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A Mathematical Framework for Combining Error Correction and Encryption

Abstract

Error resilience and energy efficiency are two main challenges facing block ciphers

in noisy and resource constrained wireless environments. Traditionally, error correct-

ing codes are used to recover from channel induced errors. However, this two step

operation: encryption followed by error correction adds extra burden on an already

resource constrained environment. Combining the two operations into one primitive

has the potential to achieve efficient error correcting ciphers. However, if such a joint

system is not designed carefully both error correcting capacity and security could be

compromised. For this reason, the design of error correcting ciphers has remained an

open problem for the past 25 years.

In this work, we propose two error correcting block ciphers: the High Diffusion

(HD) cipher and the Pyramid cipher. Both ciphers use our recently proposed HD

codes in the diffusion layer. The HD cipher is a ten round cipher which uses many

small HD codes, whereas the Pyramid cipher is a five round cipher which uses a sin-

gle large HD code. We show that the Pyramid cipher is as secure as the Advanced

Encryption Standard (AES) against linear, differential and square attacks. We derive

bounds on the error correcting capacity of the proposed ciphers and through simu-

lations show that they are as error resilient as the Reed Solomon codes, outperform

the convolution codes by 60% and are 10% more energy efficient compared to the

traditional systems. We show that in stream modes our ciphers have higher encryp-

tion throughput compared to the AES. Energy analysis verifies that the HD cipher

in stream mode is 40% more energy efficient compared to the AES.
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Chapter 1

Introduction

We are increasingly relying on wireless mobile devices for our day to day transactions

and commercial applications. Wireless devices like personal data assistants (PDAs)

are used to execute online transactions and store valuable data such as credit card

numbers. Hence, wireless communication security has gained importance in recent

years. The mobile nature of the wireless devices make them dependent on battery

power which is a constantly depleting resource. Unlike the wired counterparts, the

wireless medium is physically unprotected and can be extremely noisy and bursty.

To protect wireless transmissions, security protocols which were traditionally applied

at the upper layers like application and transport layer are now applied at the lower

layers as well. For example, security protocols like the Wired Equivalent Privacy

(WEP), Temporal Key Integrity Protocol [65] and the Wifi Protected Access (WPA)

[1] are now employed in the link layer. However, the application of encryption at link

layer creates other issues. For example, encryption and decryption increase trans-

mission delay and hence causes frequent timeouts in the upper layers. The error

sensitivity of decryption operation triggers retransmissions and decreases the trans-

mission throughput. The sensitivity of ciphers towards channel errors is due to the

phenomenon called the avalanche effect [16]. This causes one or more bit errors before

1
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decryption to spread randomly to the entire cipherstate with in few round. To illus-

trate the error expansion due to avalanche effect we plot the post decryption bit error

rate for various block lengths of a generic block cipher over a range of channel bit

error rates in Fig. 1.1. We can observe from the figure that for most of the practical

channel conditions the avalanche effect causes a significant error expansion and this

effect increases with the block length.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

AVERAGE PRE−DECRYPTION BIT ERROR PROBABILITY

A
V

E
R

A
G

E
 P

O
S

T
−

D
E

C
R

Y
P

T
IO

N
 B

IT
 E

R
R

O
R

 P
R

O
B

A
B

IL
IT

Y

N=1
N=32
N=64
N=128
N=192
N=256

Figure 1.1: Error expansion due to avalanche effect

The most widely used technique to combat error propagation in block ciphers is

to use them in stream modes. This is because, when a block cipher is operated in any

of the stream modes, the plaintext is XORed with key stream generated by the block

cipher. As XOR-ing is an error preserving [63] operation, there is no error propa-

gation in stream modes. When block ciphers need to be used in block modes, they

are concatenated with forward error correction (FEC) codes to minimize the num-

ber of retransmissions due to error propagation. The use of error correction codes

however requires allocation of additional computational resources and transmission

power which strains an already resource constrained environment. In order to con-
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serve battery power, newer security protocols [53][43][44][54] are being developed that

are more light weight and energy efficient. Some of the common techniques that have

been used to reduce the energy consumed by cryptographic primitives are: reduction

in number of rounds, use of simple operations (e.g. XORs and shifts), merging mul-

tiple operations, use of lookup tables, reduced block length, etc. However the light

weight security protocols if not designed carefully could cause compromise in security

[9] [34]. We identify energy efficiency, error resilience and speed of the underlying

cryptographic primitive are the key factors that need to be jointly addressed by any

wireless security protocol or primitive. The LEX cipher proposed in [8] achieves the

energy efficiency and speed by converting the Rijndael block cipher [15] into stream

cipher using an unconventional approach of leaking intermediate cipherstate bytes.

Although this approach appears to be secure, leaking intermediate state information

is known to cause weakness in the cipher [23]. A security-throughput optimization

approach is proposed in [48] that utilizes the flexible block length in certain block

ciphers to maximize the error resilience. Although this approach achieves error re-

silience, the energy consumption due to context switching between different block

lengths could be potentially high. An alternate approach for jointly achieving energy

efficiency and error resilience in a cipher is to combine error correction and encryp-

tion. [46] was the first to propose a public key cipher based on algebraic coding

theory. The security of this system is based on the hardness of the decoding problem

[3]. In order to achieve meaningful security against present day adversaries, the pa-

rameters of this system have to be very large, making it infeasible in practice. This

work was followed by a series of improvements and attacks [26][52] [35][5][22][62].

However, none of these systems were based on modern cryptographic design prin-

ciples and they compromised security for error resilience. Cryptocoding [21] is one
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of the more recently proposed techniques for joint error correction and encryption.

This technique is based on quasigroup (Latin square) string transformation. Here,

the large space of quasigroups translates to a large key space. In order to achieve

error resilience, the data is padded with zeros before encryption and the decryption

algorithm literately corrects errors until the padded zeros are correctly recovered.

This makes the decoding procedure extremely complicated and hence cannot be used

in practice. The difficulty in designing error correcting ciphers arise from the fact

that error correction and encryption work at cross purposes to each other. Codes

add redundancy while ciphers remove redundancy and randomize the source. Codes

are usually linear whereas ciphers have to be non-linear. We approach the problem

of using codes in ciphers by observing the similarities between codes and ciphers.

Specifically we concentrate on the property of diffusion, which is exhibited by block

codes and required by block ciphers to spread the non-linearity. Most of the modern

block ciphers including the AES finalists like Rijndael [15] and Two-Fish [56] derive

their diffusion transformations from Maximum Distance Separable (MDS) codes [10].

However, the generation of diffusion matrices in these approaches are ad-hoc, rely on

brute force search and are not intended to make the block cipher error resilience. Also,

using arbitrary FECs in the diffusion layer of block ciphers may render the cipher

insecure and achieve sub-optimal error resilience. In this work, we provide a math-

ematical frame work to combine error correction with encryption that maximizes the

security and the error resilience of the cipher. We use a specific class of channel codes

called High Diffusion codes [41][49] that we recently proposed. These codes possess

the branch number property [15] required by the diffusion layer of a block cipher and

their burst error correction capability is well suited for wireless environments. We use

the HD codes to build two error correcting block ciphers that we call the HD cipher
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and the Pyramid cipher. The HD cipher is a ten round block cipher with a coding

rate of 128
288

whereas the Pyramid cipher is a five round block cipher with a coding

rate of 128
192

. We show that the both the HD and the Pyramid ciphers are as secure as

the popular Advanced Encryption Standard (AES) cipher [17] against the well known

attacks. Based on the minimum distance decoding we show that the error correcting

capacity of the HD cipher and the Pyramid cipher used in block modes [59] is seven

and four bytes per block respectively. To evaluate the energy requirement of our pro-

posed ciphers we setup a testbed consisting of 32 bit processors that have comparable

architecture to most of the wireless devises. We compare the energy consumption of

the Pyramid cipher with a traditional concatenated system comprising of AES cipher

followed by a Reed Solomon (RS) codes that match the error correcting capacity of

the HD and the Pyramid ciphers. Experimental results reveal that the HD cipher and

Pyramid cipher encryption operations are 30% and 10% more energy efficient com-

pared to the encryption-encoding operations of the concatenated system. Whereas,

HD and Pyramid decryptions are 12% and 6% more energy efficient compared to the

decoding-decryption operation of the concatenated system. We also evaluate the error

resilience of the proposed ciphers under various channel models. Simulation results

reveal that under wireless like channel conditions, the error resilience of the HD and

Pyramid ciphers is equivalent to that of the concatenated system. We then implement

the proposed ciphers in the counter mode. Due to the expansion of the cipherstate

in HD and Pyramid, they have higher encryption throughput compared to the AES

cipher. Moreover, the encryption throughput of these ciphers can be further increased

by decreasing the coding rate of the HD codes used in these ciphers. Also, in the

counter mode, like other secure block ciphers, the HD and the Pyramid ciphers act as

pseudorandom number generators. To test the quality of random numbers generated
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by the proposed ciphers, we subjected them to the National Institute of Standards

and Technology (NIST) recommended DIEHARD statistical test suite. Pseudoran-

dom tests reveal that both HD and the Pyramid are cryptographically sound random

number generators. We propose to replace the AES cipher in the counter mode with

cipher block chaining protocol (CCMP) (see Section 4.4.2) that is used in the current

IEEE 802.11i standard with the HD cipher. The higher encryption throughput of

the HD cipher translates to 40% improvement in energy efficiency of our HD-CCMP

protocol.



Chapter 2

Background and Related Work

In this chapter, we give a brief background on block ciphers, their properties and the

design strategies. We also briefly introduce the Advance Encryption Standard (AES)

which is the current standard on block ciphers. We then describe the classification

of error correcting codes and give a brief description on linear block codes. Then we

discuss some notable previous work in the area of joint error correction and encryption.

2.1 Classification of Ciphers

Cipher is the term used to describe algorithms/techniques that have two distinct

functions: encryption and decryption. Encryption is a process of scrambling (enci-

phering) information, the plaintext, using some secret knowledge, the secret key, into

unintelligible form, the ciphertext. Decryption is the inverse process of encryption,

where the ciphertext is unscrambled (deciphered) back to plaintext using the same or

a different secret key. Ciphers for which the encryption secret key is different from the

decryption secret key are called public ciphers. The RSA, Elgamal, Elliptic curves [60]

are some of the commonly used public key ciphers. On the other hand, ciphers which

have the same encryption and decryption keys are called private key or symmetric

key ciphers. The Data Encryption Standard (DES), RC4 and Advanced Encryption

7
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Figure 2.1: Classification of Ciphers.

Standard (AES) are some of the commonly used symmetric ciphers. Symmetric ci-

phers can encrypt the plaintext one bit or a block (more than a bit) at a time. The

sub-class of symmetric ciphers that encrypt the plaintext one bit at a time are called

stream ciphers. For example, the RC4 cipher is a stream cipher. Symmetric ciphers

that encrypt the plaintext a block at a time are called block ciphers. For example,

the AES block cipher encrypts 128 bits of the plaintext in one encryption. Block

ciphers have many modes of operation. The most commonly used block modes are

the electronic code book mode (ECB) and the cipher block chaining mode (CBC).

However, block ciphers can also be used to encrypt the plaintext one bit at a time

by employing them in the stream modes. The counter mode (CTR) and the output

feed back mode (OFB) are some of the standard stream modes for any block cipher.

Fig. 2.1 summarizes the classification of ciphers.

2.2 Block Ciphers

Block ciphers encrypt the plaintext one block (more than 1 bit) at a time. In most

of the modern block ciphers a single function F , which may not be secure by itself,

is repeated a number of times, until the desired level of security is achieved. Such
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ciphers are called iterated block ciphers.

The security provided by any cipher can be measured in terms of the plaintext,

P , the ciphertext, C and the key, K, used. The, conditional entropy H(K|C), called

key equivocation, is the measure of how much information about the key is revealed

by the ciphertext in case of ciphertext only attack [60]. This is given by,

H(K|C) = H(K) + H(P)−H(C)

where H is entropy function. However, most of the modern day block ciphers

are secure against this type of attack. There are other kinds of attacks possible

such as known plaintext, chosen plaintext and chosen ciphertext attacks. Most of

the practical cryptanalysis techniques are a combination of the above attacks. For

example, the differential cryptanalysis [7] is a chosen plaintext attack and the linear

cryptanalysis [45] is a known plaintext attack. Any new block cipher is believed to

be secure, if it is computationally infeasible to derive the secret key under all known

types of cryptanalysis. Further, researchers over the years have identified important

properties that can be used to gauge the security of cryptographic algorithms. We

discuss these properties in the next Section.

2.2.1 Properties of Block Ciphers

Claude Shannon in 1949 described the general setting for treating cryptosystems in

the seminal work ‘Communications Theory of Secrecy Systems’ [58]. Here, he suggests

two properties diffusion and confusion, as essentials for the design of ciphers. These

properties are relevant even today and almost all of the modern day block ciphers

exhibit these properties. A brief description of diffusion and confusion follows.
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Diffusion

The property of diffusion implies that the statistical structure of the message space,

which leads to its redundancy, is dissipated into long range statistics of the ciphertext.

It is a quantitative notion in the sense that dependency on each plaintext and key

bit is to be spread to several ciphertext bits. This makes the relation between the

plaintext and ciphertext as complex as possible. Diffusion is usually achieved by

repeated permutations. The part of the round function F that achieves diffusion is

called the diffusion layer. Efficiency of the cipher is also affected by its diffusion

properties, that is, if diffusion can be achieved in fewer operations we would require

fewer rounds to achieve security. Moreover there are cryptanalysis techniques that

exploit slow diffusion of ciphers, for example are differential cryptanalysis of the DES

[7] exploits the slow diffusion in the Feistel structure [16].

Confusion

This is more of a qualitative concept, in the sense that a non-linear relationship is

to be expected between all ciphertext bits and plaintext/key bits. The property of

confusion makes the relation between the ciphertext key space complex. Confusion

is provided in block ciphers by substitution boxes (S-boxes). These components are

the main non-linear operators in most block ciphers. An S-box fulfils the criteria for

confusion if every bit in its output depends non-linearly on each input bit and vice

versa (for invertible S-boxes). If this is not the case then the bias in the S-boxes

may be exploited to break the cipher. For example, the linear cryptanalysis gathers

information about the key by first finding approximate linear expressions for S-boxes

and then extending them to the whole cipher. Therefore design of S-boxes is crucial

to maintain the security of block ciphers.
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Avalanche Effect

The term ‘avalanche’ comes from Feistel [16], and refers to the observed property

of difference propagation with respect to a tiny change in the input. The change

of a single input bit generally produces multiple bit-changes after one round, many

more bit-changes after the second round, and so on, until about half of the block will

randomly change. In any block cipher we would want a single bit to affect every output

bit: if a single bit is flipped we would want half the bits in the output to be flipped

(diffusion) independent of the position of the bits (confusion). Therefore avalanche

in a cipher has been used widely as criterion to study cryptographic functions. In the

next section, we give an overview of two basic strategies used to design block ciphers

and how they cause and spread the avalanche effect.

2.2.2 Prominent Block Cipher Design Strategies

The two most prominent block cipher design strategies are the Feistel structure and

the wide trail strategy. In this section, we briefly introduce both these strategies.

Feistel structure

This is one of the most widely used block cipher design strategies. Block ciphers

like the DES, Blowfish, RC5 and FEAL [47] are all based on this structure. In the

Feistel structure, the plaintext in each round i, is treated as two separate halves

(Xi = XL
i ||XR

i ), left and right. In each round, only one half of the input cipherstate

is operated upon. Any non-linear F-function which non-linearly transforms half of the

plaintext using key bits can be used in the Feistel structure. That is, F : {0, 1}n/2 ×
{0, 1}m → {0, 1}n/2, where m is the number key bits. The round function in the

Feistel structure can be described as follows, Xi+1 = (Fki
(XL

i ) ⊕ XR
i )||XL

i . Where

ki is the round key. This design makes the encryption identical to the decryption
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except for the reversal of the key schedule. Feistel structures that operate on unequal

divisions in the plaintext (i.e. |XL| 6= |XR|) are called unbalanced Feistel structures.

The main weakness of Fiestel structures is that each round transformation always

keeps some bits of the input block constant. This fact is used in many attacks. For

example the differential [7] and linear [45] cryptanalysis attacks on the DES cipher

extends differential and linear characteristics of one round to multiple rounds using

this weakness.

Wide trail strategy

The wide trail strategy [13] is based partially on the substitution permutation net-

work [59]. Here the entire input block is transformed in every round. Although this

approach makes each round heavier compared to the Feistel structure, it helps in

decreasing the number of rounds required for encryption. Block ciphers like Rijndael

[17], Square [12] and Shark [55] are based on this strategy.

Most cryptanalytic attacks make use of the imbalances in the mappings between

the differences/correlation in the ciphertext to a particular difference/correlation in

the plaintext or the round key. The wide trail strategy aims to spread the differ-

ence/correlation characteristics to the entire cipherstate in a few rounds. This ap-

proach would prevent the cryptanalytic attacks that rely on the propagation of differ-

ence/correlation characteristics within sub-blocks of the input block. The spreading

strength of the diffusion layer of a cipher is the key to achieve the wide trail strategy.

However, diffusion is just a concept. In order to measure diffusion, a metric called

branch number is often used (see 3.1). Branch number is the sum of the input and

output active bytes (nonzero difference in input/output blocks). The wide trail strat-

egy provides a simplified technique to maximize the sum of the active bytes (trail of

active bytes) over a few rounds. The lower bound on the sum of active bytes also
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provides a lower bound on the resistance offered by the cipher to many cryptanalytic

attacks. In fact the Rijndael block cipher which is based on the wide trail strategy

has been selected as the Advanced Encryption Standard (AES). In the next section

we give an overview of the AES cipher.

2.3 Cryptanalysis of Block Ciphers

2.3.1 Differential Cryptanalysis

Differential cryptanalysis, as the name suggests analyzes the propagation of differ-

ences (plaintext/ciphertext) through the cipher to derive the key bits. Consider two

plaintexts P and P ′. The difference between these plaintexts is δP = P ⊕ P ′. Since

⊕ is the key mixing operation, δP is key independent. Difference between the cipher-

states of the corresponding plaintexts after round s is denoted by δCs. A s round

differential characteristic is a s + 1 tuple that lists the difference in the cipherstate

starting from the first round, (α0, α1, ..., αs). The probability, pD, of this characteristic

is given by,

pD = Pr(δCs = αs, δCs−1 = αs−1, ..., δC1 = α1/δP = α0). (2.3.1)

However, this probability is very difficult to calculate. In [33] Lai and Massey pro-

posed a Markov cipher model for iterated block ciphers and showed that for indepen-

dent and uniformly random round keys, the probability of s round characteristic can

be approximated by,

pD =
s∏

i=1

Pr(δC1 = αi|δP = αi−1). (2.3.2)

About pD2N plaintext differences (right pairs) follow the characteristic, where N is

the block length of the cipher. The steps required to attack a cipher using differential

cryptanalysis as given in [31] and is summarized here. The attacker finds an r − 1
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round characteristic (δP, δC1, ..., δCr−1). Then the attacker uniformly selects P and

P ′ with difference δP and obtains the corresponding ciphertexts Cr and C ′
r. Then

the attacker guesses the round keys such that the output difference δCr−1 is observed.

For every correct output difference observed a counter for the corresponding key is

incremented. Eventually, after observing several plaintext pairs the correct key would

emerge. The effectiveness of this technique can be quantified by the signal to noise

ratio,

SNR =
k × pD

λ× γ
, (2.3.3)

where k is the number of possible values of the key, γ is the number of keys suggested

by each right pair and λ is the ratio of right pairs to all pairs. We can observe that

higher the difference propagation probability pD higher is the success of differential

cryptanalysis. The non-zero bytes in δCi are called active S-boxes/bytes. The dif-

ference propagation probability, Ps, of an active S-box is the relative number of all

input pairs, that for a given input difference, gives rise to a specific output difference

[14]. The probability of one round characteristic in terms of Ps is,

Pr(δC1|δP ) ≤ (Ps)
Ns , (2.3.4)

where, Ns is the number of active S-boxes in the one round trail. Hence, a lower

bound on the number of active bytes/S-boxes in any differential trail will give a lower

bound on the resistance of the cipher to differential cryptanalysis.

2.3.2 Linear Cryptanalysis

Linear cryptanalysis [45] is a method of deriving key bits by forming linear expressions

of the form,

(P · α)⊕ (C · β) = (K · γ) (2.3.5)
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where P and C are plain and ciphertexts, K is the secret key, α, β, γ are selection

vectors and · is the dot product. |pL−1/2|−2 measures the success of linear cryptanal-

ysis, where pL is probability of the linear expression (2.3.5). A linear characteristic

is a collection of selection vectors that maximize the success of linear cryptanalysis.

One of the first steps to construct linear expressions is to form the first round linear

characteristic. The r round characteristic can be obtained by concatenating the first

round characteristic r times. The success probability of an r round linear expression

is,

1/2 + 2N−1

r∏
i=1

(pLi
− 1/2) (2.3.6)

where N is the block length. Since substitution is the only non-linear step in most of

the block ciphers including the proposed Pyramid cipher. We can express the success

probability of the linear expression in terms of the number of active S-boxes in a

multiple round linear trail. The active S-boxes in a round are determined by the non

zero symbols in the selection vectors at the input of the round. The linearity of an

active S-box can be approximated to the maximum input-output correlation exhibited

by it. The correlation (measure of linearity) of a linear trail (multiple rounds) can be

approximated to the product of input-output correlations of its active S-boxes [14].

Hence, a lower bound on the number of active bytes in any linear trail will give a

lower bound on the resistance of the cipher to linear cryptanalysis.

2.3.3 Advanced Encryption Standard (AES)

The iterated block cipher Rijndael [15] was selected as the Advanced Encryption

Standard (AES)[17], to replace the weaker Data Encryption Standard (DES)[59].

AES has a block length of 128 bits, and there are three allowable key lengths, namely

128, 192 and 256 bits. The number of rounds depends on the key length. For key

lengths 128, 192 and 256 bits respectively 10, 12 and 14 rounds are used. A block



16

diagram of one round function of the AES cipher is given in Fig. 2.2. The round

function of AES is composed of substitution (by S-boxes), shift row (SR) and mix

column (MC). Every round function is preceded by a key mixing operation with

the round key. The 11 round keys are generated from the secret key using a key

expansion algorithm. The initial 128 bit plaintext is arranged as a 4 × 4 matrix of

16 bytes referred to as the cipherstate. During the substitution operation, each byte

is independently substituted using the S-box. The SR operation shifts rows in the

cipherstate corresponding to the row number. That is, the first row is not shifted,

the second row is shifted by one byte and so on. The MC operation (see Fig. 2.3)

multiplies each column of the cipherstate independently with a 4 × 4, 16 byte MC

matrix. The key mixing is just a simple XOR of the cipherstate with the round

key. Note that, the MC operation is not performed in the final (10th) round of the

cipher. This is done to facilitate the use of the same algorithm for both encryption

and decryption.

In the design of the Rijndael cipher a MC matrix with a branch number of 5 is used.

The lower bound on the number of active bytes over any trail of four rounds is shown

to be at least 25 [17]. The substitution boxes in the Rijndael have difference ratios

and correlations of 2−6 and 2−3 respectively. For a four round difference and linear

trail, the maximum difference propagation ratio is 2−150 and the maximum correlation

ratio 2−75. This explains the resistance to difference and linear cryptanalysis.

2.4 Classification of Codes

The term codes refers to a broad class of techniques and algorithms that have two basic

operations: encoding and decoding. Encoding is a procedure that adds redundancy

into a given message and transforms it into a larger codeword. These codewords are
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Figure 2.2: The Advanced Encryption Standard (AES) Encryption.

Figure 2.3: The Mix Column operation in the AES cipher.

decoded back into the corresponding messages by the decoding procedure. Depending

on the amount of redundancy and the type of code, the decoding may recover the

correct message even in the presence of one or more errors in the received codeword.

There are two basic types of error correction codes: convolutional codes and linear

block codes. Encoding procedure in convolutional codes is memory based and the

message to codeword mapping depends on both the current state of the encoder and

the previous message. Linear block codes on the other hand have a predetermined

message to codeword mapping usually defined by a generator matrix. There are many

sub categories in linear block codes. Some of the interesting ones are cyclic codes,

perfect codes and low density parity check (LDPC) codes. Cyclic codes are linear

block codes where any valid codeword is a cyclic shift of on another valid codeword
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Figure 2.4: Classification of Codes.

in the same codespace. Cyclic codes can be binary (all codewords belong to the field

GF(2)) or q-ary (codewords belong to GF(q > 2)). Examples of cyclic codes are

BCH codes and Reed Solomon (RS) codes. The summery of classification is given in

Fig. 2.4

2.5 Linear Block Codes

A linear block code, usually denoted by [n, k, q], encodes {GF (q)}k messages to

{GF (q)}n codewords by multiplying them with a k × n generator matrix or (n− k)

degree generator polynomial. For example, if m(x) represents the input message and

g(x) represents the generator polynomial, then the codeword is, c(x) = m(x)g(x).

The linearity comes from the fact that, for any two messages m1(x) and m2(x), we

have c1(x)⊕c2(x) = (m1(x)⊕m2(x))g(x). If the received codewords are not perfectly

devisable by the generator, an error is detected. However, in order to correct errors,

sophisticated algorithms are used. The performance or the error correcting capacity

of any linear block code is heavily dependent on the minimum distance, dmin, between
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the codewords. This is the minimum hamming distance between any two valid code-

words in the code space. A larger dmin implies better error resilience. The Singleton

bound, dmin ≤ n− k + 1, upper bounds this minimum distance. From this bound we

can observe that a larger codeword length and a smaller message length increases the

error resilience. However, this also increases the redundancy and hence transmission

costs. The coding rate of any code is the fraction k/n. The fundamental problem of

coding theory is to find codes that jointly maximize coding rate and dmin.

An important class of linear block codes that is of interest to our work is the

Maximum Distance Separable (MDS) codes. The MDS codes are the sub class of

linear, cyclic, q-ary block codes that satisfy the Singleton bound to equality. That is

to say that, a [n, k, q] MDS code has a minimum distance of dmin = n− k + 1. This

is the largest possible minimum distance achievable by a linear block code.

2.6 Previous Work on Joint Error Correction and

Encryption

Traditionally error correction and encryption in communication networks have been

addressed independently. Although many mathematical relationships between coding

and cryptography have been analyzed and explored [64], there have been only a few

successful attempts in the past to combine coding and cryptography operations into

one function. Several researchers have studied the trade-off between encryption and

error correction by trying to combine these functionalities in one unit. Some of the

notable works are briefly discussed.

2.6.1 McEliece Public Key Cryptosystem

McEliece proposed the first public-key cryptosystem based on algebraic coding theory

in 1978 [46]. The idea behind this scheme was based on the fact that the decoding of
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an arbitrary linear code is an NP-hard problem [3]. This scheme constructs a (k, n), t-

error correcting code where k is the message length and n is the codeword length using

a generator matrix G. The message, m, is encoded to produce the ciphertext c using

the equation c = mSGP +e, where S and P refer to the substitution and permutation

matrices respectively and e is a random vector with weight t′ ≤ t. The key, SGP

(the product of the matrices S, G and P , is published and the authorized users are

provided with the private keys S,G and the key to generate e. This is not really a

joint error correction and encryption code, since the code is unable to correct any

channel induced errors. However, these schemes have the advantage of lower power

consumption by using the same hardware components available for error correction

to achieve security. Conceptually, however, it is easy to extend this code by setting

t′ ≤ t′max < t, where t′max is the maximum weight of e so that the code is able to correct

t−t′max link induced errors. Since the first scheme by McEliece, other researchers have

worked on improving the information rate of the system [29, 52, 35, 57] by making the

error vector carry some extra information. However, most of these systems suffer from

information leakage which introduces weaknesses in these systems. Berson proposed

two attacks [5] on the McEliece system that makes it easier for an attacker to crack

the code. In [62], the authors propose two variations to the McEliece scheme: one

using a hash function on the error vector e and the other a trap-door function f(m, e)

to enhance the security of the basic McEliece scheme.

2.6.2 Sun’s Private Key Cryptosystem

This is a private-key cryptosystem based on burst error correcting codes [61]. Here,

the generator matrix of a burst error correcting code is and a permutation matrix

are kept secret between the sender and the receiver. The ciphertext is obtained by

encoding the message XORed with a predetermined burst sequence and permuting
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the result using the permutation matrix. The decryption is performed by inverse

permuting the ciphertext and then decoding the received codeword. However, due to

the addition of burst errors prior to transmission, the true error correcting capacity

of this scheme is significantly reduced.

2.6.3 Kak’s D-sequences

In [30] Subhash Kak proposed a unique approach to joint encryption and error-

correction. This solution is based on decimal expansions of fractions known as D-

sequences. It is shown that the encoding operation is equivalent to that of exponen-

tiation in finite field, which is similar to encryption in public key ciphers. However,

this work has not been scalable and did not attract further research.

2.6.4 Godoy and Pereira Scheme

The functions of error correction and security were truly integrated in works like the

Godoy and Pereira Scheme [22] which was intended for incorporation into existing

systems without making any fundamental changes. The idea behind this scheme is to

derive new generator matrices from existing generator matrices by row permutations.

The security of the system relies on the change and secrecy of the generator matrices.

Since the number of generator matrices for the given code are finite and countable,

this scheme is susceptible to brute force attack on the generator matrix.

2.6.5 Hwang and Rao Scheme

Hwang and Rao proposed two secret error-correcting code (SECC) schemes [26]. This

is a private key cipher that uses Perparata codes [39], which are a class of non-linear

channel codes. Like many of the other schemes, this scheme suffers from reduction

in error correcting capacity. In fact, in order to achieve meaningful error correction
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capacity, the parameters of the system have to be very large leading to higher compu-

tational complexity. Also, this system was found vulnerable to the known plaintext

attack conducted in [67].

2.6.6 Cryptcoding

Cryptocoding [21] is one of the more recently proposed techniques for joint error cor-

rection and encryption. This technique is based on quasigroup (Latin square) string

transformation. A quasigroup of order 16 is chosen over 2480 possibilities when encod-

ing and decoding functions are generated. The space of quasigroup gives the security

for such a technique. Every message is padded with a bunch of zeros before the en-

coding/encryption operation. The presence of zeros is then verified by the decoding

procedure and the decoding is repeated by flipping the received codeword symbols

until the zero pad is recovered. Although this technique achieves both security and

error correction. The decoding procedure is extremely complicated and cannot be

used in a resource constrained environment.



Chapter 3

High Diffusion Codes

1

We look for channel codes that are not just good in error correction capabili-

ties but also possess properties that make them useful as building blocks of ciphers.

Specifically, we derive two distinct criteria that these codes must satisfy:

• Security Criterion: Since we intend to use the new code in the diffusion layer

of a block cipher, we require the code to spread the statistical properties of the

input block to a large section of the output block.

• Error Resilience Criterion: We do not want to compromise the error correction

capabilities of the code in order to meet the security criterion. Hence we want

the codes to have best possible error correction capability. The number of errors

that can be corrected by block codes is governed by the pairwise minimum

distance between the codewords [66]. A large minimum distance would ensure

good error resilience property.

In this chapter we look at the existence of such codes and analyze their prop-

erties. A metric to measure diffusion called “Branch Number” is described in the

1part of this work was done in collaboration with Karthik Narayan (“On the Design of Secure
Error Resilient Diffusion Layers for Block Ciphers”)

23
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next section. Then, we show the existence of codes that possess maximum possible

branch number that do not compromise on the error correction capability. We call

these error correcting codes as High Diffusion (HD) codes. Further we discuss the

properties of HD codes and show that they indeed possess the best possible diffusion.

Hence, making them an ideal candidate for block ciphers. We then describe several

ways of constructing HD codes.

3.1 Branch Number

To define High Diffusion codes, we need a metric to measure diffusion. We use branch

number of a function as a primary measure of its diffusion. For any function there

are two ways of measuring the branch number, one is the differential measure and

the other is the linear measure.

Definition 3.1.1. The differential branch number of a transformation φ mapping a
k-tuple onto an n-tuple is defined as

Bdiff
d (φ) = min

dH(x1,x2)6=0
{dH(x1, x2) + dH(φ(x1), φ(x2))} (3.1.0)

where x1 and x2 are two input k-tuples (x1 6= x2) and dH is the byte Hamming
distance [24].

Definition 3.1.2. The linear branch number of a transformation φ on mapping a
k-tuple x onto an n-tuple is defined as

Blin
d (φ) = min

x 6=0
{w(x) + w(φ(x))} (3.1.0)

where w(.) is the Hamming weight in number of non-zero symbols.

If the function φ is linear, both linear and differential branch numbers for that

function are the same.

3.2 Definition of HD Codes

Let us consider an [n, k, q] block code, defined on the Galois field (GF) of order q;

where n refers to the number of output symbols and k refers to the number of input
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symbols. The HD codes are defined as follows:

Definition 3.2.1. A [n, k, q] code C, is said to be a High-Diffusion (HD) code with
the encoding operation, θ, if Blin,diff

d (θ) = n + 1.

That is, the branch number of HD codes should be exactly equal to n + 1. We

denote the function that measures branch number as B().

3.3 Properties of HD Codes

In this section, we show that the HD codes possess the maximum possible diffusion

and error correction capacity as specified in the design criteria.

3.3.1 Optimality in diffusion

By definition, HD codes have a branch number of n + 1. By Lemma 3.3.1, this is the

upper bound. Hence the diffusion is optimal.

Lemma 3.3.1. The upper bound of branch number is n + 1.

Proof. For a one byte difference in the messages, the corresponding codewords have
to differ by all n bytes to maintain the branch number of n + 1. Since there are only
n bytes in every codeword, it is not possible to get a branch number greater than
n + 1.

3.3.2 Optimality in error correction

We prove that HD codes are maximum distance separable codes (MDS) [39] and

hence show that they are optimal in terms of the minimum distance.

Theorem 3.3.2. An [n, k, q] HD code with encoding operation θ, is an MDS code
with minimum distance dmin = n− k + 1.

Proof. Consider two messages mi and mj and the corresponding codewords ci and cj.
By the definition of HD codes (Definition 3.2.1) we have,

dH(ci, cj) + dH(mi,mj) ≥ B(θ)

dH(ci, cj) + dH(mi,mj) ≥ n + 1

dH(ci, cj) ≥ n− dH(mi,mj) + 1
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Since the messages are from a k-dimensional space maximum value of dH(mi,mj) is
k,

∴ dH(ci, cj) = dmin ≥ n− k + 1 (3.3.-3)

From Equation 3.3.-3 we see that HD codes satisfy the Singleton bound [39] with
equality, which implies that HD codes are in fact MDS codes.

The bound on error correction capacity, t, of HD codes is derived from the mini-

mum distance between codewords as follows:

t = bdmin

2
c

∴ t = bn− k + 1

2
c (3.3.-3)

3.3.3 Totally positive generator matrix

Definition 3.3.1. A rectangular matrix G = (aij), i = 1, · · · , k; j = 1, · · · , n is called
totally positive if all its minors (determinants of sub-matrices) of any order are positive
[19].

Although the original definition in [19] is for matrices of real values, it can be

easily extended to the case with elements in Galois field GF (2m).

Theorem 3.3.3. Over a field F , the linear transformation of k-tuples in k dimen-
sional space V k into n-tuples in n(> k) dimensional space V n by an operation y = xG
achieves the branch number of n+1 if (sufficient) and only if (necessary) G is a totally
positive matrix.

Proof. First we prove that the necessary condition to satisfy the branch number
properties is the total positivity. From Definitions 3.1.1, 3.1.2, and Lemma 3.3.1, for
transformation G to be diffusive, we require that

d(x1, x2) + d(x1G, x2G) > n + 1

⇒ w(x1 ⊕ x2) + w(x1G ⊕ x2G) > n + 1 (3.3.-3)

Since G is a linear transformation, (3.3.3) implies

w(x1 ⊕ x2) + w((x1 ⊕ x2)G) > n + 1 (3.3.-3)

Let x1 ⊕ x1 = e. Then (3.3.3) reduces to

w(e) + w(eG) > n + 1 (3.3.-3)
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w(e) min{w(eG)}
0 0
1 n
2 n− 1
...

...
r n− (r − 1)
...

...
k n− k + 1

Table 3.1: Minimum change in the output to maintain branch number.

The minimum values of w(eG) corresponding to the values of w(e) to satisfy (3.3.3)
are as given in Table I.

It can be seen that for w(e) = r, min{w(eG)} = n− (r− 1). Let the columns of G
be denoted by hj, j = 1, · · · , n. Then with a given r for r = 1, · · · , k we require G to
have at most r − 1 columns such that e · hj = 0. This implies that in the r × n sub-
matrix formed by selecting the rows of G corresponding to the non-zero elements of e,
every r× r sub-matrix (contiguous as well as non-contiguous) should be of full rank.
Since the r non-zero elements in e can occur at any r out of k positions, this implies
that every r× r sub-matrix of G should be of full rank i.e., positive for r = 1, · · · , k.
Thus by Definition 3.3.1, G should be a totally positive matrix.

Next we prove that the total positivity of the transformation matrix is sufficient
to achieve the maximum branch number. If G is a totally positive matrix, every
r × r sub-matrix is positive i.e., has full rank for r = 1, · · · , k. Let the rows of G be
ai, i = 1, · · · , k. Then the linear combination of any r rows,

∑r
i=1 αiai with αi > 0

results in an n-tuple with at-most r−1 zero elements leading to w(e)+w(eG) = n+1
and hence achieves the branch number. While this proof explicitly addresses the case
of differential branch number property, the case of linear branch number property is
implicit.

3.4 Construction of HD Codes

Unlike usual error correcting codes, the definition of HD codes involves pairs of mes-

sages and their associated codewords. This makes deriving a closed form expression

for the construction of the codes tricky. A brute force search produces the complete

mapping but has the highest expected runtime. We have, therefore, developed three

different shortcut techniques to generate HD codes.
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3.4.1 Transformation from Reed Solomon (RS) codes

We have shown that all HD codes are MDS codes (See Theorem 3.3.2). Reed Solomon

(RS) codes are a subclass of MDS codes. So another way of constructing a subclass

of HD codes is as follows: a) start with the generator matrix of any [q − 1, k, q] RS

code in systematic form (Grs = [IP ]) b) P sub-matrix of Grs satisfies the branch

number properties (Theorem 3.4.1). Therefore set the generator matrix of a HD code

to P, (i.e. Ghd = P ). For example, to generate a [6, 4, 256] HD code, we can take

a [10, 4, 256] RS code. The generator matrix of this RS code has a 4 × 4 identity

matrix and a 4× 6 parity check matrix. The parity check sub-matrix of this RS code

is actually one of the generators of a [6, 4, 256] HD code.

Theorem 3.4.1. Parity check submatrix of a systematic RS generator matrix gener-
ates a HD codes.

Proof. The parity check submatrix of a RS generator matrix in systematic form is
totally positive (Theorem 15.6 in [25]). From Theorem 3.3.3 it follows that the branch
number of the parity check matrix is n + 1.

3.4.2 Searching totally positive generator matrices

Theorem 3.3.3 serves as a guideline for designing transforms to achieve the desired

branch number properties. However, the testing of all possible square sub matrices

of a matrix for positivity has an exponential order complexity. This can be reduced

to polynomial order by testing only for initial minors (see Theorem 9 of [18]). This

approach reduces the number of minors required to be tested for an n × n matrix

from

(
2n

n

)
− 1 to n2.

3.4.3 Puncturing existing codes

This gives us an easy way to generate new HD codes from existing HD codes.

Theorem 3.4.2. Punctured HD codes are HD codes.
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Proof. Let C be an [n, k, q] HD code and C ′ be the punctured [n−1, k, q] code obtained
from C. Let mi, mj be any two messages with their corresponding codewords ci, cj in
C and c′i,c

′
j in C ′. We know that C is an HD code, therefore dH(mi,mj) + dH(ci, cj) ≥

n + 1. We know that, c′i and c′j are obtained by puncturing ci and cj in one symbol
position. This implies that dH(mi,mj)+dH(c′i, c

′
j) ≥ n. Hence, C ′ is an HD code.

3.5 Conclusions

High Diffusion codes possess the best possible diffusion and yet satisfy the Singleton

bound for the minimum distance between codewords thus making them ideal can-

didates for error resilient cryptographic primitives. Although there is no systematic

technique to generate HD codes, the flexibility to generate HD generator matrices

from RS generator matrices makes it easy to derive large HD codes without having

to go through brute force search. The close relationship of HD codes with the pop-

ular Reed Solomon codes makes them easy to study, analyze and port into existing

systems.



Chapter 4

The High Diffusion Cipher

The diffusion property of HD codes can be used in the construction of the diffusion

layer of a block cipher. We look at the Advanced Encryption Standard (AES) cipher

design structure and propose to replace its diffusion layer with HD codes. We call

this the High Diffusion cipher. Security of HD cipher is analyzed with respect to the

best known cryptanalytic techniques like linear, differential and square attacks. We

show that HD cipher is as secure as the AES under these attacks. Finally, we analyze

the error resilience of the HD cipher to bursty channel errors.

4.1 Structure and Design

The HD cipher [42] is a key-alternating [11] block cipher, composed of 10 iterations

of round function and key mixing operations. The round function consists of three

layers: a) the non linear substitution layer, b) symbol transposition layer and c) the

High Diffusion encoding layer. A block diagram of the HD cipher encryption is given

in Fig. 4.1. Note that, the HD encoding is not performed in the final round. The

input data, as it goes through each round of the cipher, is referred to as the cipher

state. Note that, the output cipher state of the key mixing layer of round r− 1 forms

the input cipher state to the next round r. However, when r = 10, the output cipher

30
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Figure 4.1: Block Diagram of High Diffusion Cipher.

state is the ciphertext (keystream in CTR mode). The 10 round HD-cipher operates

on plaintext size of 128 bits to produce an output ciphertext (or keystream in CTR

mode) of 288 bits. The secret key size required by the HD cipher is 288 bits. All

the operations in HD cipher are performed in the finite field of order 28, denoted by

GF(256). A detailed description of all the layers of HD cipher follows.

4.1.1 Key mixing layer

The key mixing layer (see Fig. 4.1) follows every round function and is also performed

once before the first round. Key mixing is a bitwise XOR operation of the cipher
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state with the round key. The eleven round keys required for the eleven key mixing

operations are generated using a key expansion algorithm. In HD cipher we use a

key expansion algorithm which is similar to that of the AES key expansion algorithm

[17]. However, we redesign the key expansion to expand a 288 bit secret key instead

of the regular 128 − 256 bit secret key. Since, the AES key expansion algorithm is

easily expandable to any byte size, we do not concentrate on the design details.

4.1.2 Substitution layer

The substitution layer uses an invertible local non-linear transformation called the

S-box. The non-linearity in S-box is designed to cause intra symbol avalanche [16]

(that is every bit in the output symbol of the S-box flips with a probability of half

for a single bit flip in the input symbol), which is essential for the security of the

cipher. Nyberg proved that substitution functions generated by inverting elements in

GF(28) are differentially 4 uniform and are highly nonlinear [50]. The S-boxes thus

constructed are used in the substitution layer of the HD cipher. Note that, these

S-boxes are also used in the substitution layer of the AES cipher.

4.1.3 Symbol transposition layer

The symbol transposition layer is the first of the two diffusion operations used in the

HD cipher. The aim of this layer is to permute the cipher state using a diffusion

optimal transformation. We use the matrix transpose operation which was shown to

be diffusion optimal [42].

4.1.4 HD encoding layer

The HD encoding transformation is the second diffusion operation used in the HD

cipher. The aim of this layer is to diffuse the intra symbol avalanche caused by the
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substitution layer to a large number of symbols in the resulting cipher state. We

propose to use our novel HD codes in the encoding layer. By picking appropriate

parameters for the HD code, it is possible to achieve the desirable level of error

correction capability and expansion in the diffusion layer. We expect this to lead to

resilience to channel errors when the cipher is used in block modes and appropriate

amount of savings in energy consumption when used in stream modes.

In this work we use a [4,4,256] HD code for rounds 1 through 7 and a [6,4,256]

HD code for rounds 8 and 9. The generator matrices for these HD codes are,

G(r)r=[1...7] =




1 1 3 2

2 1 1 3

3 2 1 1

1 3 2 1




G(r)r=[8,9] =




1 1 3 2 189 71

2 1 1 3 169 27

3 2 1 1 192 209

1 3 2 1 91 179




To perform HD encoding, each column of the input cipher state is multiplied with

G(r) to obtain the output cipher state. The branch number (see Section 3.1) B(G(r))

of G(r)r=[1...7] is 5 and G(r)r=[8,9] is 7.

4.2 Security Analysis

In this section, we briefly analyze the security of HD ciphers by looking at the resis-

tance it offers against some well known cryptanalytic attacks.
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4.2.1 Resistance to differential and linear cryptanalysis

Differential cryptanalysis [6, 7] is a chosen plaintext-ciphertext attack that makes use

of the difference propagation property of a cipher to deduce the key bits. The differ-

ence propagation property of an S-box is the relative number of all input pairs, that

for a given input difference, gives rise to a specific output difference. It is expressed

as propagation ratio [11]. Let xr
1 be any intermediate cipher state at round r result-

ing from the input plaintext P1. Similarly, let xr
2 be the corresponding intermediate

cipher state resulting from plaintext P2. The non zero symbols in xr
1 ⊕ xr

2 are called

active symbols or S-boxes. The difference propagation of consecutive rounds can be

concatenated across several rounds to form a differential trail. The propagation ratio

over all the rounds of a differential trail can be approximated by the product of the

propagation ratios of its active S-boxes. Differential cryptanalysis can break the HD

cipher with complexity less than O(2128) if the maximum possible propagation ratio

over all rounds is significantly larger than 2−127.

Linear cryptanalysis [45] is a known plaintext-ciphertext attack that makes use of

linearity in the cipher to obtain the key bits. Substitution is the only non-linear step

in most of the block ciphers including the proposed HD cipher. The linearity of an

active S-box can be approximated to the maximum input-output correlation exhibited

by it. The active S-boxes in a round are determined by the non zero symbols in the

selection vectors at the input of the round. The linearity of one round can be extended

to multiple rounds to form a linear trail. The correlation (measure of linearity) of

a linear trail (multiple rounds) can be approximated to the product of input-output

correlations of its active S-boxes. Linear cryptanalysis can break the HD cipher with

complexity less than O(2128) if the maximum possible correlation of any linear trail

over all rounds is significantly larger than 2−64.
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Hence, a lower bound on the number of active symbols in any linear or differential

trail will give a lower bound on the resistance of the cipher to linear and differential

cryptanalysis. In Theorem 4.2.3 we show that this lower bound for any four rounds

of HD cipher, starting with round r is B(G(r)) × B(G(r + 1)). The lower bound on

the number of active S-boxes in any linear or differential trail in the last four rounds

of the HD cipher proposed here is B(G(7))B(G(8)) or 35. The S-boxes used in the

substitution layer of HD cipher have a maximum propagation ratio of 2−6 and a

maximum input and output correlation of 2−3. This shows that there are no four

round differential trails with predicted propagation ratio above 2−215 and no four

round linear trails with predictable input output correlation above 2−105. The initial

six rounds are added as a security margin towards future attacks, just as in AES.

Lemma 4.2.1. The total number of active columns of one round function is lower
bounded by the branch number of G, B(G).

This is true for any diffusion optimal transformation. Proof given in [13].

Theorem 4.2.2. The number of active S-boxes or symbols for a two round trail of HD
cipher is lower bounded by the branch number of the first round of HD code, B(G(1)).

Proof. Consider the first two rounds of HD cipher. Since substitution and key mixing
operate on the symbols locally, they do not affect the propagation pattern. Hence
the number of active S-boxes or symbols for a two round trail is bounded by the
propagation property of G(1). From the definition of HD codes the sum of active
S-boxes before and after HD encoding of the first round is lower bounded by B(G(1)).

Theorem 4.2.3. The number of active S-boxes or symbols for a four round trail
(starting with round r) of HD cipher is lower bounded by B(G(r))× B(G(r + 1)).

Proof. Proof given in [42].

4.2.2 Resistance to square attack

The Square attack [12] (also known as Integral attack [32] or the Saturation attack

[38]) makes use of the byte oriented nature of the Square block cipher which was
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the predecessor of AES. As AES is also a byte oriented cipher, this attack has been

extended to reduced versions of AES [37, 20]. The proposed HD cipher also comprises

of byte oriented operations which are loosely based on AES, hence HD ciphers with

fewer than seven rounds would be as weak as reduced versions of the AES.

Although the HD cipher is as secure as AES against most of the well known

attacks, the HD cipher uses a larger key length to achieve the same security level

as that of AES. Since, the key expansion is performed only once every session, its

computational overhead is negligible.

4.3 Error Correction Capacity

In this section, we prove bounds on the error correction capacity of the HD cipher.

After encryption, the ciphertext of length 36 bytes (equivalently 288 bits) is trans-

mitted across a noisy channel. Specifically, we consider a bursty channel [10] and use

the term “full weight burst error” to denote an error burst where all the symbols in

the burst are in error. We do this to calculate the lower bound on the error correction

capability. In order to formalize our analysis we introduce the following assumptions,

definitions and notations. A symbol of the cipher state that is in error (due to channel

or propagation due to decryption) is referred to as an error symbol. If a row/column

in the 4× 4 representation of the cipher state has more than one error symbols, it is

said to be an error row/column. Error correction capacity of a four round HD cipher

decryption is analyzed in Theorem 4.3.3.

Lemma 4.3.1. If there is at most 1 error row or column in the cipher state before the
first HD decoding, then the error correction is complete after the second HD decoding.

Proof. Consider the first three rounds of HD cipher decryption. Since the inverse
non-linear transform and round key addition and the transpose operations do not
convert an error symbol to an error free symbol and vice versa, it can be excluded
from the analysis. If there is only one error row in the cipher state before the first
HD decoding, then the error correction will be complete after the first decoding. This
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is because, the decoding takes place columnwise and each HD code has 1 byte error
correction capacity. If there is one error column, it will remain an error column even
after the first HD decoding, however, the transpose operation will convert it to an
error row before the second HD decoding is performed. The second HD decoding
then completes the error correction.

Lemma 4.3.2. If there are at least 2 error columns in the cipher state before the
first HD decoding, the error correction may remain incomplete after the second HD
decoding.

Proof. The two error columns before the first HD decoding will remain in error even
after decoding. The transpose will make the two error columns into two error rows.
Now every column in the cipher state may have more than one error byte. Thus, the
second HD decoding may not be able to correct all errors.

We now analyze the maximum full weight burst error length that is guaranteed

to be corrected by a four round HD cipher. We assume columnwise transmission of

the ciphertext. Our analysis is independent of the starting and ending locations of

the burst with respect to the cipher state.

Theorem 4.3.3. The full weight burst error correcting capacity of a four round HD
cipher is 7.

Proof. The largest full weight burst error that can occur without causing a single
error column in the cipher state before the first HD decoding is 6. An extra byte
in error either next to the starting/ending location of the burst will create one error
column. From lemma 4.3.1 we know that this is correctable. Hence, a full weight
burst of 7 bytes is correctable. However, a full weight burst of 8 bytes will create two
error columns and from lemma 4.3.2 we know that the decoding may fail.

From Theorem 4.3.3 we get the lower bound on the burst length for burst error

correction per block of HD cipher. A [36, 16, 256] RS code has a burst correction

capability of 10 bytes. However, since we use many small HD codes instead of one

large RS code, we expect HD cipher to be more energy efficient than a traditional

cipher concatenated with the large RS code.
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4.4 Modes of Operation

Encrypting each plaintext block independently in Electronic Codebook (ECB) mode

does not provide semantic security. This is because, the adversary can distinguish

between two different plaintexts just by observing the ciphertext. Moreover, if the

block length is not very large, the adversary can construct a table of known plaintext-

ciphertext pairs and use it as a lookup table to decode unknown plaintexts encrypted

with the same key. To improve the semantic security of block ciphers several other

modes have been suggested. The most popular of these are the Cipher Block Chaining

(CBC) mode and the Counter (CTR) mode. The CBC mode encrypts plaintexts one

block at a time, hence it is referred to as block mode encryption. However, CTR

employs the underlying block cipher to produce a pseudo random key stream, which

is then bitwise XORed with the plaintext in the stream cipher style. Hence, CTR

mode is usually referred to as a stream mode. It has been shown in [28] that both CBC

and CTR modes have equivalent security for a given block cipher. In this section,

we construct and analyze the performance of HD cipher in both block and stream

modes.

4.4.1 Cipher block chaining (CBC) mode

In the CBC mode, every plaintext block is XORed with the previous ciphertext

block before encryption. The first plaintext block is XORed with an Initialization

Vector (IV). The chaining of ciphertext block makes CBC mode more semantically

secure compared to ECB mode. In our work, we implement HD cipher in CBC mode

and compare it with traditional concatenated systems in terms of error correction

capabilities.

To evaluate the energy efficiency, we measured the actual energy consumption
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of the HD cipher on a testbed and compared it with that of traditional systems.

The testbed (Fig 4.2) consists of an Intrinsyc CerfCube [27] with a 233 MHz ARM

processor, 16MB Flash and 32 MB SDRAM, running Debian Linux operating system.

The power consumed by the CPU in running the encryption algorithms is measured

as a function of input power supply to the CerfCube. A separate DC power supply

is given to the CerfCube to permit measurements. The current is measured using

Labview from the GPIB interface of the power supply. To eliminate effects of any

programs running in the background, the current consumption is first tested when

no other tasks are running. The difference in currents when the algorithm is running

and the idle current (in Amperes) is taken as the actual current consumption. In

the experiments, since voltage variation is seen to be extremely small (measured to

be less than 0.025%) we use a constant value. We use OProfile [51] to measure the

exact time taken by the algorithms to run. The energy consumed by the algorithms

is the product of power drawn from the DC source and the time required to complete

execution.

The energy measurements are given in Tables 4.1 and 4.2. We can observe from

the tables that the HD cipher saves 30% and 12% energy per byte during encryption

and decryption compared to the traditional systems.

To evaluate the performance (error correction) of the HD cipher, we compare it

with concatenated systems A and B (described below) with respect to error correction

capacity.

• Concatenated system A: uses AES (128-bit) cipher concatenated with [36,16,256]

Reed Solomon code.

• Concatenated system B: uses AES (128-bit) cipher concatenated with convolu-

tional codes having rates varying from 1/2 to 1/6.
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Figure 4.2: Hardware Setup

Block Voltage Current Time Energy
Mode (volts) (amps) (secs) (Joules)

HD Encryption 5.003 0.237 8.9 10.55
AES Encryption 5.003 0.237 6.6 7.82

RS Encoding 5.003 0.238 6.3 7.05
HD Decryption 5.003 0.239 24.1 28.51
AES Decryption 5.003 0.238 8.2 9.76

RS Decoding 5.003 0.239 19.3 23.07

Table 4.1: Voltage, current, time and energy measurements for the one million HD,
AES and RS encryption/encoding and decryption/decoding operations.

Per Byte HD AES-RS
Energy (µJ) cipher cipher-code

Encode/Encryption 0.65 0.95
Decode/Decryption 1.80 2.05

Table 4.2: Per byte energy consumption for encoding/encryption, decod-
ing/decryption operations of the error correcting HD cipher and the AES-RS con-
catenated system.
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Figure 4.3: Comparison of error resilience of HD cipher and AES concatenated with
[36,16,256] Reed Solomon codes.

Wireless communication medium is characterized by bursty errors and fading phe-

nomenon. Which implies that the bit errors occurring in wireless channels have mem-

ory. Alajaji, et al.[2] proposed an additive Markov channel (AMC) model for slow

fading wireless channels. According to this model, the channel can be described by

bit error rate and correlation parameters. The burstyness of the channel can be con-

trolled by the correlation parameter. In our experiments we set the correlation to 0.9

and varied the bit error rate from 0.0005 to 0.2.

Fig. 4.3 plots the post decryption bit error rate of the proposed 128 bit HD

cipher and the concatenated system A against channel bit error rate. It can be

observed that HD cipher and the concatenated system are comparable in terms of

error correction capacity over all the channel bit error rates. This is because, both

HD cipher and the Reed Solomon code used in the concatenated system are burst

error correcting codes with similar coding rates. However, as the error correction is
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Figure 4.4: Comparison of error resilience of HD cipher and AES concatenated with
Convolutional codes. Notice that the coding rate of HD cipher is between 1/5 and
1/6, yet it outperforms the 1/6 rate concatenated system.

performed during decryption within the HD cipher, there is roughly a savings of two

rounds per encryption/decryption compared to the concatenated system.

For the second set of experiments, we compare the proposed 128 bit HD cipher

with the concatenated system B. Different convolutional codes with rates 1/2, 1/3,

1/4, 1/5 and 1/6 are considered. Since, the channel is assumed to be bursty, a block

interleaver is added after convolutional encoder to optimize the performance of the

concatenated system. Hard decision Viterbi decoder [10] is used at the receiver.

Fig. 4.4 plots the post decryption bit error rate of the proposed HD cipher and the

concatenated system B. The HD cipher clearly outperforms the concatenated system

for all rates 1/2 through 1/6. Note that, the coding rate of the HD cipher is between

that of the concatenated systems with rate 1/5 and 1/6 yet it outperforms the rate 1/6

concatenated system. Although convolutional codes are more light weight compared

to Reed Solomon codes, the total number of operations when it is combined with 10
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round AES cipher is approximately equal to the number of operations in a 10 round

HD cipher.

4.4.2 Counter (CTR) mode

In the CTR mode, the block cipher is used to encrypt a counter value which is incre-

mented for successive encryptions. The encrypted counter values makeup a keystream

which is XORed with the plaintext bits to produce the ciphertext bits. Block ciphers

act as pseudo random number generators (PRNGs), hence this mode is semantically

more secure compared to the ECB mode. Since, the encryption of plaintext takes

place one bit at a time, this mode of encryption is usually referred to as the stream

mode. In this work, we implement the HD cipher in CTR mode as a component of

the current 802.11 wireless LAN security protocol called the Counter Mode Encryp-

tion with Cipher Block Chaining Message Authentication Protocol (often referred to

as CCMP). We then compare the performance of our proposed HD-CCMP with the

traditional AES-CCMP.

The CCMP currently uses the AES block cipher (see Fig. 4.5) to provide both

authentication and confidentiality.

The drawback of AES-CCMP is that, it consumes more energy compared to its

predecessor, the Wired Equivalent Privacy (WEP). This is because, the RC4 cipher

used in WEP is a stream cipher; whereas, the AES used in CCMP is inherently a

block cipher used in stream (counter or CTR) mode. Therefore, a full 10 round

AES needs to be performed to encrypt every 128 bits of Message Protocol Data Unit

(MPDU) (see Fig 4.5).

By using the HD cipher instead of the AES (see Fig. 4.5) we propose to make

CCMP more energy efficient. Let C denote the 128 bit counter, X denote the MPDU

stream (data payload + MIC) of length N -bits to be encrypted and Xi denote the i-th
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Figure 4.5: Block Diagram of CCMP.

288 bit block of X (where, i ∈ {1...dN/288e}). The HD encryption under key K, de-

noted by EK , in the CTR mode is Yi = EK(counter+(i−1))⊕Xi, ∀i ∈ {1...dN/288e}.
Here, Y represents the encrypted MPDU stream. In the CTR mode, the HD cipher

securely expands the 128 bit counter to 288 bit keystream, thus encrypting more than

twice the number of bits per encryption compared to the AES. The number of en-

cryptions required by the HD cipher per N bit frame is dN/288e, whereas for the AES

it is dN/128e. We therefore expect to do only 50% of work to achieve the same level

of confidentiality compared to the AES-CCMP. Moreover, as n increases we expect

to observe larger reduction in energy consumption. Although, from a security stand-

point we can use the HD cipher in CBC-MAC mode for authentication as well, this

does not cause additional savings in terms of energy, hence we use the HD-cipher in

the CTR mode for confidentiality only. From an implementation standpoint, most of

the operations of the HD cipher are similar to the AES, hence significant portions of
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code can be reused. Therefore, using two different ciphers in CCMP does not impose

a significantly larger code space requirement.

The HD and the AES ciphers consume 0.29µ J and 0.49µ J (from Table 4.1) of

energy per byte respectively. Hence, HD cipher in counter mode results in about 40%

reduction in energy consumption compared to the AES cipher.

4.5 Conclusions

The construction of HD cipher from HD codes proves the latter’s potential as building

blocks for ciphers. The branch number of HD codes provides adequate diffusion to

the HD cipher. Hence, making them secure against well known cryptanalytic attacks.

The error resilience analysis of HD cipher revealed that the error correction capacity

of HD codes are not compromised because of their use inside the cipher. The joint

security and error resilience properties favors HD cipher as a potential solution to

current cipher design challenges. The HD cipher is employed both in block and stream

modes. In block mode, the HD cipher corrects bursty channel errors and hence is more

error resilient compared to traditional ciphers. Furthermore, HD cipher when used in

stream mode has more encryption throughput compared to the popular AES cipher.

Energy consumption analysis revealed that HD cipher is 40% more energy efficient.

The error resilience, higher encryption throughput and energy efficiency properties

makes the proposed HD cipher an ideal replacement for the AES cipher in resource

constrained and noisy wireless environments.



Chapter 5

The Pyramid Cipher

In Chapter 1 we pointed out error resilience, energy efficiency, speed (number of

rounds) and encryption throughput as four important present day design challenges

in block ciphers. In Chapter 4 we showed that the High Diffusion ciphers address three

of the four challenges: error resilience, energy efficiency and encryption throughput.

However, the number of rounds in the HD cipher, which is 10, is equal to that of

the AES (Rijndael) cipher. This can be largely attributed to the structural similarity

between the AES cipher and the HD cipher.

In this chapter, we investigate techniques to reduce the number of rounds in the

cipher. Specifically, we observe that by making the diffusion layer as large as pos-

sible, avalanche effect can be caused within fewer rounds. Based on this philosophy

we design a five round error correcting cipher called the Pyramid. We show that

the reduction in the number of rounds, does not adversely impact the security of the

cipher. Further, we show that the Pyramid cipher is as secure as the AES cipher

against linear, differential and square attacks. We derive bounds on the error correct-

ing capacity of the Pyramid cipher and through simulations show that they are as

error resilient as the Reed Solomon (RS) codes and outperform convolutional codes

by 60%. Energy analysis experiments on a 32 bit test bed reveals that, Pyramid

46
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cipher is 6 − 10% faster and energy efficient than a concatenated system. Finally,

we implement the Pyramid cipher in stream (counter) mode and show that they are

secure random number generators using the DIEHARD statistical test suite with an

higher encryption throughput ≥ 192 bits (compared to the AES cipher).

5.1 Structure and Design

The Pyramid is a five round cipher that encrypts 128 bit plaintexts using a 192 bit

secret key to produce 192 bit ciphertexts as shown in Fig. 5.1. Since the cipherstate

expands as it goes through the cipher, we call it the Pyramid cipher. The round func-

tion in the Pyramid cipher consists of three distinct layers: the key mixing layer, the

non linear substitution layer and the linear diffusion layer. The Pyramid decryption

is the exact inverse of the encryption operation.

5.1.1 Key mixing layer

In the key mixing layer the round key is XORed with the cipherstate. As Pyramid

cipher is a key iterated block cipher, there are six key mixing operations with the

round key (denoted by ⊕ in Fig. 5.1). The six round keys are generated from the 192

bit secret key using a key expansion algorithm, which is similar to that of the AES

key expansion algorithm.

5.1.2 Substitution layer

The substitution layer consists of simple table lookup operations. The substitution

tables are usually referred to as the S-boxes. Each byte in the input cipherstate is

substituted for a byte in the output cipherstate. Let Ci,j represent the j-th byte of
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the i-th round cipherstate. Then the cipherstate after substitution Cs
i+1 is,

∀jC
s
i+1,j = S[Ci,j] (5.1.0)

The substitution operations are denoted by S in Fig. 5.1. During decryption, the

substitution boxes are replaced by inverse substitution boxes. The S-boxes and the

inverse S-boxes are identical to those used in the HD cipher.

5.1.3 Diffusion layer

In the diffusion layer, the cipherstate is multiplied with a diffusion matrix G.

Ci+1 = Cs
i+1 × G (5.1.0)

In the first three rounds the entire 16 byte cipherstate is multiplied by a single 16×
16 diffusion matrix called the Mix Column (MC) matrix (see Fig. 5.1), GMC with

operations in GF(256). In the fourth round however, the 16 byte input cipherstate is

multiplied with a single 16× 24 diffusion matrix called the HD encoding matrix (see

Fig. 5.1), GHD, in GF(256) to produce a 24 byte output cipherstate. The MC and the

HD matrices have branch numbers 17 and 24 respectively. The high branch numbers

are important to achieve resistance against cryptanalytic attacks (see Section 5.2).

Details on the construction of the diffusion matrices is provided in Section 5.1.3 and

5.1.3. The fifth (final) round does not have any diffusion operation. However, the fifth

round cipherstate consists of 24 bytes and hence requires 24 substitution operations

instead of 16. Notice that, in the diffusion layer of the Pyramid cipher is larger and

does not have any ShiftRow [15] operation (when compared to the HD and AES

ciphers). This is because we operate on the entire cipherstate in each round. As the

cipher expands the input state as it goes through the encryption process, we call it the

Pyramid cipher. During decryption, the inverse MC matrix replace the MC matrix
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and HD decoding operation is replaced by the HD encoding operation. We use the

Euclidean errors and erasures decoding [36] with slight modification to decode the 24

byte cipherstate. The decoding procedure is described in Section5.3.

Figure 5.1: Full five round Pyramid block cipher

Construction of the HD encoding matrix

The HD encoding refers to multiplying the cipherstate by the generator matrix of a

[24, 16, 256] High Diffusion (HD) code (see Chapter 3. We construct the [24, 16, 256]

HD code from [32, 16, 256] shortened Reed Solomon (RS) code [10] with generator

polynomial,

gRS(X) = X8 + X4 + X3 + X2 + 1 (5.1.0)

From gRS(X) we get the generator matrix, GSYS
RS , of the RS code in systematic form

[36]. The first 8 columns of GSYS
RS are punctured to derive the diffusion matrix, GHD.
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From Theorem 3.4.1 it follows that GHD obtained by puncturing GSYS
RS in this manner

generates a [24, 16, 256] HD code. The branch number of [24, 16, 256] HD code is,

B(GHD) = 24 + 1 = 25. (5.1.0)

Construction of the MC matrix

We generate the MC matrix, GMC, by puncturing the first 8 columns of GHD. As

punctured HD codes are HD codes (Theorem 3.4.2), GMC is actually a generator for

[16, 16, 256] HD codes with branch number,

B(GMC) = 16 + 1 = 17 (5.1.0)

The inverse MC matrix G−1
MC is obtained by inverting GMC in GF (256).

5.1.4 Rationale for larger diffusion operations

In this section we discuss the rationale for employing larger diffusion operations (com-

pared to AES) in the Pyramid cipher. Lets take the wide trail structure of AES and

replace multiple smaller diffusion operations in each round with one large diffusion

operation. Fig. 5.2 and Fig. 5.3 represent the block diagrams of the traditional wide

trail structure and our modified wide trail structure respectively. Note that in the

wide trail structure, a single active byte (one byte difference) in the input plaintext,

will travel to all the bytes in the cipherstate by the end of the second round. How-

ever in the modified wide trail structure, a single active byte in the input travels to

all the 16 bytes of the cipherstate in just one round. This suggests that by using

larger diffusion operations, we can achieve trails with higher number of active bytes

in fewer rounds. However, reduction in the number of rounds does not necessarily

imply reduction in energy consumption. This is because, as the diffusion operations
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get larger each round gets heavier. The actual savings in energy depends on the num-

ber of rounds reduced, efficient implementation of each of the rounds and the weight

of the larger diffusion operations. The number of rounds is determined by looking at

the best possible attack on the cipher. In the next section we analyze the resistance

of the Pyramid cipher against some well known attacks.

Figure 5.2: Active byte propagation in the wide trail strategy

Figure 5.3: Active byte propagation due to large diffusion operation
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5.2 Security Analysis

In this section, we briefly analyze the security of the Pyramid cipher by looking at

the resistance it offers against some well known cryptanalytic attacks.

5.2.1 Resistance to linear and differential cryptanalysis

From discussion on linear and differential cryptanalysis from Section 4.2.1 it follows

that a lower bound on the number of active bytes in any linear or differential trail will

give a lower bound on the resistance of the cipher to linear and differential cryptanal-

ysis. For any three round trail of the Pyramid cipher, the minimum number of active

bytes is shown to be greater than or equal to 34 in Theorem 5.2.2. This shows that

there are no three round linear trails with predictable input output correlation above

2−3×34 = 2−102 and no three round differential trails with predictable propagation

ratio above 2−6×34 = 2−204.

Lemma 5.2.1. The minimum number of active bytes in any one round trail of the

Pyramid cipher is 17.

Proof. The key XOR and substitution do not turn an active byte into an inactive byte

and vice versa. The sum of active bytes in the input and the output cipherstate of

a one round trail entirely depends on the branch number of the HD encoding matrix

GHD. We know from (5.1.3)that B(GHD) = 17.

Theorem 5.2.2. The minimum number of active bytes in any three round trail of

the Pyramid cipher is 34.

Proof. Fig. 5.4 represents a three round trail. The minimum number of active bytes

in any three round trail of the Pyramid cipher is min Σ3
0(δCi). This is equal to,

min(Σ1
0(δCi)+Σ3

2(δCi)). From Lemma 5.2.1 we have min(Σ1
0(δCi)) = min(Σ3

2(δCi)) =
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17. Therefore, the minimum number of active bytes in any three round trail of the

Pyramid cipher is 34.

Figure 5.4: Three round trail of the Pyramid cipher

5.2.2 Resistance to square attack

The proposed ciphers also comprises of byte oriented operations which are loosely

based on the HD cipher. Here we show the application of Square attack on four

round Pyramid cipher. However, extending this attack to five rounds has not been

possible.

Square attack on four round Pyramid cipher

The Square attack [12] (also known as Integral attack [32] or the Saturation attack

[38]) utilizes the byte oriented nature of the Square block cipher. As AES is also

a byte oriented cipher, this attack has been extended to reduced versions of AES

[37, 20]. The proposed cipher also comprises of byte oriented operations which are
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loosely based on the AES and Square [12] ciphers. Here we show the application of

Square attack on four round Pyramid cipher. However, extending this attack to five

rounds has not been possible.

Square attack on four round Pyramid cipher

We now describe some notations, that are similar to those used in the original Square

attack. Let Λ-set be a set of 256 states that are all different in some of the state bytes

(the active) and all equal in the other state bytes (the passive). Let λ be the set of

indices of the active bytes. We have,

∀x, y ∈ Λ :

{
xi,j 6= yi,j for (i, j) ∈ λ

xi,j = yi,j for (i, j) 6∈ λ
(5.2.0)

Consider a Λ-set in which all 16 bytes are active. After the first round, the

minimum number of active bytes in the Λ-set is 1. This is because, the branch

number of MC matrix in round one is 17. However, at the end of second round the

Λ-set will have all 16 bytes active. This is still the case at the input to the third

round. Let ai, bi, i ∈ {1...16} denote the Λ-set at the input and the output of the

third round respectively. Then,

⊕
a∈Λ

bi =
⊕

(aGMC)

= g1,i

⊕
a∈Λ

a1 ⊕ g2,i

⊕
a∈Λ

a2 ⊕ · · · ⊕ g16,i

⊕
a∈Λ

a16

= 0⊕ 0⊕ · · · ⊕ 0 = 0

Since the bytes at the input to the third round range over all possible values, they

are balanced over the λ set. Due to this, the balance property is preserved at the end
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of round three [12]. However, the substitution operations in round four destroys the

balance property.

In order to perform the four round attack, 256 plaintexts which differ in all the

16 byte positions are selected. The ciphertexts for these plaintexts are obtained. The

first few bytes of the fifth and the sixth round key are guessed. The intermediate

cipherstate at the end of third round is calculated for all the known ciphertexts.

The balancedness of the derived intermediate cipherstate is tested. If the cipherstate

is balanced, then the guessed sub-key is correct with a high probability. Although

this attack works well for four round Pyramid cipher, it has not been possible to

meaningfully extend it to five rounds.

5.3 Error Correcting Capacity

Based on minimum distance decoding and Theorem 5.3.1 the error correcting capacity

of the Pyramid cipher is four bytes.

Theorem 5.3.1. The error correcting capacity of the Pyramid cipher consisting of

[24,16,256] HD code is four bytes.

Proof. As the substitution and the key XOR operations are performed one byte at a

time, a byte of ciphertext in error before decryption will translate to an errored byte

at the same exact location after key XORs and inverse substitution but before the HD

decoding operation. HD decoding is the only error correcting operation performed

in the Pyramid cipher. Therefore the byte error correcting capacity of the Pyramid

cipher is directly related to that of the HD code used in the fourth round. All HD

codes are MDS codes (Theorem 3.3.2), therefore the [24, 16, 256] HD code should

satisfy the Singleton bound with equality. The minimum distance, dmin, between any
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two codewords in the [24, 16, 256] HD code is therefore,

dmin = 24− 16 + 1 = 9 (5.3.0)

The error correcting capacity, t, of any linear block code is xdmin

2
y symbols. Therefore,

the error correcting capacity of the [24, 16, 256] HD code and hence the Pyramid cipher

is x9
2
y = 4 bytes.

5.4 Decoding Procedure

We use the Euclidean error and erasure correcting decoding procedure as described

in [36] with slight modification. Let v(X) and r(X) represent the transmitted and

the received codewords respectively. The error pattern is e(X) = r(X) − v(X). As

v(X) = m(X)g(X), where m(X) is the message and g(X) is the generator polynomial

of [32, 16, 256] shortened RS code. Solutions αi to g(X) are also solutions to v(X).

g(X) has 16 solutions. Therefore, for 1 ≤ i ≤ 16, v(αi) = 0. r(αi) = v(αi) + e(αi) =

e(αi) are called as the syndromes, denoted by Si. An all zero syndrome indicates that

there are no errors less than or equal to 16 bytes. If there are say v ≤ 8 errors, we

get equations of the form,

Si = ej1α
ij1 + ej2α

ij2 + ... + ejvα
ijv (5.4.0)

For 1 ≤ i ≤ v, βi = αji are the error locations and δi = eji
are the error values.

The first step in error correction is to determine the error locations. We form the

error location polynomial σ(X) such that βi’s are the solutions of this polynomial.

That is,

σ(X) = (1− β1(X))(1− β2(X)) · · · (1− βv(X)) (5.4.0)

The syndrome polynomial is given by,

S(X) = S1 + S2X + · · ·+ S17X
16 + · · · (5.4.0)
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However, only the first 16 coefficients in (5.4) are known. The first 16 terms in

the expansion σ(X)S(X) are denoted by Z0(X). That is, Z0(X) = [σ(X)S(X)]16.

Therefore, unique pair of solutions to

σ(X)S(X) ≡ Z0(X)modX16 (5.4.0)

can be used to correct v ≤ 8 errors in the received codeword. Either the Berlekamp’s

algorithm [4] or the Euclidean algorithm [36] can be used to solving the key equation

(5.4).

However, the HD codes we use in the Pyramid cipher are obtained by puncturing

24 bytes of the shortened [32, 16, 256] RS code. This puncturing will result in poor

error correction if the above decoding procedure is used directly. The punctured

codeword bytes are called erasures. Since, we know the location of erasures, we can

construct the erasure location polynomial β(X) =
∏24+e

l=1 (1− αjl(X)), where e is the

number of additional erasures that may have occurred beyond the puncturing used to

obtain HD codes from shortened RS codes. In the received codeword, the location of

erasures is substituted by zeros. This introduces 24 + e errors additional to v errors

that are channel induced. However we only need to solve for v error locations. The

modified key equation is now,

σ(X)β(X)S(X) ≡ Z0(X)modX16 (5.4.0)

Since, S(X) and β(X) are known, we can calculate T (X) = [β(X)S(X)]16. Equation

5.4 can be reduced to,

σ(X)T (X) ≡ Z0(X)modX16 (5.4.0)

Berlekamp’s or Euclidean algorithm can be used to solve this equation to get the

location and value of v ≤ 4, e = 0 errors or e ≤ 8, v = 0 erasures or e/2+ v ≤ 4 errors

and erasures.
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5.5 Modes of Operation

In this section we construct and analyze the energy efficiency and error resilience of

the Pyramid cipher in Cipher Block Chaining (CBC) block mode and counter (CTR)

stream mode.

5.5.1 Cipher block chaining (CBC) mode

In the CBC mode, every plaintext block is XORed with the previous ciphertext

block before encryption. The first plaintext block is XORed with an Initialization

Vector (IV). We implement HD cipher in CBC mode and compare it with traditional

concatenated systems in terms of energy efficiency and error resilience.

We use the testbed consisting of an Intrinsyc CerfCube [27] as described in Sec-

tion 4.4.1. We measured the energy consumed for one million encryptions/decryptions

of Pyramid and the AES cipher and one million RS encoding and decoding opera-

tions. The measurements are given in Table 5.1. The measured energy consumption

is divided by 16 million to obtain the per byte energy consumption. The per byte

energy consumed by Pyramid and AES operating in block modes like ECB and CBC

is about 0.8 µJ and 0.49 µJ respectively. The energy consumption per byte by the

concatenated system, AES cipher followed by RS code (AES-RS), is 0.9 µJ . This

shows that our proposed joint approach to encryption and encoding is 10% more

energy efficient compared to the traditional disjoint approach. Similarly, the Pyra-

mid decryption is 6% more energy efficient compared to the concatenated AES-RS

decoding and decryption.

To evaluate the error resilience of the Pyramid cipher, we perform simulations

with both burst error and uniform error channel models and compare it with the
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Block Voltage Current Time Energy
Mode (volts) (amps) (secs) (Joules)

Pyramid Encryption 5.003 0.238 11.2 13.14
AES Encryption 5.003 0.237 6.6 7.825

RS Encoding 5.003 0.237 5.8 6.87
Pyramid Decryption 5.003 0.239 23.7 28.33

AES Decryption 5.003 0.238 8.2 9.76
RS Decoding 5.003 0.238 17.2 20.48

Table 5.1: Voltage, current, time and energy measurements for the one million Pyra-
mid, AES and RS encryption/encoding and decryption/decoding operations.

error resilience of AES concatenated with a) Reed Solomon codes (AES-RS), b) Con-

volutional codes (AES-Conv) and c) Low Density Parity Check (AES-LDPC) codes.

Wireless communication medium is characterized by bursty errors and fading phe-

nomenon. Which implies that the bit errors occurring in wireless channels have mem-

ory. [2] proposed an additive Markov channel (AMC) model for slow fading wireless

channels. According to this model, the channel can be described by bit error rate

and correlation parameters. The burstyness of the channel can be controlled by the

correlation parameter. In our experiments we set the correlation to 0.8 and varied

the bit error rate from 10−3 to 5× 10−1.

First, we compare the Pyramid cipher with AER-RS under the AMC channel

conditions. We use [24, 16, 256] RS codes in AES-RS to maintain the same coding

rate as the Pyramid cipher. Fig. 5.5 plots the post decryption bit error rate of

the Pyramid cipher and AES-RS. We can observe that both the systems perform

comparably under all the channel conditions. This shows that there is no loss or gain

of error resilience due to joint error correction and encryption.

Next, we compare the Pyramid cipher with AES-CONV under the AMC channel

conditions. The convolutional codes with rates 0.5, 0.33, 0.25, 0.2, 0.167 are used.
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Figure 5.5: Post decryption BER of PYRAMID and AES concatenated with
[24,16,256] RS codes under AMC channel model with correlation 0.8.

Since, the convolutional codes are not burst error correcting codes, we use an inter-

leaver with a depth of 16 to improve its error correcting capacity. Fig. 5.6 plots the

post decryption bit error rate of Pyramid cipher and AES-CONV for different coding

rates. We can observe that Pyramid cipher with a coding rate of 0.67 clearly outper-

forms AES-CONV with coding rates 0.5, 0.33 and 0.25. This shows that although

convolutional codes are lighter than RS and HD codes, they do not perform as well

under bursty channel conditions (like in wireless medium). We can observe from the

Fig. 5.6 that the convolutional codes require about 60% more redundancy to equal

the performance of the Pyramid cipher.

Finally, we compare the Pyramid cipher and AES-LDPC with similar coding rate.

The LDPC codes are known to perform extremely well in non-bursty (uniformly

distributed errors) channels. Therefore, for this simulation, we use binary symmetric

channel [66] model to generate uniformly random errors. The LDPC decoding is an

iterative process and the error resilience of LDPC codes improve with the number of

iterations. However, the energy spent in decoding is also proportional to the number
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Figure 5.6: Post decryption BER of PYRAMID and AES concatenated with Convo-
lutional codes under AMC channel model with correlation 0.8.

of iterations. Hence in energy constrained systems it may not be feasible to perform

too many iterations. In the concatenated system AES-LDPC we first use 2 step LDPC

decoding (which is as heavy as HD decoding) and then repeat the experiment with

250 step LDPC decoding. Fig. 5.7 plots the post decryption bit error rates of Pyramid

cipher and AES-LDPC. We can observe that the performance of the Pyramid cipher

is in between the 2 step and 250 step LDPC decoding. This shows that even in binary

symmetric channel conditions, the performance of the Pyramid cipher is comparable

to LDPC codes.

5.5.2 Counter (CTR) mode

In the CTR mode, the block cipher is used to encrypt a counter value which is incre-

mented for successive encryptions. The encrypted counter values makeup a pseudo-

random keystream which is XORed with the plaintext bits to produce the ciphertext
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Figure 5.7: Post decryption BER of PYRAMID and AES concatenated with LDPC
codes under BSC channel model.

bits. Block ciphers act as pseudorandom number generators (PRNGs). Since, the en-

cryption of plaintext takes place one bit at a time, this mode of encryption is usually

referred to as the stream mode. Pyramid cipher can be used in CTR mode as well.

However, the error correction property of the Pyramid cipher cannot be used when

it is operated in this mode. An advantage of using the Pyramid cipher in CTR mode

is that the expansion of cipherstate during encryption results in higher encryption

throughput compared to the AES cipher.

we slightly improvise the encryption throughput of the Pyramid cipher by using

[36, 16, 256] HD codes in round four instead of [24, 16, 256]. This will increase the

encryption throughput to 256 bits. Since only encryption is performed in stream

modes, we do not consider the decoding and decryption procedures for the enhanced

Pyramid cipher. We empirically test the quality (randomness) of the pseudorandom

keystreams generated by the enhanced Pyramid cipher using the National Institute

of Standards and Technology (NIST) recommended DIEHARD battery of statistical

tests. The DIEHARD test suite [40] consists of a variety of statistical tests like, the
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CTR Energy/byte
Mode (µ Joules)

Pyramid (36) 0.50
AES 0.49

Table 5.2: Energy consumption per byte for the enhanced Pyramid cipher and the
AES cipher operating in CTR mode.

birthday spacings, overlapping permutations, ranks of matrices, count the 1s, mini-

mum distance test, random spheres test and runs test. We implement the Pyramid

cipher in the CTR mode and initialize the seed to an all zero value. The secret key

is initialized to a random 192 bit value. Using this setup, we generate about 10

MB of pseudorandom sequence. The DIEHARD statistical test suite is executed on

the pseudorandom sequence. These tests are then repeated for different seed values.

Experimental results reveal that, for all the chosen seed values, the pseudorandom

sequence generated by the Pyramid cipher passed each of the statistical tests. This

shows that, the Pyramid cipher is a cryptographically secure pseudorandom number

generator.

We calculate the energy consumption of the enhanced Pyramid cipher on the

testbed (for details on the testbed see Section 4.4.1). The per byte energy consump-

tion for the Pyramid and the AES used in stream modes are given in Table 5.2. We

can observe that although the Pyramid and the AES ciphers consume almost the same

amount of energy per byte, the Pyramid cipher has twice the encryption throughput

compared to the AES cipher.
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5.6 Conclusions

The Pyramid cipher is a major improvement over the HD cipher in terms of round

reduction. In comparison with the popular ten round AES cipher, the Pyramid

cipher uses larger diffusion operations, consists of only five rounds, corrects four

bytes of errors per ciphertext block during decryption (no error correction in AES)

and has a variable encryption throughput ≥ 192 bits. The bounds on the error and

erasure correcting capacity of the Pyramid cipher showed that they are as efficient as

the RS codes. Energy consumption analysis and experiments on the 32 bit testbed

revealed that the Pyramid cipher used in block modes consume 6−10% lesser energy

compared to the concatenated system: AES followed by RS codes. Employing the

Pyramid cipher in the stream mode we showed that they are good pseudorandom

number generators and have a higher encryption throughput compared to the AES

cipher.



Chapter 6

Summary

We identified error resilience, energy efficiency, encryption throughput and speed of

encryption as four main challenges facing present day secure wireless communica-

tions in resource constrained environments. These challenges serve as motivational

factors to combine error correction with encryption, which forms the basis of our ap-

proach. Although codes and ciphers have contrasting properties, we concentrated on

the similarities in order to combine them. In particular, we identified the property of

diffusion that is exhibited by most block codes and required by most block ciphers.

We proposed the High Diffusion codes that possess the best possible diffusion and

yet satisfy the Singleton bound for the minimum distance between codewords thus

making them ideal candidates for error resilient cryptographic primitives. Although

there is no systematic technique to generate HD codes, the flexibility to generate HD

generator matrices from RS generator matrices makes it easy to derive large HD codes

without having to go through brute force search. The close relationship of HD codes

with the popular Reed Solomon codes makes them easy to study, analyze and port

into existing systems.

The construction of the HD cipher from HD codes proves the latter’s potential

as building blocks for ciphers. The high branch number of HD codes used the HD

65
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cipher was a key factor in achieving resistance against linear and differential attacks.

The error resilience analysis of HD cipher revealed that the error correction capacity

of HD codes are not compromised because of their use inside the cipher. The joint

security and error resilience properties favors HD cipher as a potential solution to

current wireless security challenges. The HD cipher is employed both in block and

stream modes. In block mode, the HD cipher is 12 − 30% more energy efficient and

performs equivalently in terms of error correction compared to traditional systems.

Furthermore, HD cipher when used in stream mode has more encryption throughput

compared to the popular AES cipher. Energy consumption analysis revealed that HD

cipher is 40% more energy efficient. The error resilience, higher encryption throughput

and energy efficiency properties makes the proposed HD cipher an ideal replacement

for the AES cipher in the CCMP protocol.

The Pyramid cipher is a major improvement over the HD cipher in which we

could achieve reduction in the number of rounds along with error resilience, higher

encryption throughput and energy efficiency. The bounds on the error and erasure

correcting capacity of the Pyramid cipher showed that they are as efficient as the RS

codes. Through simulations we showed that the Pyramid cipher performs comparably

with RS and LDPC codes and outperforms convolutional codes by 60%. We also show

that the five round Pyramid cipher is as secure as the ten round AES and reduction

in the rounds does not compromise the security. By employing the Pyramid cipher

in the stream mode, we showed that they are good pseudorandom number generators

and have a higher encryption throughput compared to the AES cipher. Energy con-

sumption analysis and experiments on the revealed that the Pyramid cipher used in

block modes consume 6 − 10% lesser energy compared to the concatenated system:

AES followed by RS codes. In stream modes, both Pyramid and the AES cipher have

comparable performance in terms of energy efficiency, however the Pyramid cipher
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has a higher encryption throughput.

The construction of the HD and the Pyramid error correcting ciphers from FECs

provides a mathematical framework for truly integrating block ciphers with block

codes. The extensive set of experiments and simulations show that combining error

correction and encryption leads to energy efficient, error resilient and secure ciphers.
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