 
Deviation

95% Confidence 
Interval

Abuse 0.8183 5.1840 2.3660 2.1150 1.178709 (1.861,2.869)

Sped 13.10 20.10 15.55 15.10 1.9382 (14.723,16.381)

Arrests 1.557 6.622 3.134 2.606 1.615998 (2.443,3.825)

Income 47570 119600 74640 74720 20587.14 (65833.31,83443.83)

Poverty 2.800 18.600 9.776 9.800 4.687953 (7.771,11.781)

Density 67.65 3765.00 741.90 369.50 941.8733 (339.059,1144.752)

School 58.20 75.18 66.07 66.90 4.668894 (64.073,68.067)



Section 4:
Two variable relationships:

> plot(data[2:8])

We explore any interesting 2 variable relationships before creating the linear models. 
Also we use these relationships to choose what variables should be used as explanatory 
variables for school and arrests.



 Table of Correlation Values

Abuse Sped Arrests Income Poverty Density School

Abuse 1 0.6966361 0.8320943 -0.6636096 0.5130734 -0.2758241 0.4045335

Sped 0.6966361 1 0.7002274 -0.3572419 0.1783266 -0.4452980 0.4181188

Arrests 0.8320943 0.7002274 1 -0.6010875 0.5566217 -0.1872739 0.1591841

Income -0.6636096 -0.3572419 -0.6010875 1 -0.9110014 -0.3356800 0.1533906

Poverty 0.5130734 0.1783266 0.5566217 -0.9110014 1 0.5321432 -0.3710788

Density -0.2758241 -0.4452980 -0.1872739 -0.3356800 0.5321432 1 -0.7015329

School 0.4045335 0.4181188 0.1591841 0.1533906 -0.3710788 -0.7015329 1

By evaluating the correlation table, we can see which pairs of variables are 
related. There are several pairs which seem to be strongly correlated: abuse-sped, abuse-
arrests, abuse-income, sped-arrests, density-school. Our initial objective was to explore 
school enrollment as a function of abuse, income and poverty, and arrests as a function of 
school enrollment, population density, and sped. However, looking at our correlation 
table, it seems that our original model must be revised. There is a very strong correlation 
between school enrollment and population density, so it makes sense to revise our model 
of the school enrollment function to include population density. 

Now, our immediate goal is to discover whether or not arrests is a function of 
abuse, poverty, sped, and school enrollments; and whether or not school is a function of 
income, poverty, abuse and density. Before doing any further graphical or numerical 
analysis, we predict that arrests is strongly influenced by abuse and sped, moderately 
influenced by poverty and not influenced by school. Also, we predict that school is 
strongly influenced by density, and minimally influenced by abuse, income and poverty. 

Also note that income and poverty are extremely correlated, with a correlation 
value of -0.911. This makes sense as the number of families with children living in 
poverty is directly and very strongly influenced by the general income of the county. 



> var = lm(Arrests~Abuse)
> plot(Abuse,Arrests)
> abline(coef(var))

> round(var$residuals, 4)
0.4447, -0.2772, 0.1626, 2.8310, 3.1887, 2.0055, -1.9322, 
0.0593, -2.3546, -0.2386, 0.5470, -1.1618, 0.0614, -0.4416, 
-0.4605, -0.5023, 0.0063, 0.087, -0.2403, -1.2344, -0.5499 

As indicated by our correlation table, abuse and arrests are very strongly related. 
The residuals for this data pair are relatively small, as many points lie very close to the 
regression line. Intuitively, these variable are very closely related because it seems that 
children brought up in an unstable environment are more likely to resort to crime. It is 
unlikely that children in an abusive household have been taught correct moral values by 
their parents. Because the environment in which children are raised has a significant 
impact on their social outlook, it is reasonable to assume that children coming from an 
abusive household are more likely to abuse others. Furthermore, a child being abused by 
his parents will be likely to spend less time at home. While this may be an effective way 
to minimize abuse, it is possible that the child will now spend this time getting into 
trouble. 



> var = lm(Arrests~Sped)
> plot(Sped,Arrests)
> abline(coef(var))

> round(var$residuals, 4)
1.2698, 0.0405, -1.4471, 2.7012, 1.4099, 1.6123, -0.1844, 
-1.1826, 0.7702, -0.6708, -2.1035, -0.3036, 0.0272, 
-0.7996, -0.6021, 1.0352, 0.2876, -0.2125, -0.9694, 0.2371, 
-0.9152 

The correlation between children in special education and number of arrests for 
each county is very strong. Although special education is often associated with learning 
disorders, a fair number of children in special education are placed there because of a 
simple refusal to learn. They may be disobedient and defiant in the normal classroom, 
and thus require special attention. Such behavior can be linked to illegal activity outside 
of school. 



> var = lm(Arrests~Poverty)
> plot(Poverty,Arrests)
> abline(coef(var))

> round(var$residuals, 4)
0.4447, -0.2772, 0.1626, 2.8310, 3.1887, 2.0055, -1.9322, 
0.0593, -2.3546, -0.2386, 0.5470, -1.1618, 0.0614, -0.4416, 
-0.4605, -0.5023, 0.0063, 0.0871, -0.2403, -1.2344, -0.5499 

Again, we see a clear correlation between these two variables. Although the 
relation is not as strong as the relations between arrests and abuse, and arrests and sped, it 
is still moderately strong. Once again, thinking about these two variables from a 
humanistic point of view, it makes sense that they should be related. Poverty can drive a 
person to commit illegal acts that that person would not normally commit. For example, a 
person living in poverty may be forced to steal food in order to provide for his family. So, 
it follows that the number of arrests in that area would be higher.



> var = lm(Arrests~School)
> plot(School,Arrests)
> abline(coef(var))

> round(var$residuals, 4)
0.8081, -0.7981, -0.6714, 3.4969, 3.3943, 3.2634, -0.2255, 
-0.7402, -0.2279, -1.8883, 0.4496, -1.3009, -0.5744, 
-1.4619, -0.0864, 0.9779, -0.0111, -0.8251, -1.5484, 
-0.8104, -1.2200 

The graph of our arrests and school variables confirms our suspicions about their 
correlation from the table. The two variables seem to be very minimally correlated, if at 
all. This goes a bit against intuition because it seems that a low percentage of children 
enrolled in school would imply a higher number of juvenile arrests (school is often a 
strong deterrent against crime for children). However, in this case, the data tells us that 
the two are unrelated. It should be noted that this data is a bit skewed. The school 
variable is the percentage of all children – including those too young to attend school – 
who are enrolled. The percentage of children who are actually eligible to attend school is 
most likely higher.



F Statistic P Value R2

Arrests v. Abuse 42.76 2.911e-06 0.6924

Arrests v. Sped 18.28 0.0004087 0.4903

Arrests v. Poverty 8.529 0.008774 0.3098

Arrests v. School 0.494 0.4907 0.02534

These figures serve to confirm our analysis above. arrests v. abuse has an 
extremely small P Value, indicating that there is a definite relationship between them. 
The P Values for arrests v. sped and arrests v. poverty are moderate values, and the P 
Value for arrests v. school is very high. From this, we can conclude that there is a very 
good chance that a legitimate relationship exists for arrests v. sped and arrests v. poverty, 
but that the variables arrests and school are most likely unrelated. The high F statistics 
from the first three comparisons tell us that our data is related, while the low F statistic 
for arrests v. school tells us that no connection exists between the two. Our predictions 
from above appear to be justified: arrests is strongly correlated with abuse, moderately 
correlated with sped and poverty, and weakly (if at all) correlated with school. 

Note that in all four plots above, there are three data points which do not conform 
with the rest of the data. All three points are from the same three counties and represent 
outliers in the study. For some reason, those three counties suffer from unusually high 
arrest rates. 



> var = lm(School~Income)
> plot(Income,School)
> abline(coef(var))

> round(var$residuals, 4)
4.1848, -4.0425, 3.3234, 0.2841, 2.1480, 3.1826, -5.2718, 
5.2792, -6.9282, 4.0841, 1.9304, -5.0229, -0.0671, -2.1062, 
-4.7212, -6.1739, 9.8763, -4.1391, 5.1355, -2.7516, 1.7963 

The relationship here is extremely weak. The points vary from the regression line 
at great extent, which can be easily seen from the relatively high residuals. This makes 
sense because public school systems make it possible for every child to attend school, 
regardless of his family's income. One possible explanation for a weak positive 
correlation is the following: families with children who have a low income may require 
their children to drop out of school in order to find a job to help support the family. We 
suspect that this is not a commonality, thus yielding a very weak relationship between 
these data. 



> var = lm(School~Poverty)
> plot(Poverty,School)
> abline(coef(var))

> round(var$residuals, 4)
4.6679, -4.7068, 2.1308, 1.1028, 2.1394, 4.9950, -3.5342, 
4.2002, -4.6087, 3.0686, 1.8586, -5.4729, -0.3110, -3.3467, 
-4.3862, -4.8167, 10.0376, -5.3097, 3.8027, -2.2100, 0.6992 

From this data, we see that school enrollment is very weakly related to poverty. 
The analysis is extremely similar to above because of the intimate connection between 
poverty and income. 



> var = lm(School~Abuse)
> plot(Abuse,School)
> abline(coef(var))

> round(var$residuals, 4)
2.7558, -0.8687, 3.8062, -1.4050, -2.9404, -1.7006, 
-5.9588, 4.9886, -7.6625, 7.3396, 1.7602, -2.9413, 1.9156, 
0.6015, -4.2143, -6.2677, 5.9821, -1.7264, 6.3471, -1.2107, 
1.3995 

Again, the residuals from these data are fairly high, and we can see from the plot 
that the points are scattered at great distances from the expected value. On the surface, 
there is no strong connection between the two variables. 



> var = lm(School~Density)
> plot(Density,School)
> abline(coef(var))

> round(var$residuals, 4)
1.5450, -1.0216, 1.5359, 0.2953, -0.6329, 0.0452, -0.5259, 
3.6920, 2.6448, 3.4647, 1.4118, -4.0238, -0.4691, -2.4665, 
-6.3856, -6.0997, 6.7601, -4.3976, 3.5171, 1.4849, -0.3739

The connection between population density and school enrollment is the only 
moderate-strong one. Notice that the relationship is negative, indicating that counties 
with a higher population density have lower school enrollment. This implies that children 
in urban areas are less likely to attend school. 



F Statistic P Value R2

School v. Income 0.4578 0.5068 0.02353

School v. Poverty 3.034 0.0977 0.1377

School v. Abuse 3.718 0.06892 0.1636

School v. Density 18.41 0.0003944 0.4921

The largest F Statistic comes from school v. density. The other three F Statistics 
are relatively low. Likewise, the smallest P value is associated with school v. density. The 
other three P Values are large enough so as to question the validity of the relationship 
between the respective variables. This confirms our suspicions about density being a 
moderately-strong influence on school enrollment. The other relationships are probably 
negligible. 



> var = lm(Poverty~Income)
> plot(Income,Poverty)
> abline(coef(var))

> round(var$residuals, 4)
-0.6390, 0.4645, -3.0473, 0.7603, -1.8855, 2.1114, 1.7859, 
-3.2126, 3.2094, 2.3426, -0.4572, -0.1840, 2.2491, -0.5642, 
1.2471, 1.2030, -2.0762, -0.1472, -1.7163, 1.5158, -2.9595 

As noted above, there is a very strong correlation between income and poverty. 
This is obvious because the income of the family directly affects whether or not they are 
living below the poverty line. 

F Statistic P Value R2

Poverty v. Income 92.71 9.645e-09 0.8299

The extremely small P Value and large F Statistic indicate an extremely strong 
relationship between poverty and income – as expected. 



Section 5:
Possible correlation of explanatory variables and creation of the simple models.

We want to do two analyses, one with school as the response variable and one with 
arrests as the response variable. Regardless of what we found to be unlikely variables in 
section 4 for the two models, here we are going to try every plausible variable. We will 
search for explanatory variables that should be removed, and for collinearity as we use all 
possible regressions to find the best possible model. 

School model:
Everything that could reasonably be used to explain school enrollment from our data is: 
abuse, income, poverty, density.
Check if any of these variables should not be used for the model of school.
Test the correlation and the colinearity. Also test the possibility of multilinearity. 
> round(cor(data[c(2,5,6,7)]), 3)
         Abuse Income Poverty Density
Abuse    1.000 -0.664   0.513  -0.276
Income  -0.664  1.000  -0.911  -0.336
Poverty  0.513 -0.911   1.000   0.532
Density -0.276 -0.336   0.532   1.000
There is a very high correlation between poverty and income, very close to negative 1, so 
we may eliminate one of them. 

> round(diag(solve(cor(data[c(2,5,6,7)]))),3)
  Abuse  Income Poverty Density 
  3.730   8.489   9.278   3.248
Both Income and Poverty have high VIFs, close to 10, so one or both of them may be 
prime targets for removal. This makes sense because having a high average income will 
usually imply a low percentage of families living below the poverty line. 

> eigs = eigen(cor(data[c(2,5,6,7)]))
> round(eigs$values, 3)
[1] 2.514 1.292 0.131 0.063
The fourth eigen value is very small, so there may be a multi colinearity problem. 

> round(eigs$vectors, 2)
      [,1]  [,2]  [,3]  [,4]
[1,]  0.43  0.61  0.66 -0.01
[2,] -0.61 -0.06  0.43 -0.66
[3,]  0.61 -0.14 -0.27 -0.73
[4,]  0.27 -0.77  0.54  0.18
When we look at the fourth eigen vector however it tells us as did the other three tests 
that income and poverty are closely related. In order to solve this we think we should 
remove income. We have the opportunity with R however to test each possible linear 
model with these four explanatory variables. Using the function from lecture 11:



> all.poss.regs(School~Income+Poverty+Abuse+Density, data)
     rssp sigma2 adjRsq    Cp    AIC    BIC     CV Income Poverty Abuse Density
1 221.409 11.653  0.465 5.306 26.306 28.395 27.326      0       0     0       1
2 166.499  9.250  0.576 1.774 22.774 25.907 25.416      0       1     1       0
3 161.254  9.486  0.565 3.245 24.245 28.423 29.644      0       1     1       1
4 158.818  9.926  0.545 5.000 26.000 31.223 33.415      1       1     1       1

For AIC and rssp, the best fit is just the single variable density as the only explanatory 
variable for schooling. This would lead to an under fitted model. We seem to lack the 
data required to make a fair model of the school enrollment. Both the schooling and 
density variables are slightly misleading as they were discussed to be in section 3. The 
correlation between schooling and the other variables of this project were found to be 
generally low. The relationship between them was not promising as we discussed in 
section 4. All these factors lead us to feel that our analysis of school enrollment as a 
function of income, poverty, abuse, and population density may be flawed. Here we 
decide that we have found no strong relations to build a model of school enrollment with. 
Abandoning the school model, we shift our focus to the arrests model.

Arrests Model:
Arrests can potentially be a function of all of the other variables, so we must do a 
multilinearity test for all of them. 

> round(cor(data[c(2,3,5,6,7,8)]), 3)
         Abuse   Sped Income Poverty Density School
Abuse    1.000  0.697 -0.664   0.513  -0.276  0.405
Sped     0.697  1.000 -0.357   0.178  -0.445  0.418
Income  -0.664 -0.357  1.000  -0.911  -0.336  0.153
Poverty  0.513  0.178 -0.911   1.000   0.532 -0.371
Density -0.276 -0.445 -0.336   0.532   1.000 -0.702
School   0.405  0.418  0.153  -0.371  -0.702  1.000
The only closely correlated variables are poverty and income, as from last time. The test 
from last time showed that the VIF was high for them as well, so before moving on, we 
deiced to remove income as an explanatory variable. 

> cor = cor(data[c(2,3,6,7,8)])
> round(diag(solve(cor)), 2)
  Abuse    Sped Poverty Density  School 
   5.27    2.25    5.06    3.56    2.71
None of the VIFs are very large.

> eigs = eigen(cor)
> round(eigs$values, 3)
[1] 2.486 1.792 0.401 0.231 0.090
> round(eigs$vectors, 2)
      [,1]  [,2]  [,3]  [,4]  [,5]
[1,] -0.44 -0.50  0.26 -0.29  0.64
[2,] -0.50 -0.30 -0.67  0.46 -0.09
[3,]  0.11 -0.71  0.20 -0.17 -0.64



[4,]  0.52 -0.33  0.19  0.69  0.34
[5,] -0.53  0.22  0.64  0.45 -0.25
The 5th eigen value is small, and the corresponding eigen vector shows us we should look 
into collinearity. Once we decide on what model to use, we will look back into the 
possibility of multicollinearity. It is not a problem until we are trying to find how each 
individual variable affects the resulting arrests.

Now to create the model for arrests, we again use the function from lecture 11.
> all.poss.regs(Arrests~Abuse+Sped+Poverty+Density+School, data)
    rssp sigma2 adjRsq    Cp    AIC    BIC    CV Abuse Sped Poverty Density School
1 16.067  0.846  0.676 5.109 26.109 28.198 1.884     1    0       0       0      0
2 14.101  0.783  0.700 4.404 25.404 28.538 1.814     1    0       0       0      1
3 11.731  0.690  0.736 3.143 24.143 28.321 1.649     1    1       0       0      1
4 11.558  0.722  0.723 4.905 25.905 31.127 1.906     1    1       1       0      1
5 10.900  0.727  0.722 6.000 27.000 33.267 1.899     1    1       1       1      1

Using the AIC goodness test, the best model would be using all 5 variables. Using the 
adjusted R squared value though the best model would be Arrests as function of just 
abuse, sped and school. Doing the step process uses the adjusted R squared value as the 
signifier so we get.
> step(lm(Arrests~1), Arrests~Abuse+Sped+Poverty+Density
+School, trace=0)

Call:
lm(formula = Arrests ~ Abuse + School + Sped)

Coefficients:
(Intercept)        Abuse       School         Sped  
    2.82510      0.99600     -0.09055      0.25306  
With a very close AIC value we have pretty much the same explaining power. Given the 
choice between high and low number of variables, we pick the simpler model of only 
abuse school and sped. We may try adding in variations of the other variables later and 
see if we get a higher R squared value. 

> model1 = lm(Arrests~Abuse+School+Sped)
> summary(model1)
Residuals:
    Min      1Q  Median      3Q     Max 
-1.1172 -0.4875 -0.1767  0.3792  2.3599 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  2.82510    2.98349   0.947  0.35695    
Abuse        0.99600    0.22305   4.465  0.00034 ***
School      -0.09055    0.04447  -2.036  0.05764 .  
Sped         0.25306    0.13656   1.853  0.08132 .  

Residual standard error: 0.8307 on 17 degrees of freedom
Multiple R-Squared: 0.7754,     Adjusted R-squared: 0.7358 
F-statistic: 19.56 on 3 and 17 DF,  p-value: 9.42e-06 



Section 6: 
Residual Diagnostics and variation of the model:
Now that the model has less explanatory variables we can check for collinearity again
> cor = cor(data[c(2,3,8)])
> round(diag(solve(cor)),2)
 Abuse   Sped School 
  2.00   2.03   1.25 
> eigs = eigen(cor)
> round(eigs$values, 3)
[1] 2.026 0.670 0.303
and we find there is none, so we can move on to the residuals. 

> plot(fitted(model1), residuals(model1))
> abline(0,0,lty=2)



> plot(Abuse, residuals(model1))
> lines(lowess(Abuse, residuals(model1)))
> abline(0,0,lty=2)



> plot(School, residuals(model1))
> lines(lowess(School, residuals(model1)))
> abline(0,0,lty=2)



> plot(Sped, residuals(model1))
> lines(lowess(Sped, residuals(model1)))
> abline(0,0,lty=2)

There is no obvious relationship between the residuals and any of the explanatory 
variables or the fitted values. There is no obvious way to change the model to reduce the 
residuals based on this. The only variable that looks like it could use transformation 
because it has a relatively smooth curve is school. We use GAM to see what 
transformation might be applicable.



> par(mfrow = c(1,3))
> plot(gam(Arrests~s(Abuse)+s(School) + s(Sped)))

Each curve looks odd, and not like a particular function. School could be transformed 
with a cubic, so we’ll try that.
> model2 = lm(Arrests~Abuse + poly(School,3)+Sped)
> summary(model2)
… 
Multiple R-Squared: 0.8101,     Adjusted R-squared: 0.7467
…
This is better than the 0.7358 for model1, but not by much.



Now we check for the normality of the residuals.
> qqnorm(residuals(model2))
> qqline(residuals(model2))

This is not a very normal set of residuals, so we check the other model to see if its 
residuals are more normally distributed. 



> qqnorm(residuals(model1))
> qqline(residuals(model1))

These are indeed a nice fit to the normal distribution, so we will stick with the simpler 
linear model after all. The residuals need to be normally distributed for our model to be 
good.
Next use durbin-watson to test for independence.

> durbin.watson(model1)
 lag Autocorrelation D-W Statistic p-value
   1      -0.1451842      1.981533 0.472
 Alternative hypothesis: rho != 0
This statistic is fine.



> funnel(model1)

The variance seems to be close to 0 with the exception of one outlier that throws it way 
off. We need to eliminate this outlier to have a relatively constant variance.



To eliminate this outlier we should find it with an lrplot
> lrplot(model1)

Clearly value 4 is both very non-influential and has a very high externally studentised 
residual. We can remove it without any large change to the model. 



> v = c(1,2,3,5:21)
> data2 = data[v,1:8]
> detach(data)
> attach(data2)
> model3 = lm(Arrests~Sped+Abuse+School)
> funnel(model3)

This looks much better as the residuals are now low and more linear. 



Check for any other outliers:
> lrplot(model3)

Looks great.



We might be able to use a box cox plot to get a better fit. 
> boxcoxplot(Arrests~Sped+Abuse+School, data2)

As you can see the lowest point is very close to 0, so we should try a logarithmic 
transform.  



> model4 = lm(log(Arrests)~Sped+Abuse+School)
> funnel(model4)

more linear, but seems like there is one large outlier again, do another lrplot to try and 
find it, to remove it. The adj R^2 value goes up to 0.795



> lrplot(model4)

lets remove data point 1
> data3 = data2[2:20,1:8]
> model 5 = lm(log(Arrests)~Sped+Abuse+School, data=data3)
now the lrplot is nice, and the funnel still has the two points up above, but we cant 
remove to many counties or we’ll have a model that’s only accurate for so little. 
And now the adj R^2 value is up to 0.8494



The model seems good, now to find which variables are most influential with anova: 
> anova(model5)
Analysis of Variance Table

Response: log(Arrests)
          Df  Sum Sq Mean Sq F value    Pr(>F)    
Sped       1 1.80173 1.80173  69.385 5.218e-07 ***
Abuse      1 0.64287 0.64287  24.757 0.0001660 ***
School     1 0.26970 0.26970  10.386 0.0056924 ** 
Residuals 15 0.38951 0.02597                      

The anova shows that sped is the most influential variable and that school is no all that 
influential.
                
> anova(lm(log(Arrests)~Abuse+School+Sped, data = data3))
Analysis of Variance Table

Response: log(Arrests)
          Df  Sum Sq Mean Sq F value    Pr(>F)    
Abuse      1 2.28545 2.28545 88.0123 1.150e-07 ***
School     1 0.16450 0.16450  6.3348  0.023702 *  
Sped       1 0.26436 0.26436 10.1804  0.006079 ** 
Residuals 15 0.38951 0.02597                      

When you put abuse before sped, it accounts for much of the SSQ, which makes sense 
because they have a decently high correlation. When you put school first however it still 
has a small number, as it is not that influential and not very linearly related to the other 
two. 

Finally we have found a decent model for arrests, and which variables are more 
influential; the conclusion is on the first page. 

The model is log(Arrests) = 0.956301 + 0.086790(sped) 
+0.236819(abuse)-0.028434(school)

Abuse has the largest coefficient, and also had much of the SSQ accounted for it. 



> summary(model5)

Call:
lm(formula = log(Arrests) ~ Sped + Abuse + School, data = 
data3)

Residuals:
       Min         1Q     Median         3Q        Max 
-0.2651261 -0.0667853  0.0007264  0.0810304  0.2951937 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.956301   0.579752   1.649  0.11982    
Sped         0.086790   0.027201   3.191  0.00608 ** 
Abuse        0.236819   0.043972   5.386 7.57e-05 ***
School      -0.028434   0.008823  -3.223  0.00569 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 
' 1 

Residual standard error: 0.1611 on 15 degrees of freedom
Multiple R-Squared: 0.8745,     Adjusted R-squared: 0.8494 
F-statistic: 34.84 on 3 and 15 DF,  p-value: 5.308e-07


