

Predicting Champions

Using season stats to predict sports champions!

Daniel Bolella, David Fonorow, Benjamin Rose \& Brian Donohue

Can we predict the next world Champion?

- This study was designed as a test of intermediate statistical methods and how they apply when attempting to define a seemingly chaotic system - professional sports.
- We gathered sports data for hockey, basketball, football, and baseball on a seasonal basis and attempted to identify any significant patterns within those data sets.
- Patterns identified, we expanded by attempting to predict the winning team in each sport for the current sports year.
- To assess the accuracy of our algorithms, we attempt to predict the winning team at $25 \%, 50 \%, 75 \%$, and before the playoffs of each sport.

Our Approach

- Attempting to predict sporting event outcomes is not a new area of research
- Much money can be gained from doing so properly.
- Year after year in many sports, the same teams make it into the playoffs.
- Our goal of the study is to determine what regular season factors have influenced playoff performance in the few years prior.
- The interpreted results will be used to predict the winner of the playoffs in each sport this year.

Baseball- America's Favorite Pasttime

Gathered data from the official MLB website:

Baseball- America's Favorite Past-time

Took the win-lose data for every quarter of each season of the past 5 years.

Year	Opening Day	1st Quarter	All-Star Break	3rd Quarter	End of Season
2006	$04 / 02$	$05 / 22$	$07 / 11$	$08 / 22$	$10 / 02$
2007	$04 / 01$	$05 / 21$	$07 / 10$	$08 / 21$	$10 / 02$
2008	$03 / 30$	$05 / 23$	$07 / 15$	$08 / 23$	$09 / 30$
2009	$04 / 13$	$05 / 29$	$07 / 14$	$08 / 25$	$10 / 06$
2010	$04 / 05$	$05 / 25$	$07 / 13$	$08 / 24$	$10 / 05$

Baseball- America's Favorite Past-time

My Prediction:

- There will be a very small relation between the standings at a certain point during the season and who will make it to the playoffs.
- Unless it is half-way through the season and the team is really far behind first place, then I feel comebacks and slumps are very possible and can change the outcome of divisional champs.

Baseball- America's Favorite Past-time

 Comparison of Wins vs. Playoff Results

$\begin{array}{lllllllllllllllllllllllllllll}26 & 29 & 30 & 31 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 59\end{array}$ All-Star Break Wins

Baseball- America's Favorite Past-time

Results:

A Multi-Variable Anova revealed that the most significant factors were 1st Quarter, 3rd Quarter, and End Season results, as well as 1st \& 3rd combined, and 3rd and EOS combined.

```
> anova(lm(PLAYOFF ~ W1 * W2 * W3 * W4))
```

Analysis of Variance Table

```
Response: PLAYOFF
\begin{tabular}{rrrrrr} 
Df & Sum Sq Mean Sq & F value & \(\operatorname{Pr}(>\mathrm{F})\) & \\
1 & 20.716 & 20.7155 & 37.0292 & \(1.146 \mathrm{e}-08\) & \(* * *\) \\
1 & 2.945 & 2.9450 & 5.2642 & 0.0233239 & ** \\
1 & 19.368 & 19.3681 & 34.6207 & \(3.039 \mathrm{e}-08\) & *** \\
1 & 8.208 & 8.2077 & 14.6713 & 0.0001958 & *** \\
1 & 2.748 & 2.7483 & 4.9126 & 0.0283487 & * \\
1 & 6.361 & 6.3615 & 11.3712 & 0.0009752 & *** \\
1 & 0.732 & 0.7315 & 1.3076 & 0.2548614 & \\
1 & 1.433 & 1.4325 & 2.5607 & 0.1119066 & \\
1 & 0.079 & 0.0791 & 0.1413 & 0.7075792 & \\
1 & 7.313 & 7.3127 & 13.0715 & 0.0004233 & *** \\
1 & 0.017 & 0.0168 & 0.0300 & 0.8627069 & \\
1 & 0.483 & 0.4832 & 0.8637 & 0.3543700 & \\
1 & 1.223 & 1.2232 & 2.1866 & 0.1415671 & \\
1 & 0.352 & 0.3521 & 0.6293 & 0.4290112 & \\
1 & 0.558 & 0.5584 & 0.9981 & 0.3195742 & \\
134 & 74.965 & 0.5594 & & & \\
& & & & &
\end{tabular}
--
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Football (the real one)

Goal: By analyzing statistics about teams over the last ten years, try to predict the winner of the super bowl this season.

Prediction: Algorithm will predict the team with the highest record has the best chance of winning. Little to no influence based on other factors.

Football - Data Collection

Data was collected from www.pro-football-reference.com

Team Games \& Schedule

Glossary • SHARE • CSV • PRE • LINK • More Tools

									Score		Offense					Defense				
Week	Day	Date			OT	Rec		Opp	Tm	Opp	1stD	TotYd	PassY	RushY	TO	1stD	TotYd	PassY	RushY	TO
1	Sun	September 3	boxscore	L		0-1	@	New York Giants	16	21	19	355	312	43	4	20	395	172	223	2
2	Sun	September 10	boxscore	W		1-1		Dallas Cowboys	32	31	21	322	224	98	1	17	330	240	90	2
3								Bye Week												
4	Sun	September 24	boxscore	L		1-2		Green Bay Packers	3	29	12	209	181	28	4	23	455	279	176	1
5	Sun	October 1	boxscore	L		1-3	@	San Francisco 49ers	20	27	16	365	239	126	2	18	345	215	130	1
6	Sun	October 8	boxscore	W		2-3		Cleveland Browns	29	21	20	315	169	146	2	12	240	136	104	
7	Sun	October 15	boxscore	L		2-4		Philadelphia Eagles	14	33	17	305	207	98	3	28	391	219	172	
8	Sun	October 22	boxscore	L		2-5	@	Dallas Cowboys	7	48	15	276	167	109	3	23	347	147	200	
9	Sun	October 29	boxscore	L		2-6		New Orleans Saints	10	21	24	394	269	125	4	17	247	158	89	1
10	Sun	November 5	boxscore	W		3-6		Washington Redskins	16	15	11	178	133	45	2	27	422	258	164	3
11	Sun	November 12	boxscore	L		3-7	@	Minnesota Vikings	14	31	14	249	198	51	2	29	460	302	158	2
12	Sun	November 19	boxscore	L		3-8	@	Philadelphia Eagles	9	34	12	210	156	54	1	21	338	204	134	2
13	Sun	November 26	boxscore	L		3-9		New York Giants	7	31	14	267	179	88	4	25	371	225	146	1
14	Sun	December 3	boxscore	L		3-10	@	Cincinnati Bengals	13	24	15	340	268	72	2	27	398	106	292	1
15	Sun	December 10	boxscore	L		3-11	@	Jacksonville Jaguars	10	44	11	189	149	40	1	25	469	255	214	
16	Sun	December 17	boxscore	L		3-12		Baltimore Ravens	7	13	18	309	258	51	4	14	214	37	177	2
17	Sun	December 24	boxscore	L		3-13	@	Washington Redskins	3	20	14	245	141	104	5	19	315	175	140	2

Football - Points For/Against

- PF and PA are significant when determining results

Football - First/Second Half Wins

- Still no surprises, more wins in either half means better results

Football - Correlation Table

Correlation(x,y)	Result
First half wins	0.61772
Second half wins	0.5945279
Total wins	0.7090561
Points for	0.5182356
Points against	-0.5287885
PF/PA difference	0.6650967

Football - multi ANOVA

- Some interesting results from multi ANOVA test
$>$ anova(lm(Result ~ First * Second * PF * PA))
Analysis of Variance Table

Response: Result

First
Second
PF
PA
First: Second
First: PF
Second: PF
First: PA
Second: PA
PF: PA
First:Second: PF
First:Second: PA
First: PF: PA
Second: PF: PA
First:Second: PF: PA
Residuals

Df	Sum Sq Mean Sq	F value	Pr $(>\mathrm{F})$		
1	213.474	213.474	330.8517	$<2.2 \mathrm{e}-16$	$* * *$
1	69.582	69.582	107.8416	$<2.2 \mathrm{e}-16$	$* * *$
1	0.227	0.227	0.3518	0.553547	
1	1.440	1.440	2.2315	0.136269	
1	58.240	58.240	90.2628	$<2.2 \mathrm{e}-16$	$* * *$
1	0.784	0.784	1.2158	0.271060	
1	0.354	0.354	0.5481	0.459681	
1	0.499	0.499	0.7738	0.379732	
1	10.140	10.140	15.7157	$9.195 \mathrm{e}-05$	$* * *$
1	0.111	0.111	0.1716	0.678982	
1	3.200	3.200	4.9593	0.026688	$*$
1	0.655	0.655	1.0159	0.314305	
1	0.029	0.029	0.0447	0.832717	
1	0.526	0.526	0.8145	0.367508	
1	5.332	5.332	8.2631	0.004333	$* *$

Football - Predictions

After deriving a number of formulas, applying their significance and averaging them out, the following teams have the greatest chance of winning this year:

- New England
- Atlanta
- New Orleans
- Chicago
- Pittsburgh
- Green Bay
- New York Jets

Basketball

Goal

Using trends from the previous 10 years, predict the outcome of the championship finals in the next season by analyzing common trends at the $25 \%, 25 \%, 75 \%$, and 100% points during the regular season.

Methodology

Statistics were collected, then loaded into the R software suite for analysis and plot creation. Further, in depth analysis was performed on this data and the plots rendered using statistical techniques discussed in this course.

Basketball

Statistics were collected from the National Basketball Association's official website: www.nba.com

Supplemental

 Information: dougstats.comSTATISTICS

*FG\%: Field Goal Percentage *3PT\%: Three-Point FG Percentage *FT\%: Free Throw Percentage
*PPG: Points Per Game *APG: Assists Per Game

Basketball

Fields collected and considered

- team name
- games won
- games lost
- total minutes played
- field goals made
- field goals attempted
- threes made
- threes attempted
- free throws made
- free throws attempted
- offensive rebounds
- total rebounds
- assists
- steals
- turnovers
- blocks
- personal fouls
- technicals
- ejections
- flagrant fouls
- total points
- championship rank score*
* = Score rank was determined by downloading rank data from the NBA brackets, then matching simple text filters to find the teams logo HTML section on the webpage. Those winning the championship earned a ' 5 ' (their logo advanced all the way across the rendered bracket), those who did not qualify a '0' (their logo did not appear on the page).

Basketball - Analysis of wins per

Teedstorpugh

 NBA history:Rarely does the team with the most wins also bring home the championship.

In fact, if you win the most games, you probably won't make it past the final four!

$\begin{array}{llllll}17 & 29 & 35 & 43 & 49 & 59\end{array}$

Basketball Skill - Analysis of 3-pointers!

Trends through

 NBA history:If your team is constantly shooting field-goals, don't expect to make it into the final four.

If your team has an accumulation of fieldgoals in the 400-500 range, you're good! (except that one time)

$\begin{array}{lllll}290 & 350 & 467 & 524 & 605\end{array}$

Hugatreeball - The Friendly Sport

Trends through NBA history:

Each year, a strikingly similar number of strikings occur.

Playing nicely with others is often rewarded, especially in 2006.

Basketball - Simple multivariate anova calculations > anova(Im(season10\$final ~ season10\$won * season10\$pf * season10\$X3m)) Analysis of Variance Table

Response: season $10 \$$ final
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
season10\$won $\quad 122.342522 .342520 .17720 .0001814^{\text {*** }}$
season10\$pf season10\$X3m season10\$won:season10\$pf season10\$won:season10\$X3m season10\$pf:season10\$X3m
10.90590 .90590 .81810 .3755448 10.41880 .41880 .37820 .5448787 10.51300 .51300 .46330 .5032056 12.61292 .61292 .35970 .1387680
10.37830 .37830 .34160 .5648424 season10\$won:season10\$pf:season10\$X3m 10.33450 .33450 .30210 .5881213 Residuals $\quad 2224.36091 .1073$
 > anova(lm(season09\$final ~ season09\$won * season09\$pf * season09\$X3m)) Analysis of Variance Table

Response: season09\$final Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
season09\$won $\quad 126.885326 .885330 .50971 .498 \mathrm{e}-05$ ***
season09\$pf
season09\$X3m
season09\$won:season09\$pf
season09\$won:season09\$X3m
season09\$pf:season09\$X3m
season09\$won:season09\$pf:season09\$X3m 1 0.19760 .19760 .22430 .64047
Residuals 2219.38660 .8812

Basketball - Complex multivariate anova calculations

To analyze what factor - or combination of factors - influence the statistical likelihood of basketball teams winning, lengthy anova($\operatorname{Im}())$) calculations were performed on a quad-core Xeon server. The results for the most recent 4 seasons, 2007 2010, have returned. The next batch, 2003-2006, are currently processing. Trends can still be heavily analyzed from the initial findings, however, justifying the CPU time (if they all finish in time).

When the more complex calculations are complete, it will expose how each variable and set of variables relates to postseason performance, and hopefully, to each-other in a grandscheme picture representative of trends evident in the last 10 years of NBA history.

2010

season10\$won 122.342522 .342514 .07200 .002148 ** season10\$min 11.15571 .15570 .72790 .407935 season10\$fgm 10.23480 .23480 .14790 .706329 season10\$fga 10.42070 .42070 .26500 .614737 season10\$X3m 10.06520 .06520 .04110 .842350 season10\$X3a 10.16350 .16350 .10300 .753035 season10\$ftm $11.4186 \quad 1.4186 \quad 0.89350 .360563$ season10\$fta 10.35560 .35560 .22400 .643305 season10\$or 10.11620 .11620 .07320 .790698 season10\$tr 10.22140 .22140 .13940 .714435 season10\$as 11.23911 .23910 .78040 .391928 season10\$st 10.36370 .36370 .22910 .639597 season10\$to 10.99830 .99830 .62870 .441051 season10\$bk 10.20990 .20990 .13220 .721602 season10\$pf 10.33320 .33320 .20990 .653895

Residuals 1422.22821 .5877
Signif. codes: 0 '***’ $0.001^{\text {‘**’ }} 0.01^{\text {(*) }} 0.05^{\prime \prime}$ ' $0.1^{\prime \prime} 1$

2009

season09\$won 126.885326 .885344 .7964 1.022e-05 *** season09\$min 11.42801 .42802 .37930 .14525 season09\$fgm 10.26860 .26860 .44760 .51436 season09\$fga 11.65761 .65762 .76190 .11875 season09\$X3m 10.71900 .71901 .19790 .29221 season09\$X3a 10.03330 .03330 .05550 .81721 season09\$ftm 11.32291 .32292 .20410 .15980 season09\$fta 14.22064 .22067 .03230 .01896 * season09\$or 13.57623 .57625 .95860 .02853 * season09\$tr 10.46350 .46350 .77230 .39434 season09\$as $10.09170 .09170 .1527 \quad 0.70183$ season09\$st $11.43451 .4345 \quad 2.39020 .14440$ season09\$to 10.38380 .38380 .63950 .43725 season09\$bk 10.02470 .02470 .04120 .84201 season09\$pf $10.05470 .0547 \quad 0.0911 \quad 0.76717$ Residuals 148.40230 .6002 Signif. codes: 0 '***’ $0.001^{\text {'**) } 0.01^{\text {(*) }} 0.05^{\prime \prime} 0.1^{\prime \prime} 1}$

2008

season08\$won 130.321130 .321138 .6891 2.237e-05

2007

season07\$won 123.652823 .652824 .66520 .0002070 *** season08\$min $11.02911 .02911 .3131 \quad 0.2710$ season08\$fgm $11.56421 .56421 .9958 \quad 0.1796$ season08\$fga $12.1697 \quad 2.1697 \quad 2.7685 \quad 0.1184$ season07\$min 10.05390 .05390 .05620 .8161016 season07\$fgm 10.16380 .16380 .17080 .6856211 season07\$fga 10.24750 .24750 .25810 .6193559 $\begin{array}{lllllll}\text { season } 08 \$ X 3 m & 1 & 0.0399 & 0.0399 & 0.0509 & 0.8247\end{array}$ season08\$X3a $10.27400 .27400 .3496 \quad 0.5638$ season08\$ftm $10.03340 .03340 .0426 \quad 0.8395$ $\begin{array}{llllll}\text { season08 } & 1 & 0.0843 & 0.0843 & 0.1076 & 0.7477\end{array}$ season08\$or $10.12380 .12380 .1580 \quad 0.6970$ season08\$tr 100.25670 .25670 .32750 .5762 $\begin{array}{lllllll}\text { season08\$as } & 1 & 0.2252 & 0.2252 & 0.2874 & 0.6003\end{array}$ season08\$st $11.66361 .6636 \quad 2.1228 \quad 0.1672$ season08\$to $1 \begin{array}{lllllll} & 0.3197 & 0.3197 & 0.4080 & 0.5333\end{array}$ season07\$X3m 10.04020 .04020 .04200 .8406507 season07\$X3a 10.83520 .83520 .87100 .3664973 season07\$ftm 10.29310 .29310 .30570 .5890738 season07\$fta 14.28204 .28204 .46530 .0530294 . season07\$or 10.37600 .37600 .39210 .5412819 season07\$tr 11.54501 .54501 .61120 .2250259 season07\$as 13.21893 .21893 .35660 .0882894 season07\$st 10.13100 .13100 .13670 .7171595 season07\$to 11.91471 .91471 .99670 .1794885 season07\$bk 10.46260 .46260 .48240 .4987136 season07\$pf 11.35791 .35791 .41600 .2538520 Residuals 1413.42540 .9590 Signif. codes: $0^{[* * * ’} 0.001^{\text {(*** }} 0.01^{\text {'*’ }} 0.05^{\prime \prime} \cdot 0.1^{\prime \prime} 1$

Basketball - Predictions?!?

By analyzing previous trends of winners, we see that the following variables are highly important:

- You don't win the most, but rather around the 75% proficiency mark in that category.
- Your team doesn't consist of a bunch of super-stars.
- You play by the rules.

So far this season, the following teams have been the closest to matching those attributes: (but what does this really mean?)

- Chicago Bulls
- Indiana Pacers
- Denver Nuggets
- Phoenix Suns

Hockey

Hypothesis:

- Using statistical analysis, an attempt will be made to determine which regular season data can indicate the winner of the Stanley Cup will occur on regular season data in an attempt to determine which regular season factors may indicate the winner of the Stanley Cup.
- This type of analysis is difficult to determine because the regular season performance of a team may not necessarily indicate the post season performance.
- Factors such as interaction between teams, aggressiveness of a team, and injuries may inhibit such an analysis

Hockey - Data Set

- The data set used comprises regular season data over the past five years for all teams of the NHL
- Regular season data includes: wins, goals scored, goals scored against, overtime won, overtime lost, penalties, penalties in minutes, power-play opportunities, and powerplay goals
- In addition to the regular season data, the number of wins each team had in the post-season games is factored in.
- Because the number of wins for each team is slightly misleading (for instance it's possible a team makes the playoffs, but doesn't win a game), an additional factor is added that ranks the team by how far the team went in the playoffs (i.e. quarter-finals, finals, and Stanley Cup winner)

Hockey - (Naiive)Correlation in Data

Correlation(x,y)	Playoff Level	Playoff Wins
Wins Regular Season	0.6160447	0.5457638
Goals Scored	0.4544496	0.4272315
Goals Scored Against	-0.463293	-0.4061466
Overtimes Won	0.1638642	0.1059421
Overtimes Lost	-0.0872057	-0.06243047
Penalties	-0.1184132	-0.08396708
Penalties in Minutes	-0.1419841	-0.1042888
Power Play Opportunities	0.04501688	0.04478294
Power Play Goal	0.2774943	0.2793165

Hockey - Correlation in Data

Correlation(x,y)	Playoff Level	Playoff Wins
Wins Regular Season	0.1802523	0.1919077
Goals Scored	0.2874196	0.2748414
Goals Scored Against	-0.01905782	-0.03588322
Overtimes Won	-0.1248323	-0.1385355
Overtimes Lost	0.0624842	0.06598831
Penalties	0.01890814	0.02833453
Penalties in Minutes	0.03463016	0.03129029
Power Play		
Opportunities	0.09830155	0.0802194
Power Play Goal	0.2057550	0.2212174

Hockey - Multivariate Anova for Wins

Analysis of Variance Table
Response: Win_post
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$

Win_reg	1	61.11	61.11	2.8862	0.09391.
Goals_for	1	69.34	69.34	3.2750	0.07476.

Goals_against $144.6544 .65 \quad 2.10870 .15106$
$\begin{array}{llllll}\text { OT_won } & 1 & 0.11 & 0.11 & 0.0051 & 0.94345\end{array}$
$\begin{array}{llllll}\text { OT_lost } & 1 & 0.33 & 0.33 & 0.0156 & 0.90093\end{array}$
$\begin{array}{llllll}\text { Penalties } & 1 & 4.83 & 4.83 & 0.2281 & 0.63450\end{array}$
$\begin{array}{llllll}\text { PIM } & 1 & 10.99 & 10.99 & 0.5188 & 0.47381\end{array}$
PP_opp $\quad 1 \quad 11.21 \quad 11.21 \quad 0.52950 .46933$
$\begin{array}{llllll}\mathrm{PP} \overline{\mathrm{l}} & 1 & 16.98 & 16.98 & 0.8018 & 0.37371\end{array}$
Residuals $681439.76 \quad 21.17$

Hockey - Logistic Regression with Playoff Level as response

Deviance Residuals:
Min 1Q Median 3Q Max
$\begin{array}{lllll}-1.8513 & -1.0022 & 0.4812 & 1.0114 & 1.7175\end{array}$
Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$

(Intercept)	11.268326	7.486436	1.505	0.1323
Win_reg	-0.257301	0.134528	-1.913	0.0558 .
Goals_for	0.045043	0.023356	1.929	0.0538 .

Goals_against -0.055620 0.025542-2.178 0.0294*
$\begin{array}{llllll}\text { OT_won } & 0.051313 & 0.090364 & 0.568 & 0.5701\end{array}$
$\begin{array}{llllll}\text { OT_lost } & -0.046478 & 0.139037 & -0.334 & 0.7382\end{array}$
Penalties $\begin{array}{llllll} & -0.024543 & 0.014341 & -1.711 & 0.0870 \text {. }\end{array}$
$\begin{array}{lllll}\text { PIM } & 0.006732 & 0.004570 & 1.473 & 0.1407\end{array}$
$\begin{array}{llllll}\text { PP_opp } & 0.004378 & 0.008388 & 0.522 & 0.6017\end{array}$
$\begin{array}{llllll}P P \bar{G} & & 0.055042 & 0.035586 & 1.547 & 0.1219\end{array}$

Hockey - Boxplots for Regular Season wins vs Playoff Levels

Full dataset (Naiive analysis):

Playoff teams only:

Hockey - Boxplot for Regular Season Wins vs. Postseason Wins

Full dataset (Naiive analysis):

Playoff

 teams only:

Hockey - Conclusions

- Analysis of the correlations, significance in Anova, and boxplot graphs indicate that given solely regular season data it is very difficult to develop a statistical model for determining the Stanley Cup winner.
- Does this assertion conform to experience?
- Last season Philadelphia Fliers were the 8th seed team in the playoffs (last place), and made it all the way to the Finals
- Also, last season Washington Capitals were first seed in the playoffs, and lost in the first round of the playoffs

Concluding Remarks

- Baseball
- Football
- Basketball
- Hockey

Any questions?

