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Abstract. In this paper we combine the error correction and encryption
functionality into one block cipher, which we call High Diffusion (HD)
cipher. The error correcting property of this cipher is due to the novel er-
ror correction code which we call High Diffusion code used in its diffusion
layer. Theoretical bounds on the performance of the HD cipher in terms
of security and error correction are derived. We show that the proposed
HD cipher provides security equivalent to Rijndael cipher against linear
and differential cryptanalysis. Experiments based on a four round HD
cipher reveal that traditional concatenated systems using the Rijndael
cipher followed by Reed Solomon codes require 89% more expansion to
match the performance of HD cipher.
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1 Introduction

In most cases, the very same properties that provide security to a cipher (e.g.
avalanche effect) makes them sensitive to transmission errors. In block ciphers
(which operates on a fixed block length of data at a time) a single bit flip in
the encrypted data can cause a complete decryption failure. This sensitivity
causes more retransmissions compared to unencrypted transmission, reducing
the overall throughput [20]. Hence, transmitting encrypted data often requires
the use of error correction codes to efficiently and reliably recover the informa-
tion during decryption. Although, traditionally error correction and encryption
are handled independently, some of the motivations to combine them into one
primitive are a) both error correction and encryption are now performed in the
same layer (e.g. link layer in wireless networks) b) error correction codes are al-
ready present in communication devices, therefore using codes as building blocks
for a cipher is advisable from an implementation standpoint c) the increasing
popularity of resource constrained devices in noisy media like the wireless net-
works could potentially benefit from a joint design of the error correction and
encryption primitives in terms of achieving a better system level operating point
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than the traditional disjoint approach. Hence, designing ciphers to provide er-
ror correction functionality in addition to encryption is of significance in many
applications.

Although mathematical relationships exist between error correction and en-
cryption [24], there have been only a few attempts to build error correcting
ciphers. Some of the notable results include the McEliece cipher [18], the Hwang
and Rao cipher [13] and the Godoy-Pereira scheme [12]. Some of the issues with
these ciphers are (a) these systems are not designed based on well known secu-
rity principles (and hence are vulnerable to various attacks [2]) (b) they are not
as efficient as traditional forward error correcting (FEC) codes in terms of error
correction capability, as they trade error correction capacity to achieve security.
In fact, in order to achieve meaningful error correction capacity, the parameters
of the system have to be very large leading to high computational complexity.
The difficulty in designing error correcting ciphers arise from the fact that error
correction and encryption work at cross purposes to each other.

In this paper, we propose an error correcting block cipher called the High Dif-
fusion (HD) cipher. The HD cipher, like standard block ciphers [23], is composed
of several iterations of the round transformation and mixing with the secret key.
The round transformation functions are composed of a non-linear substitution
layer and a linear diffusion layer. The error correcting property of the HD cipher
is due to the use of a novel class of codes that we call High Diffusion codes [16]
[21] in the diffusion layer of a cipher. We show that HD ciphers are not vulner-
able to known plaintext type of attacks described in [2] which were effective on
previously known error correcting ciphers [13] [12] [18]. In fact, we show that
the HD ciphers are as secure as the Rijndael cipher [10] against the well known
differential, linear cryptanalysis [3][17] and Square attacks [14]. To assess the
performance of our proposed cipher, we compare it with the traditional concate-
nated system that use Rijndael cipher followed by Reed Solomon codes [25]. We
show that HD cipher outperforms the traditional mechanism both in terms of
security and error correction.

2 Proposed High Diffusion Cipher (HD cipher)

A block diagram of the High Diffusion cipher encryption is given in Fig. 1. The
HD cipher is a Key-Alternating [8] block cipher, composed of several iterations of
the round transformation and key mixing operation. The round transformation
consists of three layers. The first one is the non linear substitution layer, this
is followed by the symbol transposition layer and finally the High Diffusion
encoding layer. Note that, HD encoding is not performed in the final round.

The key mixing layer follows every round transformation and is also per-
formed once before the first round. The HD cipher decryption proceeds in the
exact reverse order to that of the encryption process, however the HD encoding
layer is replaced by the HD decoding layer.

Now, we introduce some notations that are used in the rest of this paper.
The inputs to the HD cipher encryption are the plaintext (denoted by P) and
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Fig. 1. Block Diagram of High Diffusion Cipher.

the key (denoted by K). The output is the ciphertext (denoted by C). The total
number of rounds in the cipher is denoted by R. The plaintext as it goes through
each round of the cipher is referred to as the cipher state. The number of bits
in the cipher state after r ∈ {0...R} rounds is denoted by nr

b . Note that, n0
b is

the number of bits in P and nR
b is the number of bits in C. The total number

of key bits, denoted by nk, is equal to nR
b . We propose to use the same key

schedule algorithm as in Rijndael [10], which extends the nk bit cipher key into
(R+1)×nk bits to produce R+1 round keys {k0, k1, ..., kR}. All the operations
in HD cipher are performed in the finite field of order 2m, denoted by GF(2m).
Hence, the nr

b bits are logically grouped into nr
s symbols represented by m bits

each. A detailed description of all the layers of HD cipher will follow.

2.1 Key Mixing Layer

The key mixing layer, which we denote by σ, is a bitwise XOR operation of the
cipher state with the round key. Note that, the round keys are larger than the
intermediate cipher states for all but the last round of the cipher. The input
and output of σ at round r are denoted by xr

σ and xr
γ respectively. The σ

transformation for round r can be expressed by,

σr : xr+1
γ = σ(xr

σ,kr) ⇐⇒ xr+1
γ = (xr

σ ⊕ kr). (1)
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Note that, the output of the key mixing layer forms the input to the next round.
However, when r = R, the output of σ is the C.

2.2 Non-linear Substitution Layer

The substitution layer, denoted by γ, is the only non-linear step in the HD
cipher. This layer uses an invertible local non-linear transformation called the
S-box, Sγ . The construction of Sγ is similar to that in Rijndael [22], where the
substitution box is generated by inverting elements in GF(2m) and applying an
invertible affine transform (to prevent zeroes mapping to zero). The design of
the Sγ minimizes large correlation and difference propagation (see Section 3)
between input bits and output bits. The Sγ so designed, causes intra symbol
avalanche [9] (that is every bit in the output symbol of the S-box flips with a
probability of half for a single bit flip in the input symbol), which is essential
for the security of the cipher. Sγ transforms the input vector xr

γ to the output
vector xr

π by acting on each of the nr
s symbols in the input vector independently.

The γ transformation can be expressed by,

γr : xr
π = γ(xr

γ) ⇐⇒ xr
π(j) = Sγ(xr

γ(j)) , (2)

where, j ∈ {1...nr
s}. During HD cipher decryption, inverse substitution box,

sγ−1 , is used instead of sγ .

2.3 Symbol Transposition Layer

The symbol transposition layer, denoted by π, is the first of the two diffusion
operations used in the HD cipher. The aim of this layer is to permute the cipher
state using a diffusion optimal transformation. It applies a matrix transposition
type of permutation on the cipher state. With respect to π, the input state xr

π is
arranged into nr

u×nr
v matrix Xr

π (with nr
u rows and nr

v columns). This matrix is
then transposed to obtain nr

v×nr
u matrix Xr

θ. This is then mapped to the vector
representation xr

θ. The π transformation can be expressed by,

πr : xr
θ = π(xr

π) ⇔ Xr
θ = (Xr

π)T (3)

In matrix transposition transformation, any two symbols appearing in the same
column before the transformation appear in different columns after the trans-
formation. Hence, this transformation is a diffusion optimal transformation [6].

2.4 High Diffusion Coding Layer

The High Diffusion coding layer is the second of the two diffusion operations used
in the HD cipher. The aim of this layer is to diffuse the intra symbol avalanche
caused by the substitution layer to a large number of symbols in the resulting
cipher state. In HD cipher, this layer has an additional aim, which is to correct
transmission errors during decryption. Hence, we need to use an error correcting
code, with encoding operation θ, to perform this transformation.
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In this section, we first introduce the criteria that channel codes to be used in
this transformation should satisfy. We call the channel codes that satisfy these
criteria as HD codes. Some techniques to construct HD codes are given. Finally,
we define the HD coding and decoding transformations as applied in the HD
cipher.

Design criteria for HD coding transformation: The aim of HD coding
transformation is to design θ such that we attain the highest possible security
(in terms of diffusion) and error correction. Therefore, we derive two criteria
that θ codes must satisfy:

– Security Criterion: Since, the θ will be used in the diffusion layer it needs to
spread the intra symbol avalanche caused by the substitution operation to a
large number of output symbols. The spreading power, diffusion, is measured
using the concept of branch number [8]. Let vectors a, b represent any two
arbitrary k symbol input vectors and θ(a), θ(b) represent the corresponding
n symbol output vectors. Then the branch number of the transformation θ
is defined as,

B(θ) = min
a,b 6=a

{Hd(a, b) + Hd(θ(a), θ(b))} (4)

Here, Hd denotes the symbol hamming distance. Since, the maximum output
difference corresponding to a single non-zero symbol input difference is n.
The upper bound for B(θ) is n + 1. To provide good security, θ must have
the maximum possible branch number. Hence, we set

B(θ) = n + 1 (5)

as the security criterion of θ.

– Error Resilience Criterion: The number of errors that can be corrected by
a code is governed by the pairwise minimum distance between the code-
words [25]. A large minimum distance would ensure good error resilience
property. The minimum distance between two codewords in the code space
is usually denoted by dmin. The best possible dmin for a code is attained
when the code satisfies the Singleton bound. That is,

dmin = n− k + 1 (6)

where, n is the codeword length and k is the message length. Codes that
satisfy Singleton bounds are referred to as Maximum Distance Separable
(MDS) codes. Hence, we set θ to be an encoding function of an [n, k, 2m]
MDS code as the error resilience criterion.

The following is an interesting property that connects the security criterion 5
to the error resilience criterion 6.

Theorem 1. Any [n, k, q] code C with encoding operation θ, that satisfies B(θ) =
n + 1 also satisfies dmin = n− k + 1.
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Proof. Consider any two codewords ci and cj and mi and mj be the correspond-
ing messages. Then,

Hd(ci, cj) + Hd(mi, mj) = n + 1
Hd(ci, cj) = n−Hd(mi, mj) + 1
Hd(ci, cj) ≥ n− k + 1

Since, ci and cj are any two codewords. We have dmin = n− k + 1.

However, the converse is not true. That is any code that satisfies 6 need not
satisfy 5. To the best of our knowledge, there are no known channel codes that
inherently satisfy both security and error resilience criteria.

The new codes that satisfy both the security and error resilience criterion
are called as High Diffusion (HD) codes. The following is the definition of HD
codes.

Definition 1. High Diffusion codes are [n, k, q] MDS codes that satisfy the branch
number of n + 1.

Construction of HD codes: Unlike usual error correcting codes, the branch
number criterion for HD codes involves pairs of messages and their associated
codewords. This makes deriving a closed form expression (or encoding transfor-
mation θ) for the construction of the codes tricky. A brute force search produces
the complete mapping with the highest expected runtime. Then, the θ has to de-
rived from these mappings. We have, so far developed some shortcut techniques
to generate HD codes. A brief outline of these techniques follow:

– Coset Based Search: Cosets are formed such that the codewords are assigned
to the coset leaders only. The codewords for the rest of the coset elements are
related to each other, often they are rotations of each other. The coset based
search makes use of cosets to reduce the complexity of the code assignment.
This searching technique only needs to find codewords for the coset leaders.
We then use the message to codeword mapping to derive θ.

– Transformation from Reed Solomon Codes: In this technique, we start with
a known MDS code and transform the encoding transformation of this MDS
code into an encoding transformation of the HD code. As Reed Solomon (RS)
codes are an important subclass of MDS codes, we start with [q− 1, k, q] RS
codes and transform them into [q − 1, k, q] HD codes using permutations of
the message-codeword assignments that satisfy the branch number criterion.
An example of this method is given in [16]. Note that the traditional method
to generate an RS code cannot be directly used to generate an HD code,
because the HD codes have a second property to be satisfied viz., the branch
number criterion.
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– Puncturing Existing Codes: This gives us an easy way to generate new HD
codes from existing HD codes. The following Theorem 2 proves that Punc-
turing HD codes result in HD codes.

Theorem 2. Punctured HD codes are HD codes.

Proof. Let C be an [n, k, q] HD code and C′ be the punctured [n−1, k, q] code
obtained from C. Let mi, mj be any two messages with their corresponding
codewords ci, cj in C and c′

i,c′
j in C′. We know that C is an HD code,

therefore Hd(mi,mj) + Hd(ci, cj) ≥ n + 1. We know that, c′
i and c′

j are
obtained by puncturing ci and cj in one symbol position. This implies that
Hd(mi, mj) + Hd(c′

i, c
′
j) ≥ n. Hence, C′ is an HD code.

HD encoding operation (θ) : The HD encoding operation, denoted by θ,
uses HD codes. The cipher state, xr

θ, at the input to the HD encoding operation,
is arranged in the form of an nr

u× nr
v matrix Xr

θ. An [nr
u′ , n

r
u, 2m] HD code with

encoding operation θr is used to encode each column of Xr
θ independently. The

resulting output cipher state is now represented by a nr
u′ × nr

v matrix Xr
σ which

is then mapped to xr
σ. The HD encoding operation θ can be represented as,

θr : xr
σ = θ(xrθ) ⇔ Xr

σ(j) = θr(Xr
θ(j)) , (7)

where Xr(j) represents the j-th column of the matrix. As the same θr is used
on all the input columns, branch number B(·) is lower bounded by:

B(θr) ≥ nr
u′ + 1, (8)

≥ nr
u + dr

min. (9)

HD decoding operation ψ : HD decoding operation, denoted by ψ, is used
during decryption. So far, we have generated HD codes by transforming the
RS codes. Hence, we use the Berlekamp-Massey [1] algorithm, which is used to
decode RS codes, to decode HD codes. For all valid cipher states, the branch
number property of θr is also inherent in ψr. The bound on error correction
capability, tr, of ψr is derived from the minimum distance between codewords
of the HD code θr as follows:

tr = bd
r
min

2
c

tr = bn
r
u′ − nr

u + 1
2

c

∴ tr = bB(θr)− nr
u

2
c (10)

From 9 and 10 we can observe that the parameter dmin jointly controls the
diffusion strength and error correction capacity in the HD cipher.
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3 Security Analysis of HD ciphers

Security of symmetric block ciphers is usually measured by their key lengths.
This is because for an attacker, the complexity of the attack grows exponentially
with the key length. Although the key length nk used in HD cipher is nR

b bits,
we look at the existence of attacks with complexity lesser than O(2n0

b ), where
n0

b is the length of plaintext. This is because, with n0
b ≤ nR

b , a dictionary attack
will perform better than a brute force key search. However, a brute force attack
is not the only possible attack. For example, shortcut attacks make use of the
structure of the cipher to come up with a technique to break it (deduce the
secret key) with complexity lesser than O(2n0

b ). In this section, we analyze the
security of HD ciphers by looking at the resistance it offers against some well
known cryptanalytic attacks.

3.1 Linear and Differential Cryptanalysis

In this section, we analyze the security of HD cipher in terms of linear and
differential cryptanalysis. Differential cryptanalysis [3, 4] is a chosen plaintext-
ciphertext attack that makes use of difference propagation property of a cipher
to deduce the key bits. The difference propagation property of an S-box is the
relative amount of all input pairs that for the given input difference results
in a specific output difference and it is expressed as propagation ratio [5]. Let
xr
∗1 be any intermediate cipher state at round r resulting from the plaintext

P1. Similarly, let xr
∗2 be the corresponding intermediate cipher state resulting

from P2. The non zero symbols in xr
∗1 ⊕ xr

∗2 are called active S-boxes or active
symbols. The pattern that specifies the positions of the active symbols is called
the (difference) activity pattern. The propagation ratio over all the rounds of a
differential trail can be approximated by the product of the propagation ratios
of the active symbols in its activity pattern. Differential cryptanalysis is possible
if the maximum possible propagation ratio is significantly larger than 21−n0

b .
Linear cryptanalysis [17] is a known plaintext-ciphertext attack that makes

use of linearity in the cipher to obtain the key bits. The substitution is the
only non-linear step in most of the block ciphers including the proposed HD
cipher. The linearity of an active symbol can be approximated to the maximum
input-output correlation exhibited by it. The active symbols in a round are
determined by the non zero symbols in the selection vectors at the input of
the round. The pattern that specifies the positions of active symbols is called
(correlation) activity pattern. The linearity of one round can be extended to
multiple rounds to form a linear trail. The correlation (measure of linearity) of a
linear trail (multiple rounds) can be approximated to the product of input-output
correlations of its active symbols. Linear cryptanalysis is possible if the maximum
possible correlation of any linear trail is significantly larger than 2−n0

b/2, where
n0

b is the size of the plaintext in bits.
The number of active symbols in an activity pattern, ar

∗, is called the symbol
weight, denoted by WS(ar

∗). Let Ar
∗ be the matrix representation of ar

∗. Then
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any column Ar
∗(j) is said to be active if it contains at least one active sym-

bol. The number of active columns in an activity pattern is called the column
weight, denoted by WC(ar

∗). The difference and correlation activity patterns
propagate through the transformations of different rounds of the cipher forming
linear and differential trails. The number of active symbols in a trail is given by∑R

r=1(WS(ar
γ)). To defend a cipher against linear and differential cryptanalysis,

the cipher design should ensure a large number of active symbols in any linear
and difference trail. Hence, a lower bound on the number of active symbols in
any linear or differential trail will give a lower bound on the resistance of the
cipher to linear and differential cryptanalysis. In Theorem 4 we show that this
lower bound for HD cipher is B(θ1)× B(θ2).

Lemma 1. The total number of active columns of the function π ◦ θ ◦π is lower
bounded by the branch number of θ, B(θ).

This is true for any diffusion optimal π. Proof given in [7].

Theorem 3. The number of active S-boxes or symbols for a two round trail of
HD cipher is lower bounded by the branch number of the first round of HD code,
B(θ1).

Proof. Consider the first two rounds of HD cipher. Since γ and σ operate on the
symbols locally, they do not affect the propagation pattern. Hence the number of
active S-boxes or symbols for a two round trail, WS(a1

γ)+WS(a2
γ), is bounded by

the propagation property of θ1. From the definition of HD codes and Equation
9 it follows that the sum of active S-boxes before and after θ1 encoding of the
first round is lower bounded by B(θ1).

Fig. 2. Activity pattern propagation in four round HD cipher encryption.
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Theorem 4. The number of active S-boxes or symbols for a four round trail
(starting with round 1) of HD cipher is lower bounded by B(θ1)× B(θ2).

Proof. The sum of the number of active columns in a2
γ and a3

θ is lower bounded
by B(θ2) (from Lemma 1). Hence we have,

WC(a2
γ) + WC(a3

θ) ≥ B(θ2) (11)

but, WC(a4
γ) = WC(a3

θ) (θ does not change the number of active columns).
Therefore,

WC(a2
γ) + WC(a4

γ) ≥ B(θ2) (12)

The total number of active S-boxes in a1
θ and a2

γ is given by,

WS(a1
θ) + WS(a2

γ) ≥ WC(a2
γ)B(θ1) (13)

Similarly, the total number of active S-boxes in a3
θ and a4

γ is given by,

WS(a3
θ) + WS(a4

γ) ≥ WC(a4
γ)B(θ3) (14)

Combining 12 13 and 14 will give,

WS(a1
θ) + WS(a2

γ) + WS(a3
θ) + WS(a4

γ)

≥ WC(a2
γ)B(θ1) + WC(a4

γ)B(θ3)

≥ (WC(a2
γ) + WC(a4

γ))B(θ1) +

WC(a4
γ)(d2

min + d3
min − 2)

Since, WC(a4
γ)(d2

min + d3
min−2) is non negative (d2

min, d3
min ≥ 1) and WS(aj

θ) =
WS(aj

γ) we get,

WS(a1
γ) + WS(a2

γ) + WS(a3
γ) + WS(a4

γ) ≥ B(θ1)B(θ2) (15)

The security of HD cipher against linear and differential cryptanalysis thus
depends on the branch number of the HD coding operation at the diffusion layer.

Consider the Rijndael cipher and the HD cipher operating on the plaintext block
length. Then, the design of HD cipher guarantees that the number of active S-
boxes in any four round linear or differential trail of HD cipher is lower bounded
by the number of active S-boxes in any four round linear or differential trail of
Rijndael cipher. Also, the S-boxes used in the HD cipher are the same as the
S-boxes used in the Rijndael cipher. Hence, we can conclude that HD cipher is as
secure as the Rijndael with respect to linear and differential cryptanalysis. This
also shows that, the error correction property of the HD code does not lead to
information leakage or weakness in security with respect to linear and differential
cryptanalysis. However, the HD ciphers use a larger key length (nk = nR

b ≥ n0
b)

to achieve the same security level as that of Rijndael. The resistance to linear
and differential cryptanalysis also shows that, the HD ciphers are not vulnerable
to known plaintext type of attacks described in [2].
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3.2 Square Attack

The square attack [6] (also known as Integral attack or the Saturation attack)
makes use of the byte oriented nature of the Square block cipher which was the
predecessor of Rijndael. As Rijndael is also a byte oriented cipher, this attack
has been extended to reduced versions of Rijndael cipher [15, 11]. Although the
attacks described applies directly to ciphers operating with symbol size in bytes,
it can be easily extended to other symbol sizes. HD ciphers also comprise of
symbol oriented operations which are loosely based on Rijndael, hence HD ci-
phers with fewer than seven rounds would be as weak as reduced versions of the
Rijndael cipher.

4 Error Correction Capacity of HD ciphers

In this section, we prove bounds on the error correction capacity of HD ciphers.
After encryption the ciphertext of length nR

s symbols (equivalently nR
b bits) is

transmitted across a noisy channel. Specifically, we consider a bursty channel
and use the term “full weight burst error” to denote an error burst where all the
symbols in the burst are in error. In order to formalize our analysis we introduce
the following assumptions, definitions and notations. Without loss of generality
we consider HD ciphers in which HD codes have equal error correcting capacity
in all rounds. That is, tr = t; ∀r ∈ {1, .., R − 1}. A symbol of the cipher state
that is in error (due to channel or propagation due to decryption) is referred
to as an error symbol. An error pattern is a vector whose non zero symbols
represent the error symbols. The error patterns for each round are denoted by,
er
∗, ∀r ∈ {1, ..., R}. In the matrix representation of the error pattern (denoted

by Er
∗), a column (or row) in the error pattern is said to be in error if there

are at least t + 1 error symbols in the corresponding column (or row). We refer
to such columns and rows as error column and error row respectively. We say
that error correction is complete in round r if er

∗ is a zero vector, otherwise error
correction is said to be incomplete. Error correction capacity of a four round
HD cipher decryption is analysed in Theorem 5. An outline of a four round HD
cipher decryption is represented in the Fig. 3.

Lemma 2. For a four round HD cipher, if there are at most t error columns
or rows in the ciphertext before decryption, the error correction will be complete
after at most three rounds of decryption. Here, t denotes the error correction
capacity of HD codes used in the HD cipher.

Proof. Consider the first three rounds of HD cipher decryption in Fig. 3. Since
the inverse non-linear transform γ and round key addition σ operations do not
convert an error symbol to an error free symbol and vice versa, it can be excluded
from the analysis.

First, we consider the case in which the error pattern e4
σ contains at most t

error columns. After π4 transformation, we will have at most t error rows in e4
π.

Since, ψ3 has an error correcting power of t, errors across each of the columns
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Fig. 3. Error pattern propagation in four round HD cipher decryption.

are corrected. Hence, the error pattern e3
ψ will contain all zeros, completing the

error correction.
Consider the second case, in which the error pattern e4

σ contains at most
t error rows. After π4 transformation, we have at most t error columns in e4

π.
This is beyond the error correction capacity of ψ3, hence we take the worst
case scenario of having at most t error columns in e3

ψ. Now, applying the same
argument as the first case, the error pattern e2

ψ should have all zeros.

Lemma 3. For a four round HD cipher, if there are at least t+1 error columns
or rows in the ciphertext before decryption, the error correction will remain in-
complete after three rounds of decryption.

Proof. Consider the case in which the error pattern e4
σ contains t + 1 error

columns. After π4 transformation, e4
π will contain at least t + 1 error rows.

This is beyond the error correction capacity of ψ3. Hence e3
ψ will have all of its

symbols in error and the decryption will remain incomplete even after ψ2 in e2
ψ.

Similarly, when there are t+1 error rows in e4
σ, there will be t+1 error columns

in e3
ψ and every symbol will be in error in e2

ψ. Hence the decryption will remain
incomplete.

We now analyze the maximum full weight burst error length that is guaran-
teed to be corrected by a four round HD cipher. Our analysis is independent of
the starting and ending locations of the burst with respect to the cipher state.

Theorem 5. The full weight burst error correcting capacity of a four round HD
cipher is (t− 1)(B(θ3)− 1) + 2t + 1.

Proof. Without loss of generality we consider the row-wise transmission (with
respect to matrix representation) of the ciphertext and hence full weight bursts
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that occur across the rows of the ciphertext. The following analysis can be triv-
ially extended to column-wise transmission as well.

We know that a burst of t + 1 errors in one row makes that an error row.
The minimum full weight burst error length required to create two error rows is
2(t+1). Similarly, a full weight burst error of length n3

u′+2(t+1) can cause three
error rows. Generalizing this result, we get that, a burst length of (l− 2)(n3

u′) +
2(t + 1) can cause l error rows. This is in fact the minimum length for a full
weight error burst to cause l error rows. It follows that a full weight burst length
of at least (t−1)(n3

u′)+2(t+1) is required to generate l = t+1 error rows. This
implies that a full weight burst of length (t−1)(n3

u′)+2(t+1)−1 cannot generate
l ≥ t + 1 error rows. From Lemma 2 a burst of length (t− 1)(n3

u′) + 2(t + 1)− 1
is correctable and from Lemma 3 a burst of length (t− 1)(n3

u′) + 2(t + 1) is not
correctable. Hence the minimum burst length that is guaranteed to be corrected
by a 4 round HD cipher decryption is (t− 1)(n3

u′) + 2(t + 1)− 1. Which is equal
to (t− 1)(B(θ3)− 1) + 2t + 1 (from 8).

Although this gives the error correction capacity of the system, in some cases
the system can correct longer burst errors. In other words, some longer bursts
can be corrected, depending on their start and end positions. Theorem 6 gives
the smallest burst length for which the probability of complete error correction
in a four round HD cipher decryption is zero. Any full weight error burst that
is smaller than this has some non zero probability of being correctable.

Theorem 6. The smallest burst length of a full weight burst error, for which the
probability of complete decoding is zero (by a four round HD cipher) is t(B(θ3)+
1) + 1 symbols.

Proof. We again assume row-wise transmission of the ciphertext and hence full
weight burst errors occurring across rows. The maximum number of error rows
for which error correction will be complete in three rounds is t (Lemma 2). The
minimum length of a full weight burst that makes a row in error is t + 1, hence
the maximum full weight burst length that can occur in an error free row is t.
Therefore, the maximum full weight burst length that produces a error pattern
with at most t error rows is tn3

u′ +2t. This is equal to t(B(θ3)+1). Hence a burst
length of t(B(θ3) + 1) + 1 is the smallest burst length of a full weight burst, for
which the probability of complete decoding is zero.

5 Simulation Results

To assess the performance of our proposed cipher, we compare it with a conven-
tional, concatenated system that uses Rijndael for encryption and Reed-Solomon
codes for error correction. As a proof of concept, we construct a four round HD
cipher in the Gallois Field of order 8 (GF(23)) and compare it against a sys-
tem that uses the Rijndael in GF(23) concatenated with three RS codes, A, B
and C with parameters [7, 3, 8], [15, 3, 16], [31, 3, 32] respectively. We use three
different RS codes, because there is no RS code with parameters that match
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Fig. 4. Comparison of error resilience of HD cipher and Rijndael concatenated with
Reed Solomon codes.

the HD cipher performance exactly in terms of error correction. The selection
here compares two systems which cause smaller data expansion (A and B) and
one that causes more data expansion (C) compared to the HD cipher. Let us
refer to the concatenated system produced by using RS code A, as “System A”,
and that produced by using RS code B and C, as “System B” and “System C”
respectively. The HD cipher produces 147 bits of cipher text for every 27 bits of
plaintext; System A, System B and System C produce 63, 135 and 279 bits of
ciphertext for every 27 bits of plaintext respectively.

The parameters of the High Diffusion cipher in GF(23) is as follows: n0
b = 27

bits, m = 3, R = 4, HD code used for θ1 = [3, 3, 23], θ2 = θ3 = [7, 3, 23]
(generated using RS code A) and n4

b = 147 bits. The parameters for Rijndael
cipher in GF(23) are as follows: n0

b = n4
b = 27 bits, MixColumn transformation

uses an invertible 3× 3 matrix in GF(23) with branch number 4.
The sum of active S-boxes for a four round trail of HD cipher is B(θ1) ×

B(θ2) = 32. The sum of active S-boxes for a four round trail of the Rijndael cipher
is 16. The resistance to linear and differential cryptanalysis is lower bounded
by the product of correlation and propagation ratio of the active S-boxes (see
Section 3.1). This implies that HD cipher is exponentially twice as resistant to
linear and differential cryptanalysis as the Rijndael cipher. However, HD cipher
uses 147 bit key length to attain a security comparable to the 27 bit Rijndael
cipher.

To simulate the bursty nature of wireless channel environment, we used the
Gilbert-Elliott channel model with the following parameters [19], the transition
probability from bad state to good state, g = 0.1092, the transition probability
from good state to bad state, b = 0.0308, bit error probability in the bad state,
pb = 0.5 and bit error probability in the good state pg = 0.0128. Fig. 4 plots the
post decryption bit error rate of the proposed HD cipher and the concatenated
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Systems A, B and C against the channel bit error rate. It can be observed that
the HD cipher performs significantly better than system A, B and matches the
performance of System C. We can see that in order to match the HD cipher in
terms of error correction performance, the conventional system will increase the
data expansion by 89% when compared to the expansion in HD cipher.

We now compare HD cipher and Rijndael in terms of computational com-
plexity. In Rijndael, the cipher state is multiplied with the MixColumn trans-
formation matrix in every round. Whereas, in HD cipher encryption, the cipher
state is multiplied with the generator matrix of HD code in every round. A large
generator matrix will incur higher computational costs. The size of MixColumn
used in our experiment is 3×3, whereas the size of generator matrix for HD code
is 3×7. In HD cipher decryption, RS decoding algorithm is used, which requires
higher computational complexity compared to the inverse MixColumn matrix
multiplication. Since, the design of HD cipher is still in a theoretical stage, we
have not done extensive analysis on its computational complexity.

6 Conclusions

Several motivating factors for the design of error correcting ciphers were dis-
cussed. The High Diffusion cipher, which combines a block cipher with a block
error correcting code was proposed. A new class of Maximum Distance Sepa-
rable (MDS) codes called High Diffusion codes were introduced. These codes
were shown to achieve optimal diffusion and error resilience. Some techniques to
construct HD codes were presented. The security of the four round HD cipher
against linear and differential cryptanalysis was shown to be lower bounded by
B(θ1)B(θ2), where B(·) is the branch number and θr is the rth round HD coding
operation. We proved that the full weight burst error correction capacity of a
four round HD cipher is (t− 1)(B(θ3)− 1) + 2t + 1 symbols. Simulation results
of a four round HD cipher operating in GF(23) revealed that (a) HD cipher is as
secure as Rijndael cipher with respect to linear and differential cryptanalysis (b)
conventional, concatenated systems that independently perform encryption (us-
ing Rijndael) and error correction (using Reed Solomon codes) need to increase
the data expansion by 89% to match the performance of HD cipher.
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