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Abstract— In this paper we study the complexity of spectrum
assignment problems in cognitive radio networks (CRNs) in
the presence of several constraints. Although optimal spectrum
assignment for secondary transmissions in CRNs is generally
believed to be NP complete, the impact of fairness and link
quality constraints on the hardness of the problem is not well
studied. In this paper we show that when a minimum quality
constraint is imposed on secondary transmissions, the spectrum
assignment problem can be solved in polynomial time. However,
such assignments may not guarantee fairness. We also show
that when fairness is desired, even in the presence of quality
constraints spectrum assignment problems remain NP complete.
We then propose a tree pruning based algorithm to solve distance
constrained spectrum assignment problem. We also discuss some
heuristic techniques to solve fair distance constrained spectrum
assignment problems in polynomial time.

I. I NTRODUCTION

Over the past few years there has been a growing demand
for radio resources and at the same time these resources are
under utilized due to static spectrum allocation techniques.
Dynamic spectrum access (DSA) has been thought of as
a solution that would satisfy both the growing demand for
radio resources and to efficiently utilize the spectrum. The
radio devices that have the capability to dynamically sense
the spectrum and access the under utilized bands are called
cognitive radios (CR). There are two broad classes of users
in cognitive radio networks (CRNs), the primary user is a
licensed user of a particular radio frequency band and the
secondary users are unlicensed users who cognitively operate
without causing harmful interference to the primary user.

Dynamic access technology and smart (cognitive) radios
do not always imply efficient utilization of the spectrum.
Smarter protocols need to be developed to empower the
new technology and optimize the spectrum utilization. The
process of optimizing the spectrum utilization by sharing it
among bandwidth hungry secondary users is called spectrum
management. Spectrum management involves three distinct
phases. The first phase is called spectrum scanning, here
the spectrum is scanned for secondary usage opportunities.
The second phase is spectrum allocation, here the available
spectrum is distributed among secondary users for optimal
utilization. The third phase is called spectrum handoff, where
the secondary user hands off its current spectrum band upon a
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primary user detection. All the three phases can be managed
either by a centralized spectrum server [1], [2] or decentralized
[3], [4] and managed by secondary users in a distributed
fashion.

In this paper, we concentrate on the spectrum allocation
phase of spectrum management. We also assume the existence
of a centralized spectrum server that allocates secondary users
the corresponding sub-channels. By sub-channels we mean
frequency bands. We study the complexity of an optimal
spectrum allocation. The allocation of maximum possible
secondary transmissions to a given sub-channel is considered
as the optimal solution. We identify two distinct constraints
in spectrum assignment: (a) quality constraint (measured by
signal to interference noise ratio or distance ratio) and (b)
fairness constraint. A formal definition of these constraints are
given in later sections. We note that these constraints impact
the network capacity, connectivity, lifetime and traffic load.
We then study the complexity of optimal spectrum assignment
problem in the presence and absence of these constraints. We
show that a special class of spectrum assignment problems
can be optimally solved in polynomial time in the presence
of quality constraint and absence of fairness constraint. This
is important in the context of cognitive networks as the set
of available spectrum bands is highly time varying resulting
in repeated spectrum assignments. Our result shows that in
such scenarios and under link quality constraints, the spectrum
assignment algorithm scales polynomially with respect to the
number of secondary users. Next we show that when fairness
is desired, the optimal spectrum assignment problem remains
NP complete. Finally, we discuss heuristic algorithms that run
in polynomial time to achieve near optimal results for fair
spectrum assignments.

The organization of the rest of the paper is as follows, in
Section II we model CRNs using a graphs. We then define the
quality and fairness constraints for spectrum assignment in
Section III. In Section IV we define the spectrum assignment
problem followed by its complexity analysis in Section V.
An algorithm for distance constrained spectrum assignment is
presented in Section VI with simulation results in Section VII.
Finally, present some conclusions in Section VIII.

II. N ETWORK MODEL

To formulate the spectrum assignment problem in a cog-
nitive radio network, we map a given network to a graph
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G=(V,E), where the vertices,V , represent the secondary users
(nodes) and the edges,E, represent the secondary transmis-
sions (links) between these users. Some of the notations used
in the rest of the paper are summarized in Table I.

V Set of all nodes (vertices of G).
ei,j Link formed when nodei transmits to nodej.

Note that the existence ofei,j does not implyej,i.
E Set of all possible links in the network (edges in G).
Et Set of links that are active in sub channelt, wheret > 0.
SIR(ei,j , t) Signal to interference ratio of edgeei,j in the sub channelt.
T Total number of active/available sub-channels.
Si Set of sub-channels assigned to linkei

TABLE I

NOTATIONS USED

III. SPECTRUMASSIGNMENTCONSTRAINTS

A. SINR constraint

To assure a minimum quality at each receiver in the network,
we define a constraint on the signal to interference plus
noise ratio (SINR). The SINR constraint simply says that
the assignment should guarantee a desired minimum SINR
requirement (sayγth) for all the links assigned in all of its sub-
channels. While the optimal assignment of links to satisfy this
constraint requires the consideration of the “physical model”
of the system, a simplified analysis can be carried out with
a conservative approach leading to the so called “protocol
model” [5]. We now define the SINR constraint in the physical
model which is then simplified to distance constraint in the
protocol model.

Let Et be the set of all links assigned to the sub channel
t, then under the physical model the scheduling/assignment is
said to satisfy the minimum SINR constraint if,

SINR(eij , t) ≥ γth, ∀t ∈ {1, .., T}, ∀eij ∈ Et (1)

B. Distance constraint

While the physical model simply states the constraint, the
protocol model discussed below provides a simplified method
to impose the constraint.

If link ei is assigned sub-channelt (Fig. 1) i.e., ei ∈ Et,
then it is said to satisfy the minimumdistance ratio constraint
[5], if ∀ej ∈ Et − ei,

d(Tx(ej), Rx(ei)) ≥ (1 + δth)Rmax, (2)

where Rmax is the maximum transmission radius in the
network,Tx(ej) denotes the transmitter of linkej andRx(ei)
is the receiver of linkei. That is, the distance between the
receiver of the given link and the transmitters of other active
links sharing the same sub channelt should be larger by a
factor of1+δth compared to the maximum transmission radius
of the network.

Fig. 1. Pairwise distance constraints between two given linksei andej in
a wireless network, with distance ratio constraint ofδ.

C. Fairness

Depending on how many sub-channels each link is assigned
to, spectrum assignment can be classified as unfair, 1-fair and
fair. A spectrum assignment is called unfair if there is at least
one link that is not assigned to any of the sub-channels. This
leads to the following definition.

Definition 1: let Si be the set of sub-channels assigned to
link ei, thenSi is represented as,

Si = {t, ei ∈ Et ∀t ∈ {1, .., T}} (3)

An assignment is said to be unfair if

∃ i ∈ {1, .., |E|} s.t. |Si| = 0 (4)
Under such a spectrum assignment the node degree will
reduce and the connectivity of the graph may be lost, thus
making routing between some source destination pairs impos-
sible. Nevertheless, a network that prefers “maximum overall
throughput” regardless of fairness may adopt an unfair policy.

In order to preserve the connectivity of the underlying
communication graph, we need every link to be assigned to
at least one sub channel. This gives rise to the following
definition of 1-fairness.

Definition 2: A spectrum assignment is said to satisfy the
1-fairness constraint if,

|Si| ≥ 1, ∀i ∈ {1, .., |E|} (5)
Although 1-fair assignment preserves the connectivity of the
graph it can be biased. Some of the links could be assigned
more sub channels. Hence, when every link is assigned to
exactly same number of sub channels, such an assignment
achieves fairness.

Definition 3: A spectrum assignment is said to be fair if,

|Si| = d, ∀i ∈ {1, .., |E|} (6)

whered ≥ 1 is a constant.
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IV. SPECTRUMASSIGNMENTPROBLEMS

Definition 4: A spectrum assignment problem is repre-
sented as a two-tuple(G,C), whereG is a graph representing
the cognitive network andC is the set of constraints (i.e.
distance and fairness).

The spectrum assignment algorithms have two basic objec-
tives:
• maximize the number of links in every sub-channel

(maximized total link capacity),
• minimize the total number of sub-channels used subject

to all the constraints.
The sub-channels we consider are unused/undersued frequency
bands in the spectrum. Depending on fairness and distance
constraints we classify spectrum assignment problems as
distance constrained spectrum assignment (may be unfair),
distance constrained fair assignment and distance constrained
1-fair assignment.

V. COMPLEXITY OF SPECTRUMASSIGNMENTPROBLEMS

In this section we analyze the complexity of the three
spectrum assignment problems. Note that all these problems
belong to the class NP [6] in general. However, here we
analyze the complexity of special cases of each of these
problems when applied in the context of CRNs.

A. Distance Constrained Spectrum Assignment

The distance constrained spectrum assignment problem can
be stated as follows.

Problem 1: Distance constrained spectrum assignment.
Given a spectrum assignment problem instance(G, {δth}),

sub channelt and a positive integerk, is there a solution of
sizek i.e., is there a subsetEt ⊆ E with |Et| ≥ k such that
δth is satisfied?

To determine the complexity of solving this problem, we
explore the implication of distance constraint on NP com-
pleteness of the spectrum assignment problem. Our first step
in this direction is to arrive at an upper bound on the number
of simultaneous transmissions that are possible for a cognitive
radio network spread over a geographical areaA with dis-
tance constraintδth and maximum transmission radiusRmax

(derived from the maximum transmit power). It can be shown
by following the work in [5] that under the protocol model
the number of simultaneous transmissions, sayJ , is upper
bounded by 4c

πδ2
thr2

max
, where0 < c < 1 is a suitable constant

and rmax = Rmax√
A

is the normalized maximum transmission
radius.

Theorem 1:For a given distance constraintδth, radius
rmax, and areaA of the wireless network, the unfair spectrum
assignment problem can be solved in polynomial time, if
|E| À J .

Proof: To show that this problem is polynomial time
solvable, we propose a distance constrained spectrum assign-
ment algorithmδ-SAAthat solves every instance of the given
problem and prove that the algorithm runs in polynomial time.

Note that in Alg. 1 the graphH = (Va, Ea), vertices ofH
represent edges ofG and any two edges ofG that are mutually

Algorithm 1 δ-SAA

Input: (G, δth), rmax, t.
Output: Et, set of links assigned to the sub-channelt.

1: J = 4c
πδ2

thr2
max

2: if |E| À J then
3: H(Va) ← G(E)
4: for vi = 1 : Va do
5: for vj = 1 : Va do
6: if Edgesvi and vj in G are not mutually con-

strained by the distance constraintδth then
7: H(Ea) ← H(Ea) ∪ (vi, vj)
8: end if
9: end for

10: end for
11: MaxClique(Vmc, Emc) ← Naive-MC(H, J)
12: Et ← MaxClique(Vmc)
13: end if

constrained by the distance constraintδth do not have an edge
in H between the corresponding vertices. The complexity of
generatingH is Θ(|E|2), which is polynomial inE. As none
of the vertices in any complete subgraph ofH are mutually
constrained by any of the constraints specified byδth, they
all can be scheduled in the same sub-channel. This makes
every complete subgraph ofH a transmission set (set of links
that can be assigned the same sub channel) ofG. Hence the
optimal spectrum assignment under no fairness constraint is to
determine the maximum clique ofH. The decision version of
this problem is to determine whether a clique of a given size
J exists in the graph. Note that,J ¿ |E| here is a constant
independent ofE which implies thatJ remains constant with
respect to an increase in the number of edgesE. Using this
fact we can compute the complexity ofNaive-MCalgorithm
as,

Naive-MC(G, J) ∼= Θ(
J∑

i=1

(|E|
i

)
)

∼= Θ(|E|J), ∀J ¿ |E|

The complexity ofδ-SAA algorithm isO(|E|J), which is
polynomial in |E|.

B. 1-Fair Distance Constrained Spectrum Assignment

The 1-fair distance constrained spectrum assignment is
defined as follows,

Problem 2: 1-fair distance constrained spectrum assign-
ment.

Instance: A spectrum assignment problem instance
(G, δth, 1-fair) such that|E| À J a positive integerT , a set
of positive integers{k1, .., kT }.

Question: Is there a1-fair distance constrained spectrum
assignmentfor G with total number of sub-channels lesser or
equal toT and each sub-channel of sizek? That is, is there
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a spectrum assignment{Et}, with |{Et}| ≤ T and ∀Eti ∈
{Et}, |Eti

| ≥ ki such that all the constraints{δth, 1− fair)}
are satisfied ?

In the following Lemma we show a special class of 1-fair
distance constrained spectrum assignment for which, every
input instance can be represented as a familyF of feasible
transmission sets with the cardinality ofF polynomial in |E|.
In the related corollary we show that the above transformation
can be done in polynomial time.

Lemma 1:Given an instance of 1-fair distance constrained
spectrum assignment problem in a cognitive radio network
with areaA, maximum radiusrmax and distance constraint
δth, the number of feasible transmission sets is polynomial in
|E| if |E| À J .

Proof: Follows from Theorem 1

Corollary 1: Transformationπ:1-fair distance constrained
spectrum assignment→ F can be done in polynomial time
for a given wireless network with areaA, maximum radius
rmax and constraintδth when |E| À J .

Proof: Follows from Theorem 1, using Naive-MC algo-
rithm.

The optimal spectrum assignment{Et} of 1-fair distance con-
strained spectrum assignment is a collection of transmission
sets. SinceF is the set of all feasible transmission sets given
the constraints{1-fairness, δth}, we have{Et} ⊆ F .

Lemma 2: If two sets si, sj ∈ F s.t si ⊂ sj then si 6∈
{Et}, where{Et} is the optimal 1-fair distance constrained
spectrum assignment solution.

Proof: Assumesi ∈ {Et}. This impliessj ∈ {Et}, since
1-fair-δ-CAP outputs sets with maximum cardinality. Since
{Et} is optimal,si 6∈ {Et}, a contradiction.

We can hence represent the familyF by its maximal feasible
setsFmax such that it is not possible to have two setssi, sj

such thatsi ⊂ sj ; and si, sj ∈ Fmax. Note that any
optimal solution onF will be completely contained inFmax.
However the use ofFmax instead ofF may reduce the search
complexity.

Theorem 2:1-fair distance constrained spectrum assign-
ment problemis NP-complete.

Proof: The maximum cardinality of a transmission set in
the familyFmax can be upper bounded byJ (from Lemma 1).
The objective of1-fair distance constrained spectrum assign-
ment will then be to pick a subsetf ⊆ F such that every
edge inE is covered byf . For k = J and{Et} = f , the well
known k-Set Cover problem and1-fair distance constrained
spectrum assignment problemare equivalent (from Lemma 1
and Corollary 1). Hence forJ ≥ 3 this problem is NP
complete and forJ ≤ 2 optimal solutions can be found in
polynomial time using matching techniques [7] [8].

C. Fair Distance Constrained Spectrum Assignment

The fair distance constrained spectrum assignment can be
defined as follows,

Problem 3: fair distance constrained spectrum assignment.

Instance: A spectrum assignment problem instance
(G, {fairness, δth) such that|E| À J a positive integerT ,
a set of positive integersK={k1, .., kT }.

Question:Is there anfair-δ-CAP for G with number of sub-
channels lesser or equal toT and each sub-channel of sizeK?
That is, is there a spectrum assignment{Et}, with |{Et}| ≤ T ,
∀Eti , Etj ∈ {Et}, Eti ∩ Etj = φ with |Eti | ≥ ki such that
all other constraints are satisfied ?

From Lemma 1 and Corollary 1 it follows that every input
instance of fair distance constrained spectrum assignment can
be represented as a familyF of feasible transmission sets in
polynomial time. The objective of fair distance constrained
spectrum assignment is then to find a minimal subcoverf
which has no overlap. This minimal subcoverf will form
the optimal spectrum assignment{Et} satisfying all the con-
straints.

Theorem 3:fair distance constrained spectrum assignment
problem is NP complete.

Proof: For k = J and{Et} = f , the SET COVERING II
problem [7] is equivalent tofair distance constrained spectrum
assignment. Hence, forJ ≥ 3 this problem is NP complete
and forJ ≤ 2 optimal solutions can be found in polynomial
time.

VI. A LGORITHMS TO SOLVE DISTANCE CONSTRAINED

UNFAIR, 1-FAIR AND FAIR CAP

In this section we propose another algorithm calledGen-
Fmax which generates the maximal familyFmax using a
novel tree pruning approach. For any givendistance spectrum
assignment probleminstance,Gen-Fmax constructs the cor-
responding maximal familyFmax.

Algorithm 2 Gen-Fmax

1: i = 1
2: Fi = {{1} {2} ... {|E|}}
3: Fi+1 = Extend-Family(Fi, (C))
4: while Fi+1 6= φ do
5: ∀fi ∈ Fi;Fmax

i = {fi : fi 6⊆
⋃|Fi+1|

k=1 Fi+1(k)}
6: i = i + 1
7: Fi+1 = Extend-Family(Fi, C)
8: end while
9: Fmax =

⋃
i Fmax

i

procedure Fext = Extend-Family(Forig, C)
1: Fext = {φ}
2: for i = 1 : length(Forig) do
3: for j = Forig(i, |Forig(i)|) + 1 : |E| do
4: if Satisfy({Forig(i)j}, C) then
5: Fext = Fext ∪ {Forig(i)j}
6: end if
7: end for
8: end for

Theorem 4:For any given instance ofdistance constrained
spectrum assignment, Algorithm Gen-Fmax constructs a max-
imal family Fmax.

Proof: Follows by induction on
⋃i

1 Fi.
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The following lemma and theorem establish that the proposed
pruning algorithm has polynomial order complexity.

Lemma 3:The probabilityα of co-existence of a pair of
links is 1− πδ2

thr2
max.

Proof: The probability of co-existence of any pair of
links in the network is given by the probability that the
receiving node of the second link is at leastδthrmax apart
from the receiving node of the first link (see Fig. 1). That is,
the probability the second receiving node being outside the
circle with radiusδthrmax centered around the first receiving
node. Clearly, this probability is equal to,α = 1− πδ2

thr2
max.

Theorem 5:The expected number of feasible transmission
sets is upper bounded by(|E| − πδ2R2

maxno)J , whereJ =
4c

πδ2
thr2

max
, rmax = Rmax/

√
A andno is the edge density in the

network.
Proof: The expected number of pairs of links in the

network is α
(
n
2

)
, wheren = |E|. For any transmission set

of cardinalityk with k > 1, the probability of coexistence is
α(k

2). Therefore, the expected number of feasible transmission
sets is given by,

E(|F|) =
J∑

k=2

α(k
2)

(
n

k

)
(7)

=
J∑

k=2

α
k(k−1)

2
n!

(n− k)!k!
(8)

≤
J∑

k=2

αk2
nk (9)

≤
J∑

k=0

(αn)k (10)

(11)

if (αn) > 1, E(|F|) ∼= O( (αn)J+1−1
(αn)−1 )

if (αn) < 1, E(|F|) ∼= O( 1
1−(αn) )

if (αn) = 1, E(|F|) ∼= O(J)
The edge density of the network is given byno = |E|/A.

Hence from the above three cases we see that the upper
bound of E(|F|) is, O( (αn)J+1−1

(αn)−1 ) ∼= O(αn)J = O(|E| −
πδ2R2

maxno)J .
SinceGen-Fmax looks only at the feasible transmission sets,
the running time ofGen-Fmax is O(E(|F|)).

A. Optimal unfair- distance constrained spectrum assignment

An optimal unfair spectrum assignment algorithm is the
following. Choose the set with the largest cardinality inFmax

generated byGen-Fmax. The solution is optimal because,
Gen-Fmax generates the family of all possible large transmis-
sion sets. That is, there cannot be a transmission that is larger
than the all of the transmission sets inFmax and satisfy all
the specified constraints.

When|E| À J this algorithm produces optimal solution for
unfair-CAP and the running time is same as theGen-Fmax

algorithm.

B. Approximate 1-fair distance constrained spectrum assign-
ment

We know that there can be no deterministic algorithm that
solves 1-fair distance constrained spectrum assignment prob-
lem in polynomial time. Heuristic algorithms [7] that solve
minimum cover problem can be used. The input instances
of heuristic algorithms that solve minimum cover problem
should be mapped from instances of{Fmax, E} of 1-fair
distance constrained spectrum assignment and the minimum
cover output instances should be mapped back as spectrum
assignments.

We can use the greedy approximation algorithm discussed
in [9]. This algorithm works in a greedy fashion selecting the
set that covers the maximum number of uncovered elements
in every iteration. The run time complexity of this algorithm is
O(

∑
s∈Fmax |s|). It is shown that this algorithm returns a set

cover that has an approximation ratio bound ofH(max{|s| :
s ∈ Fmax}) over the optimal solution, hereH(d) denotes the
dth harmonic numberH(d) =

∑d
i=1 1/i. From Section V-

A we know that max{|s| : s ∈ Fmax} ≤ J where J is
independent ofE. Hence the approximation ratio of greedy
set cover for this case isH(J).

C. Approximate fair distance constrained spectrum assign-
ment

By Theorem V-C fair distance constrained spectrum assign-
ment problem is NP complete. The greedy heuristic based on
graph coloring [10] can be used directly for theδth = 0
case. However, for distance constrained assignment a slight
modification to the unified algorithm given in [10] generates
fair spectrum assignment satisfying the distance constraints.

VII. S IMULATION RESULTS

Using simulations, we evaluate the performance of the
unfair, 1-fair andfair spectrum assignment algorithms for cog-
nitive radio networks with varying secondary user densities.
The area of the network used in the simulation is100 × 100
square meters. We fixed the distance ratio constraintδth to
3. The maximum transmission range of the network is fixed
to 10 meters. Fig. 2 shows the comparison of the capacities
of unfair, 1-fair and fair spectrum assignment algorithms as a
function of average number of edges in the network. We can
see that as the fairness constraint is relaxed from exact fairness
to unfair the capacity achieved increases. For example, Fig. 2
shows that for a network with80 edges, there is a100% gain
in capacity when the fairness is relaxed from exact fairness to
1-fairness and25% gain when fairness constraint is relaxed
from 1-fairness to unfair.

To study the impact of distance constraintδth on the
capacity of the spectrum assignment, we fix the number of
edges in the network to24 and vary the distance constraint
from 0 to 10. Fig 3 plots the reduction in capacity due to
increase in the distance constraint (δth). Here we can observe
that for smaller distance constraints 1-fair and unfair CAA
perform comparably, however as the distance constraint is
increased 1-fair CAA performs poorly compared to unfair
CAA. We can also observe that exact fair spectrum assignment
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Fig. 2. Performance of unfair, 1-fair, and fair CAA in terms of average
number of links per sub-channel versus the number of edges, in a network
with area100×100 square meters, distance constraintδth = 3 and maximum
range =10 meters.
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Fig. 3. Performance of unfair, 1-fair, and fair CAA in terms of average
number of links per sub-channel versus the distance constraintδth, in a
network with24 edges, area100 × 100 square meters and maximum range
= 10 meters.

quickly converges to the one link per sub-channel worst case
behavior compared to 1-fair and unfair assignments.

We also study the capacity of the assignment for networks
with different maximum transmission range,Rmax. We fix
δth = 3, number of nodes to30 and vary the maximum
allowable transmission range from1 to 20 meters. Fig. 4 plots
the capacity versus increase in the maximum allowable range.
We can observe that the capacities of spectrum assignments
increase up to a point and then decreases. This is because
at lower transmission range, the network has very few edges
and many disconnected nodes. As the transmission range
increases the number of edges and hence the capacity also
increases and reaches the optimum. The decrease in capacity
can be explained by the boundJ wherermax appears in the
denominator.
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Fig. 4. Performance of unfair, 1-fair, and fair CAA in terms of average
number of links per sub-channel versus the maximum range, in a network
with 30 nodes, area100× 100 square meters andδth = 3.

VIII. C ONCLUSIONS

In this paper we systematically studied the spectrum assign-
ment problem in presence of fairness and quality constraints.
We showed that a sub-class of spectrum assignment problems
in the presence of distance constraint can be optimally solved
in polynomial time. We also showed that with fair and 1-
fair constraints the spectrum assignment problem remains
NP complete. A novel tree pruning based spectrum assign-
ment algorithm was presented and applied to solve distance
constrained spectrum allocation in polynomial time. Existing
heuristic algorithms for approximate 1-fair and fair spectrum
assignment were discussed.
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