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On the Joint Source-Channel Decoding of Variable-Length
Encoded Sources: The Additive-Markov Case

K. P. Subbalakshmi, Member, IEEE,and Jacques Vaisey, Member, IEEE

Abstract—We propose an optimal joint source-channel max-
imum a posterioriprobability decoder for variable-length encoded
sources transmitted over a wireless channel, modeled as an addi-
tive-Markov channel. The state space introduced by the authors
in a previous paper is used to take care of the unique challenges
posed by variable-length codes. Simulations demonstrate that this
decoder performs substantially better than the standard Huffman
decoder for a simple test source and is robust to inaccuracies in
channel statistics estimates. The proposed algorithm also compares
favorably to a standard forward error correction-based system.

Index Terms—Bursty channels, error-resilient communication,
joint source-channel decoding (JSCC), maximuma posteriori
(MAP) decoding, variable-length codes.

I. INTRODUCTION

T HE observation that Shannon’s source-channel separation
[2] theorem holds only under asymptotic conditions

(arbitrarily large codeword lengths and large delays) has led
to increased interest in exploring joint paradigms for source
and channel coding. These joint source-channel coding (JSCC)
schemes can be broadly classified into three different cate-
gories: joint source-channel encoding (JSCE) [3], [4]; joint
source-channel decoding (JSCD) [5]–[9]; and rate allocation
strategies [10], [11]. As the names suggest, these deal with
the joint design of encoders and decoders and rate allocation
between the channel and source codes, respectively.

Our current focus is to develop a JSCD scheme for vari-
able-length encoded sources transmitted over a channel with
memory. Previous work on JSCCs for channels with memory
includes [4] and [12]. Of these, the first paper describes a JCSE
technique and the second proposes a JSCD for a binary source.
Our work differs from [12] in that we deal with variable-length
encoded sources. To the best of our knowledge, this work is the
first attempt to design an optimal decoder forvariable-length
encoded sources operating overbursty channels. Preliminary re-
sults of this study were published by us in [9].

Our goal is to achieve the best performance possible without
the use of channel codes, which require overhead bits. This work
is motivated by the facts that most real-world channels are not
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memoryless and that (variable-length) entropy coding is gener-
ally required for a source-coder to achieve good rate-distortion
performance. Although interleaving can be used to effectively
convert a bursty channel into a binary symmetric channel (BSC),
this strategy also results in delays, which may be unacceptable
in some applications.

In the following, we describe the channel model and develop
a maximuma posteriori (MAP) decoder for entropy-coded
Markov sources transmitted over additive-Markov channels
(AMC). The performance of this decoder is then evaluated by
simulations using sample test sources, channels, and forward
error-correcting codes (FEC). We also present the performance
under mismatch conditions, demonstrating the decoder’s
robustness to errors in the estimation of the channel statistics.

II. THE MAP-AMC PROBLEM

This letter deals with the design of an optimal JSCD for vari-
able-length encoded sources transmitted over bursty channels.
Alajaji et al.developed a model for such a channel [13] in which
the channel is described by

(1)

where denotes the binaryXOR operation and , , and
represent the binary random variables associated with

bit position of the input, the noise, and output random
processes, respectively. The noise random process,, is
assumed to be stationary, Markov, and independent of the input
process. For a channel with error probabilityand correlation
coefficient , the transition probabilities

and the marginal probabilities of
the noise bits are given by [13]

with and where is a
correlation parameter.

Let us consider a stationary, variable-length encoded
Markov source, transmitted as binary bits over an AMC. Let

denote the set of all possible-bit sequences of variable-
length codewords. Theth such sequence is then denoted by

, where is the codeword corresponding
to the th symbol in the transmitted stream and is the
total number of codewords in this sequence. Similarly,
is the th symbol of the received bit stream under the same
partition as . The problem is to find the most probable
transmitted sequence given the received sequence, the source
statistics, and the channel statistics. We consider the case of
the first-order Markov source only (the extension to high-order
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Fig. 1. MAP-AMC: Example state space and trellis.

sources is straightforward) and defineto be the index of the
most probable transmitted sequence. The MAP problem for the
AMC (MAP-AMC) is then to determine the optimal sequence

according to

(2)

where is the probability that codeword was trans-
mitted first, is the probability that the codeword

was transmitted immediately after the codeword , and
is the th noise bit under theth partition, which is deter-

mined by the received bit stream, the specific partition, and (1).
The maximization over effectively searches through all pos-
sible error sequences and bit-stream partitions. This maximiza-
tion can be time consuming and the problem is best solved by
casting it into a dynamic programming framework; however, in
order to accomplish this task, an efficient state space is needed.
Before proceeding with the state-space development, we con-
sider the right-hand side of (2), which can be factored into two
terms: a channel term and a source term, with the former being

In the dynamic program, every stage must know the noise bit
of the previous stage in order to compute the continued product
occurring in the channel term. This requirement translates into
remembering the noise bit associated with the last bit of the
codeword that immediately precedes the current node (state-
stage pair) along the best metric path terminating at the current
node. The solution is effectively formulated within the frame-
work of the state space proposed by the authors for variable-
length encoded Markov sources transmitted over the MAP-BSC
[1], [14]. Note that since the state space is the same, the com-
plexity of the MAP-AMC algorithm is essentially the same as

that of MAP-BSC and equal to the number of states. Only a
small additional overhead is required for handling the noise bits.

The state space for the MAP-AMC decoder consists of two
classes of states: thecompleteand theincompletestates. The
decoder is said to be in a complete state if the most recently
received bit is the last bit of a codeword. If this bit does not ter-
minate a codeword, then the decoder is said to be in an incom-
plete state. The degree of incompleteness is simply the number
of bits of an incomplete codeword that have been already re-
ceived by the decoder. Fig. 1 shows the state space for a simple
example, together with the possible transitions between stages

and . Each node in the trellis represents a state-stage pair.
A special case of this state space was proposed in the context of
variable-length dimension vector quantization in [15].

III. STATE SPACE AND THE PROPOSEDALGORITHM

The MAP-AMC decoding algorithm performs three main op-
erations at each stage: the first examines the metrics of the paths
entering each node in the trellis, the second looks for a path
merger and declares codewords when merges are found, while
the third uses the noise bits associated with predecessor nodes.
For a complete node, this third task looks along the maximum-
metric path and stores the last noise bit of the predecessor code-
word; however, for incomplete nodes, a vector of values corre-
sponding to the last noise bit of each of the complete nodes of
the previous stage must be remembered.

In the ensuing discussion, we denote a node by an ordered
pair of integers representing the state and stage indexes. For ex-
ample, represents the node corresponding to state

at stage . The codeword dimensions are bounded between
and . Thus, if there are codewords in the codebook,

then the complete states can be indexed from and the
incomplete states from . For each
complete state, , whose length we denote by , and whose
th bit is denoted by , we compute the metric increment

by looking back to the previous complete states, which are lo-
cated stages away. Each of these increments is denoted by

and refers to the path segment that begins at node
and terminates in the node , where both and
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are complete states. If is the most recently received bits
at node and denotes the th bit in this segment,
then we can write

where for
and , which is 1 if the last bit of the

codeword was different from the corresponding received bit,
and 0 otherwise. A formal expression for the meaning ofwill
be presented below. Note thatis merely a running index and
does not have any other significance.

Let be the metric value associated with the maximum-
metric path terminating in , where
(i.e., the complete states). For incomplete states, we de-
fine to be the th element in the vector of
metric values that need to be remembered at , where

and .
We note that updating involves only a copy operation.
Finally, let be the parent of node , where a parent is
defined as the penultimate node in the maximum-metric path
terminating at node, and let be the length of the codeword
corresponding to the parent node (which is complete). The full
algorithm can now be stated as follows.

Initialize :
Input first bits
For ,

.
;

.

For

, the empty set (no parents)
Input :

Input bit at the th stage
Update path metrics :

For
see the equation at the bottom of the

page
Update noise bits :

For

.

Update paths :
For

; ;
Merge Check and Output :

For degree-zero nodes, we trace back
from the respective nodes at stage ;
however, for any incomplete state ,
we trace back from all of the complete
states of stage ; this must be
done because no parent node can be dis-
carded at incomplete states, since it
may be the parent of some state at a
later stage.

Loop Back/Stop :
If , Set and go to Input
Else Stop.

IV. EXPERIMENTAL RESULTS

We define two measures of performance for the algorithms:
the percentage of bits that are out of synchronization (PBOS)
and the modified signal-to-noise ratio (MSNR). The PBOS cap-
tures the synchronization-loss aspect of the performance and is
defined as the ratio of the number of bits that are received out of
synchronization to the total number of bits in the stream. The
MSNR is simply the SNR between the original, unquantized
source and the synchronous portions of the decoded stream.
These performance measures serve to somewhat decouple the
effects of loss of synchronization from that of word errors and
are appropriate for signals where the synchronization loss is less
annoying. In general, performance measures could be applica-
tion dependent. Although we present results for Huffman codes,
our decoder is applicable to any entropy code that can be imple-
mented as a table lookup algorithm.

Experiments were performed on 50 000 samples of zero-
mean, first-order, Gauss–Markov sources (driven by a unit
variance, Gaussian random process) with and

. Both sources were quantized using nine levels, with the
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Fig. 2. Performance comparisons:� = 0:9, � = 0:8.

step sizes set to 1.25 and 0.9, respectively; the quantizers were
chosen simply to give “reasonable” fidelity under error-free
conditions. Once quantized, the sources were Huffman encoded
and corrupted by random bit-error patterns representing different
AMCs. The quantized data is modeled as a Markov(1) source
and the MAP-AMC decoder developed above is applied to it.
The statistics of the source were obtained from the quantized
data using a training sequence. A counter was set up to count
the number of occurrences of each event and the probability
was calculated from that. The transition probability was also
calculated by the “counting” method, where the total number
of favorable transitions are counted. For the experiments with
conventional FECs, we used a rate 2/3 convolutional code
(with depth 100, block interleaving) having constraint length
two, as in [16]. To keep the overall bit rate the same as in the
basic case, we code the source at 2 bits/sample by using a
five-level quantizer and Huffman codes. The channel bit rate
is now altered due to the introduction of the FEC in the loop.
Hence, in the experiment where the MAP decoder follows
the FEC, we use the new channel bit-error rate in the MAP

Fig. 3. Performance comparisons:� = 0:9, � = 0:7.

decoder to ensure fair comparison. The results presented are
an average of six different channel realizations (random seeds)
and are depicted in Fig. 2 for and .

From the plots, we see that the MAP-AMC performs better
than the Huffman decoder at all error rates considered, with
maximum improvement being 6.3 dB (MSNR) and 27.3%
(PBOS). We can also see that the MAP-AMC does better
than a scheme that involves a convolutional coder and inter-
leaver. Experiments where the source correlation is reduced to

also show a similar pattern of improvement over the
Huffman decoder, but with a reduced maximum improvement.
This result is expected, since the redundancy due to the source
memory has been reduced. We then looked at the effect of
reducing the channel memory by lowering to 0.7. Fig. 3
shows that the performance trend is the same as with ,
although the peak MSNR and PBOS improvements are now
6.67 dB and 20.87%, respectively. We then set the error rate to

and swept from . The performance
plots are shown in Fig. 4 and, interestingly, it is seen that the
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Fig. 4. Effect of channel memory:� = 0:9, � = 10 .

performance ofboth the MAP-AMC and Huffman decoders
increases with the channel memory. Although somewhat
surprising, the Huffman results can be explained by the fact
that increasing the channel memory results in greater error
clustering: the result is fewer symbols being corrupted and a
smaller number of synchronization losses. We also see that
the relative performance of the MAP-AMC decoder is always
better than the Huffman decoder and actually increases asis
dropped. In general, it is difficult to separate the improvement
of the MAP-AMC decoder over Huffman decoder into that due
to source and channel memory. For example, we observed that
setting resulted in a MAP-AMC decoder that performs
essentially the same as the Huffman decoder. Future work
needs to be done to explain this phenomenon and to verify that
it occurs under all operating conditions. As a final note, the

results show that the “believe what you see” rule (the
decoder parses the received stream as is) is sometimes a good
solution. In fact, Alajajiet al. [12] have derived conditions for
the optimality of the “believe what you see” rule for the simple
cases of binary-symmetric Markov and binary independent and

Fig. 5. Performance under channel mismatch:� = 0:9, � = 0:8.

identically distributed sources over an AMC. Derivations for
more complicated sources, such as the one considered in this
letter, are challenging problems and are not attempted here.

In practice, the channel estimates may be inaccurate or
poor. Studies on the performance of our decoder to these
mismatches show that the proposed decoder is very robust
to channel mismatches. For example, we transmitted 50 000
samples of a Gauss–Markov source through a channel
with . The received data was then decoded using
decoders designed for an “erroneous” channel correlation value
of ranging from 0 0.9, with corresponding to
an assumed BSC channel. The average results from the six
different channel realizations are shown in Fig. 5, and it is
seen that the MAP-AMC is reasonably robust to errors in
estimating and only a huge mismatch of 0.9 causes the
MAP-AMC result to drop below the Huffman curve.

Finally, a note on computational complexity: each data point
shown in Figs. 2–4 used approximately one minute of CPU time
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on a SUN ULTRA 10 computer for the MAP-AMC decoder and
about four seconds for the Huffman decoder.

V. CONCLUSIONS

This letter has examined the design of a joint source-channel
MAP decoder for entropy-coded Markov sources transmitted
over an AMC. The state space developed for the MAP-BSC
for Markov sources [1] can be used in the dynamic program-
ming formulation for the MAP-AMC. Simulations have demon-
strated that this decoder does significantly better than the con-
ventional one at all channel error rates considered, with these
conclusions holding both with and without FEC. The decoder
is robust to inaccuracies in the channel-correlation estimate. Fi-
nally, the overall performance of the MAP-AMC is seen to be
significantly better than that of the MAP-BSC [1], indicating
that it is critical to include the channel memory in the metric
calculation. This improvement is not surprising, since channels
with memory have higher capacity than those without [17].
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