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On the Joint Source-Channel Decoding of Variable-Length Encoded Sources:
The BSC Case

K. P. Subbalakshmi and Jacques Vaisey

Abstract—This paper proposes an optimal maximuma poste-
riori probability decoder for variable-length encoded sources over
binary symmetric channels that uses a novel state-space to deal
with the problem of variable-length source codes in the decoder.
This sequential, finite-delay, joint source-channel decoder delivers
substantial improvements over the conventional decoder and also
over a system that uses a standard forward error correcting code
operating at the same over all bit rates. This decoder is also robust
to inaccuracies in the estimation of channel statistics.

Index Terms—Error resilient communication, joint
source-channel decoding, MAP decoding, variable length
codes.

I. INTRODUCTION

V ARIABLE-LENGTH entropy codes are core components
in many state-of-the-art signal compression algorithms;

however, these techniques result in extreme sensitivity to
channel errors. Unfortunately, the fact that there are many
ways to parse the received bit-stream into symbols means that
traditional methods for joint-source channel coding (JSCC)
cannot be applied directly. In this paper, we propose a joint
source-channel decoder (JSCD) for binary symmetric channels
(BSCs) that is optimal in the sense that it maximizes thea
posteriori probability of the received sequence. This decoder
achieves improved performance by exploiting the memory and
pdf shape of the source distribution.

Preliminary results describing our work first appeared in [1]
and [2] and readers are referred to [3] for many more details.
Related work by Park and Miller [4] and Demir and Sayood
[5] study JSCDs when either the number of transmitted bits or
symbols are knowna prior. Our algorithm requires no such as-
sumptions and hence does not make use of this information, if
known. Very recently, a soft input/soft output JSCD using the
BCJR trellis was proposed for reversible variable-length codes
in [6]. Murad and Fuja propose aconcatenatedJSCD [7] where
a Huffman code is followed by a convolutional code.

II. THE MAP DECODER

We now consider the MAP decoding of an entropy-coded,
discrete-Markov source transmitted over a BSC. This decoder
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requires both the transition probabilities of the source symbols
as well as the channel cross-over probabilities in order to com-
pute the MAP transmitted sequence for a given received se-
quence. Although we focus below on the case where the source
is a first-order process, our algorithm is easily generalized to
higher order Markov sources, albeit with increased complexity
[3].

Let denote the set of all possible-bit sequences of vari-
able-length codewords. Theth such sequence is then denoted
by , where is the codeword corresponding
to the th symbol in the transmitted stream and is the total
number of codewords in this sequence. Similarly, is the th
symbol of the received bit stream under the same partition as

. The task of the decoder is to take the received bit stream
and to search through the members offor the most probable
transmitted sequence, which we denote by index: the proba-
bility of receiving is . We note that different parti-
tions of the received bit stream may, in general, lead to different
numbers of codewords in the index sequence. More formally, if
we define the probability of transmitted symbolto be
with representing the probability that is sent im-
mediately after , then

(1)

where is the Hamming distance between theth
transmitted codeword of and the th word of the received
sequence, and is the length of these words in bits.

A. The State-Space and the Algorithm

To deal with the problem of the decoder not knowing how to
parse the bit stream, we propose a novel state-space for the MAP
decoder that consists of two classes of states: thecompleteand
the incompletestates. The decoder is said to be in a complete
state if the most recently received bit completed a codeword;
otherwise, it is said to be in an incomplete state. In order to make
distinctions between the “amount” of incompleteness, we also
define thedegreeof an incomplete state to be the number of bits
that have already been received in an incomplete codeword.

The number of degrees of incompleteness and the number
of transitions between the states are determined by the
lengths of the codewords in the codebook. For a codebook
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Fig. 1. MAP: example state-space and trellis.

containing codewords with lengths belonging to the set
, the maximum degree of incompleteness

is and the total number of states is . Fig. 1
shows the state-space for an example codebook together with
the possible transitions between stages and . Each node in
the trellis represents a state-stage pair. In the memoryless case,
a single degree 0 state can be used to represent all codewords.

The MAP algorithm has two fundamental operations: an ex-
amination of the metrics of the paths entering each trellis-node
and a search for path merges, with a declaration of decoded sym-
bols when merges are found. For complete states, the path-up-
date step consists of finding the highest metric path to the state
and retaining it. For the incomplete states, we must retain the
metric values of all the paths back to the last complete state.
The complexity of a trellis algorithm is generally considered to
be equal to the size of the state-space: . How-
ever, as the incomplete states involve only a copy operation, the
complexity is actually somewhat less. Also, when the greatest
common divisor of the codeword lengthsis greater than one,
further reductions are possible, since we need only consider
samples at a time. Please see [3] and [2] for a formal description
of the algorithm.

III. EXPERIMENTAL RESULTS

We define two measures of performance for the algorithms:
the percentage of bits that are out of synchronization (PBOS)
and the modified signal-to-noise ratio (MSNR). The PBOS
captures the synchronization-loss aspect of the performance
and is defined as the ratio of the number of bits that are
received out of synchronization to the total number of bits
in the stream. The MSNR is simply the SNR between the
original, unquantized, source and a sequence synthesized from
the decoded stream. Specifically, we identify the segments of
the recovered sequence with synchronization problems and
then force the symbol counts in this segment to be the same as
in the corresponding transmitted segment through truncation
or zero-padding at the tail end of this decoded segment. These
performance measures are appropriate for signals where the

synchronization loss is less annoying and, generally, perfor-
mance measures could be application-dependent. Although we
present results for Huffman codes, our decoder is applicable to
any entropy-code that can be implemented as a table look-up
algorithm.

Experiments were performed on 5000 samples of a
zero-mean, first-order Gauss–Markov source using a range
of correlation coefficient values, ; the underlying Gaussian
source had unit variance. The test sources were quantized using
a 9-level uniform quantizer that provided a “reasonable” SNR
under noiseless conditions at an average rate of 3 b/sample
for the final Huffman coded stream. The “transmitted” bits
were then corrupted with random error patterns to simulate
the BSC at different error rates . For the experiments with
conventional forward error correcting codes (FECs), we used
the rate convolutional code with constraint length 2, as in
[8]. To keep the overall bit rate the same, we code the source at
2 b/sample using a 9-level quantizer and Huffman codes.

Fig. 2 shows the MSNR and PBOS plots with four curves
each. These curves correspond to the MAP decoder and
Huffman decoder with and without FEC and are labeled ac-
cordingly. From the MSNR curves, it can be seen that the MAP
decoder for the unprotected Huffman code does better than all
others for almost the entire range of, peaking to 8.3 dB over
the unprotected Huffman decoder. For the schemes involving
FEC, it can be seen that the MAP decoder does better than
the Huffman decoder again, as expected, with smaller overall
improvement (maximum about 2 dB). The PBOS plot, however,
shows a slightly different trend. For , the
FEC protected schemes do better and for ,
the MAP decoder in the unprotected scheme does better. For
very high error rates, the Huffman decoder for the unprotected
scheme does better than all others in terms of both MSNR and
PBOS. This result is probably due to the fact that the MAP
decoders are designed to minimize the probability of sequence
errors rather than to optimize the MSNR or PBOS. Finally,
we note that the SNR was also calculated for all cases and it
was found that the MAP decoder for the unprotected scheme
performed better than all others for very low error rates, and
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Fig. 2. MSNR and PBOS comparisons for� = 0:9.

at all other error rates the MAP decoder with the FEC scheme
did better.

Fig. 3 shows the performance as a function of the source
memory at a fixed error rate ; as expected,
the MAP improvement decreases with, approaching zero for

. This result is expected, since the residual redun-
dancy available to the decoder drops with. The PBOS plot
is not shown, since the trend is essentially the same. More ex-
perimental results can be found in [3].

In practice, the channel error-rate estimate may be poor;
however, it turns out that the decoder is quite robust to these
mismatches. As a demonstration, we consider the MAP decoder
designed for the case (Fig. 2) and show how the
MSNR varies with different mismatch values

in Fig. 4. It is observed that the performance degra-
dation is well below 3 dB when and are within two orders
of magnitude.

We also note that, at very high error rates, the MAP operating
under a negative mismatch does better than both the

Fig. 3. MSNR comparisons for varying� at � = 10 .

Fig. 4. MAP performance under mismatch,� = 0:9.
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(MAP) and Huffman decoders. It is thus potentially possible
to remove the “cross-over” problem observed in Fig. 2 with a
judicious choice of ! We do not yet have an explanation for this
phenomenon; however, we would like to reiterate that the MAP
decoder does not directly optimize either of the performance
measures considered here, but rather minimizes the probability
of error for the entire sequence.

IV. CONCLUSION

This letter applies a novel state-space structure to design a
MAP decoder for variable-length encoded sources transmitted
over binary-symmetric channels: knowledge of the number
of transmitted symbols is not assumed. The approach was
then compared to the standard Huffman decoder using two
customized performance measures that attempt to separate the
effects of symbol synchronization from that of simple symbol
decoding errors. It was found that the MAP decoders performed
better for most error rates. The improvement is proportional to
the source memory and the decoders are robust to channel error
mismatches. The proposed JSCD scheme was also found to
perform better than a standard concatenated system comprised
of a Huffman code followed by a convolutional code operating
at the same overall rate.
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