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Abstract—In this paper we study the complexity of spectrum primary user detection. All the three phases can be managed
assignment problems in cognitive radio networks (CRNs) in eijther by a centralized spectrum server [1], [2] or decentralized

the presence of several constraints. Although optimal spectrum [3], [4] and managed by secondary users in a distributed
assignment for secondary transmissions in CRNs is generally fas,hion

believed to be NP complete, the impact of fairness and link ; ]
quality constraints on the hardness of the problem is not well In this paper, we concentrate on the spectrum allocation

studied. In this paper we show that when a minimum quality phase of spectrum management. We also assume the existence
constraint is imposed on secondary transmissions, the spectrum of 3 centralized spectrum server that allocates secondary users

assignment problem can be solved in polynomial time. However, y,o cqrresponding sub-channels. By sub-channels we mean
such assignments may not guarantee fairness. We also show,

that when fairness is desired, even in the presence of quality frequency bands.. We study the_compIeXIty_of an optlmal
constraints spectrum assignment problems remain NP complete. Spectrum allocation. The allocation of maximum possible
We then propose a tree pruning based algorithm to solve distance secondary transmissions to a given sub-channel is considered
constrained spectrum assignment problem. We also discuss somegs the optimal solution. We identify two distinct constraints
heu'rlstlc techniques to solve falr'dlst.ance constrained spectrum in spectrum assignment: (a) quality constraint (measured by
assignment problems in polynomial time. . . . . . .

signal to interference noise ratio or distance ratio) and (b)

fairness constraint. A formal definition of these constraints are

. INTRODUCTION given in later sections. We note that these constraints impact

the network capacity, connectivity, lifetime and traffic load.

Over the past few years there has been a growing dem . . )
. : e then study the complexity of optimal spectrum assignment
for radio resources and at the same time these resources ar ; .
o . ; . roblem in the presence and absence of these constraints. We
under utilized due to static spectrum allocation techniques.

. SHow that ial cl f trum ignment problem
Dynamic spectrum access (DSA) has been thought of AL at a special class ol spectrum assignment p oblems
. : : can be optimally solved in polynomial time in the presence
a solution that would satisfy both the growing demand for . ; . . .
. 7 o of quality constraint and absence of fairness constraint. This
radio resources and to efficiently utilize the spectrum. The . . .
IS important in the context of cognitive networks as the set

radio devices that have the capability to dynamically Sens?éwailable spectrum bands is highly time varying resulting

the spectrum and access the under utilized bands are calle . .
L . IN fepeated spectrum assignments. Our result shows that in

cognitive radios (CR). There are two broad classes of users : . ; .

. o : . . such scenarios and under link quality constraints, the spectrum

in cognitive radio networks (CRNSs), the primary user is a

licensed user of a particular radio frequency band and tﬁgSlgnment algorithm scales polynomially with respect to the

. o number of secondary users. Next we show that when fairness
secondary users are unlicensed users who cognitively opetaig . : .

: . : . iS desired, the optimal spectrum assignment problem remains
without causing harmful interference to the primary user.

. 2 NP complete. Finally, we discuss heuristic algorithms that run
Dynamic access technology and smart (cognitive) radios | ial ti hi imal its for fai
do not always imply efficient utilization of the spectrumIn Po ynomla_tlme to achieve near optimal results for fair

'?]pectrum assignments.

Smarter protocols need to be developed to empower t he organization of the rest of the paper is as follows, in

new technology and optimize the spectrum utilization. T ection Il we model CRNs using a graphs. We then define the

process of optimizing the spectrum utilization by sharing It . : . . .
. . uality and fairness constraints for spectrum assignment in
among bandwidth hungry secondary users is called spectrdm_. . ) .
) —.Section 1. In Section IV we define the spectrum assignment
management. Spectrum management involves three distinct . . o ;
) . : roblem followed by its complexity analysis in Section V.
phases. The first phase is called spectrum scanning, hgere : . ) : .
. . An algorithm for distance constrained spectrum assignment is
the spectrum is scanned for secondary usage opportunities. : . o . ) .
: ; . _presented in Section VI with simulation results in Section VII.
The second phase is spectrum allocation, here the availablé : : .
o . _Finally, present some conclusions in Section VIII.

spectrum is distributed among secondary users for optima

utilization. The third phase is called spectrum handoff, where
the secondary user hands off its current spectrum band upon a I[l. NETWORK MODEL
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G=(V, E), where the verticed/, represent the secondary users Tx(e,) <R Rux(e)
(nodes) and the edge&;, represent the secondary transmis- me ”
sions (links) between these users. Some of the notations used S
in the rest of the paper are summarized in Table I. RN /’
-~ ’
| 2R S s eR
\% Set of all nodes (vertices of G). Sl Hax
€;,j Link formed when nodé transmits to nodg. \,\'
Note that the existence ef; ; does not implye; ;. h S
E Set of all possible links in the network (edges in G). S A
E; Set of links that are active in sub changWwheret > 0. ’ R
SIR(e;,;,t) Signal to interference ratio of edgeg ; in the sub channel. s & Rxfe.
T Total number of active/available sub-channels. >l +5)Rmax ) (-’)
Si Set of sub-channels assigned to liak .
’
TABLE | /

NOTATIONS USED

Tx(ey)

Fig. 1. Pairwise distance constraints between two given linkande; in

a wireless network, with distance ratio constraintjof
Ill. SPECTRUMASSIGNMENTCONSTRAINTS

A. SINR constraint
o ) o C. Fairness
To assure a minimum quality at each receiver in the network,

we define a constraint on the signal to interference plusDepending on how many sub-channels each link is assigned
noise ratio (SINR). The SINR constraint simply says thd@, spectrum assignment can be classified as unfair, 1-fair and
the assignment should guarantee a desired minimum SIK&R. A spectrum assignment is called unfair if there is at least
requirement (say,) for all the links assigned in all of its sub-one link that is not assigned to any of the sub-channels. This
channels. While the optimal assignment of links to satisfy thigads to the following definition.
constraint requires the consideration of the “physical model” Definition 1: let S; be the set of sub-channels assigned to
of the system, a simplified analysis can be carried out witimk e;, then.sS; is represented as,
a conservative approach leading to the so called “protocol
model” [5]. We now define the SINR constraint in the physical
model which is then simplified to distance constraint in the
protocol model.

Let E; be the set of all links assigned to the sub channel
t, then under the physical model the scheduling/assignment is Jie{l, ., |El} st ]S =0 4)
said to satisfy the minimum SINR constraint if, Under such a spectrum assignment the node degree will
reduce and the connectivity of the graph may be lost, thus
making routing between some source destination pairs impos-
sible. Nevertheless, a network that prefers “maximum overall
throughput” regardless of fairness may adopt an unfair policy.
_ ) In order to preserve the connectivity of the underlying
B. Distance constraint communication graph, we need every link to be assigned to

While the physical model simply states the constraint, tf l€ast one sub channel. This gives rise to the following
protocol model discussed below provides a simplified meth&&finition of 1-fairness.
to impose the constraint. Definition 2: A spectrum assignment is said to satisfy the
If link e; is assigned sub-channe(Fig. 1)i.e, e; € E,, 1-faimess constraint if,
then it is said to satisfy the minimudistance ratio constraint
[5], if Vej € Ey — e,

S; = {t,ei € E; Vt e {1, ,T}} (3)

An assignment is said to be unfair if

S|NR81‘]‘,LL) > %;L,Vt S {1, ..,T}, Ve,»j e E; (1)

|Si| > 1, Vie{l,.,|E|} (5)

Although 1-fair assignment preserves the connectivity of the
(2) graph it can be biased. Some of the links could be assigned

more sub channels. Hence, when every link is assigned to
where Rn.x IS the maximum transmission radius in theexactly same number of sub channels, such an assignment
network,T'z(e;) denotes the transmitter of link and Rxz(e;) achieves fairness.
is the receiver of linke;. That is, the distance between the Definition 3: A spectrum assignment is said to be fair if,
receiver of the given link and the transmitters of other active
links sharing the same sub chanmneshould be larger by a
factor of1+6;, compared to the maximum transmission radius
of the network. whered > 1 is a constant.

d(Tx(e;), Ra(ei)) = (1 + bin) Rmax,

1Si] = d, ¥i € {1,...|E]} (6)



IV. SPECTRUMASSIGNMENTPROBLEMS Algorithm 1 §-SAA

Definition 4: A spectrum assignment problem is reprelMPUt: (G, din), rmax, t. .
sented as a two-tuples, C), whereG is a graph representing OUtPut: E;, set of links assigned to the sub-channel
the cognitive network andC is the set of constraints (i.e.
distance and fairness). 1LJ= ﬁ
tiv;’ge spectrum assignment algorithms have two basic objecz-: it |2 > J then
o . . 3 H(V, < G(E)
o maximize the number of links in every sub-channel L
o . . 4. forv;,=1:V,do
(maximized total link capacity), 5. for vi—=1:V. do
« minimize the total number of sub-channels used subjec} it JEdgeév»aand v; in G are not mutually con-
: : i 5
to all the constraints. . strained by the distance constrai}, then
The sub-channels we consider are unused/undersued frequengcy H(E,) — H(E,) U (vs,v;)
bands in the spectrum. Depending on faimess and distange ¢ “ v

_ _ _ end if
constraints we classify spectrum assignment problems 3s end for
distance constrained spectrum assignment (may be unfa'ar', end for

distance constrained fair assignment and distance constrairﬁd

i i M X Ii 7’L('7E77lc N iv -M H’
1-fair assignment. axClique(Vy,,c, Ernc) « Naive-MQH, J)

12.  E; «— MaxCliqueV,,.)

V. COMPLEXITY OF SPECTRUMASSIGNMENTPROBLEMS > end if

In this section we analyze the complexity of the three

spectrum assignment problems. Note that all these prome@?)%strained by the distance constraint do not have an edge
belong to the class NP [6] in general. However, here

fi H between the corresponding vertices. The complexity of
analyze the complexity of special cases of each of the b g prextty

T §8neratingH is ©(|E|?), which is polynomial inE. As none
problems when applied in the context of CRNs. of the vertices in any complete subgraph éfare mutually

. ) . constrained by any of the constraints specifieddhy, they
A. Distance Constrained Spectrum Assignment all can be scheduled in the same sub-channel. This makes
The distance constrained spectrum assignment problem egary complete subgraph &f a transmission set (set of links
be stated as follows. that can be assigned the same sub channefy.dflence the
Problem 1: Distance constrained spectrum assignment optimal spectrum assignment under no fairness constraint is to
Given a spectrum assignment problem instaf€e{d:»}), determine the maximum clique &f. The decision version of
sub channet and a positive integek, is there a solution of this problem is to determine whether a clique of a given size
sizek i.e., is there a subséf; C £ with |E;| > k such that J exists in the graph. Note thdt,< |E| here is a constant
o, is satisfied? independent oz which implies that/ remains constant with
respect to an increase in the number of edfedJsing this

To determine the complexity of solving this problem, weact we can compute the complexity blaive-MC algorithm
explore the implication of distance constraint on NP congs,

pleteness of the spectrum assignment problem. Our first step ;
in th|s direction is to arrive at an upper boupd on the nump_er Naive-MQG, J) = @(Z <|E|))
of simultaneous transmissions that are possible for a cognitive

radio network spread over a geographical areavith dis-
tance constraind;;, and maximum transmission radiug,, .
(derived from the maximum transmit power). It can be shown
by following the work in [5] that under the protocol model
the number of simultaneous transmissions, dayis upper
bounded byms;*j2 , Where0 < ¢ < 1 is a suitable constant

th' max

and rp.x = R%/%x is the normalized maximum transmission
- B
radius.
Theorem 1:For a given distance constrai;,, radius The 1-fair distance constrained spectrum assignment is
rmax, and aread of the wireless network, the unfair spectrundlefined as follows,
assignment problem can be solved in polynomial time, if Problem 2: 1-fair distance constrained spectrum assign-
|E| > J. ment
Proof: To show that this problem is polynomial time Instance: A spectrum assignment problem instance
solvable, we propose a distance constrained spectrum assigh-d;p, 1-fair) such that|E| > J a positive integefl’, a set
ment algorithmd-SAAthat solves every instance of the giverof positive integers{ky, .., kr}.
problem and prove that the algorithm runs in polynomial time. Question:Is there al-fair distance constrained spectrum
Note that in Alg. 1 the graptl = (V,, E,), vertices ofH  assignmenfor G with total number of sub-channels lesser or
represent edges &f and any two edges a@F that are mutually equal to7" and each sub-channel of siz€ That is, is there

1
@
%]
<
N
A
&

The complexity of-SAAalgorithm is O(|E|”), which is
polynomial in|E)|. [ |

. 1-Fair Distance Constrained Spectrum Assignment



a spectrum assignmeftt; }, with |{E:}| < T andVE;, € Instance: A spectrum assignment problem instance
{E:}, |E,| > k; such that all the constrain{®;, 1 — fair)} (G, {fairnessd;,) such that|E| > J a positive integelT,
are satisfied ? a set of positive integer& ={k1, .., kr}.

Question:ls there arfair-6-CAP for G with number of sub-

In the following Lemma we show a special class of 1-faichannels lesser or equalToand each sub-channel of SiA&?
distance constrained spectrum assignment for which, evéiyatis, is there a spectrum assignméht }, with [{E,}| < T,
input instance can be represented as a failpf feasible VE: ,E;, € {E:}, E;, N Ey, = ¢ with |Ey,| > k; such that
transmission sets with the cardinality #f polynomial in|E|. all other constraints are satisfied ?

In the related corollary we show that the above transformation
can be done in polynomial time. From Lemma 1 and Corollary 1 it follows that every input

Lemma 1:Given an instance of 1-fair distance (:onstraineial stance of fair distance qonstraine_d spectrum_ as_signmen_t can
oﬂ? represented as a family of feasible transmission sets in
tpolynomial time. The objective of fair distance constrained
spectrum assignment is then to find a minimal subcaower
which has no overlap. This minimal subcovérwill form
the optimal spectrum assignmefif, } satisfying all the con-
straints.

Corollary 1: Transformations:1-fair distance constrained Theorem 3:fair distance constrained spectrum assignment
spectrum assignment: 7 can be done in polynomial time problemis NP complete.
for a given wireless network with ared, maximum radius Proof: Fork =.J and{E,} = f, the SET COVERING Il
Tmax and constraint;, when|E| > J. problem [7] is equivalent téair distance constrained spectrum

Proof: Follows from Theorem 1, using Naive-MC algo-assignmentHence, for.J > 3 this problem is NP complete
rithm. B and forJ < 2 optimal solutions can be found in polynomial

with area A, maximum radiusr,,,x and distance constrain
0tn, the number of feasible transmission sets is polynomial
|E| if |E] > J.

Proof: Follows from Theorem 1

The optimal spectrum assignmefit; } of 1-fair distance con- time. .
strained spectrum assignment is a collection of transmission
sets. SinceF is the set of all feasible transmission sets given VI. ALGORITHMS TO SOLVE DISTANCE CONSTRAINED
the constraintg 1-fairnessd;;, }, we have{E;} C F. UNFAIR, 1-FAIR AND FAIR CAP

Lemma 2:1f two Setss,,s; € F s.t s; C s; thens; ¢ In this §ection we propose an(_)ther alggrithm cal@dn-
(E,}, where {E,) is the optimal 1-fair distance constrained’ . which generates the maximal familf™** using a
spectrum assignment solution. nov_el tree pruning a_lpproach. For any givéistance spectrum

Proof: Assumes; € {E,}. This impliess; € {£,}, since aSS|gnm_ent prot?lemstance,Gen-]:maX constructs the cor-

1-fair--CAP outputs sets with maximum cardinality. Sincdesponding maximal family=e.
{E.} is optimal, s; ¢ {E.}, a contradiction.

Algorithm 2 Gen-Fma*
We can hence represent the famfyby its maximal feasible —.; —

setsF™** such that it is not possible to have two sefs s; o F, = {{1} {2} ... {|E|}}
such thats; C s;; and s;, s; € F™*. Note that any 3 p. ., — Extend-FamilyF;, (C))
optimal solution on#” will be completely contained itF™**. 4. while Fj,; +# ¢ do
However the use of™** instead of7 may reduce the search ¢ Vf; € Fy Fmoe = {f; f; ¢ U\;ﬁll Fip1(k)}
complexity. 60 i—i+1 -
Theorem 2:1-fair distance constrained spectrum assign-7:  Fiy1 = Extend-FamilyF;, C)
ment probleris NP-complete. 8: end while

Proof: The maximum cardinality of a transmission set in 9: F™* = J, F;"**
the family 7% can be upper bounded by(from Lemma 1). procedure F,,; = Extend-FamilyF,,,,C)
The objective ofl-fair distance constrained spectrum assign-;. r,_, = {¢}
mentwill then be to pick a subsef C F such that every 5. for ;=1 : length(F,.iy) do
edge inF is covered byf. Fork = J and{E;} = f,the well 5. for j = F,, (i, | Foriy(i)]) + 1 : | E| do
known k-Set Cover problem and-fair distance constrained ' '

4 if Satisfy({Forig(i)7},C) then
spectrum assignment problesme equivalent (from Lemma 1 5. Fopt = Fopt U{Fopig(i)j}
and Corollary 1). Hence for/ > 3 this problem is NP . end if
complete and for/ < 2 optimal solutions can be found in 7. end for
polynomial time using matching techniques [7] [8]. B 3 end for
C. Fair Distance Constrained Spectrum Assignment Theorem 4:For any given instance afistance constrained
The fair distance constrained spectrum assignment candpectrum assignmentlgorithm Gen-F™2* constructs a max-
defined as follows, imal family Fme®,

Problem 3: fair distance constrained spectrum assignment  Proof: Follows by induction orUi Fi. ]



The following lemma and theorem establish that the proposBd Approximate 1-fair distance constrained spectrum assign-

pruning algorithm has polynomial order complexity. ment
_Lemma 3:The probabilitya of co-existence of a pair of - we know that there can be no deterministic algorithm that
links is 1 — 63, 1 ax- solves 1-fair distance constrained spectrum assignment prob-

Proof: The probability of co-existence of any pair oflem in polynomial time. Heuristic algorithms [7] that solve
links in the network is given by the probability that theminimum cover problem can be used. The input instances
receiving node of the second link is at le@s}rmax apart of heuristic algorithms that solve minimum cover problem
from the receiving node of the first link (see Fig. 1). That isshould be mapped from instances pF™*, E} of 1-fair
the probability the second receiving node being outside tAgstance constrained spectrum assignment and the minimum

circle with radiusé;,rmax centered around the first receivingcover output instances should be mapped back as spectrum
node. Clearly, this probability is equal to,= 1 — 762, r2 assignments.

max"*

u We can use the greedy approximation algorithm discussed
Theorem 5:The expected number of feasible transmissian [9]. This algorithm works in a greedy fashion selecting the

sets is upper bounded WyE| — m62R2, . n,)’, whereJ = set that covers the maximum number of uncovered elements
77553# Tmax = Rmax/VA andn, is the edge density in the in every iteration. The run time complexity of this algorithm is
network. O(3 s pmax |8]). It is shown that this algorithm returns a set

Proof: The expected number of pairs of links in thecover that has an approximation ratio boundffmax{|s| :
network isa(%), wheren = |E|. For any transmission sets € F™#*}) over the optimal solution, her# (d) denotes the
of cardinality & with k > 1, the probability of coexistence is d'* harmonic numberH (d) = Zle 1/i. From Section V-
a(3), Therefore, the expected number of feasible transmissidnwe know thatmaz{|s| : s € F™>} < J where J is
sets is given by, independent ofE. Hence the approximation ratio of greedy

set cover for this case iH(J).

J
E(F) = 3 al) () 7
(7D kz:;a k " C. Approximate fair distance constrained spectrum assign-
J | ment
k(k— . . . . .
= Z o % (8) By Theorem V-C fair distance constrained spectrum assign-
k=2 (n — k)lk! ment problem is NP complete. The greedy heuristic based on
J 2k graph coloring [10] can be used directly for thg, = 0
< Za n (9) case. However, for distance constrained assignment a slight
k=2 modification to the unified algorithm given in [10] generates
J fair spectrum assignment satisfying the distance constraints.
< Y (an)* ao " ’ e
k=0 1) VIl. SIMULATION RESULTS
Using simulations, we evaluate the performance of the
J41 . . . . .
(o) > 1, E(71) = O( o= v radio netvorks wilh varying secondany user donsides
if (an) < 1, E(|F]) = O(3=(5) ying y :

. The area of the network used in the simulation@® x 100
f =1, F = ) . : .
it (an) (I71) = O0(J) square meters. We fixed the distance ratio constrgintto

The edge density of the network is given hy = |E|/A. ; o o
3. The maximum transmission range of the network is fixed
Hence from the above three cases we see that the uppe . . o
0 10 meters. Fig. 2 shows the comparison of the capacities

H an)? T — ~
bound of E(|F]) is, O(((a)nfll) = Ofan)” = O(|E| - of unfair, 1-fair and fair spectrum assignment algorithms as a
T6° Ry ax0)” B function of average number of edges in the network. We can
SinceGen-F"** looks only at the feasible transmission setsee that as the fairness constraint is relaxed from exact fairness
the running time ofGen-F"** is O(E(|F])). to unfair the capacity achieved increases. For example, Fig. 2

shows that for a network witB0 edges, there is 800% gain
capacity when the fairness is relaxed from exact fairness to
airness and5% gain when fairness constraint is relaxed
An optimal unfair spectrum assignment algorithm is throm 1-fairness to unfair.
following. Choose the set with the largest cardinalityAfia* To study the impact of distance constraifyy, on the
generated byGen-F™**. The solution is optimal becausecapacity of the spectrum assignment, we fix the number of
Gen-F™** generates the family of all possible large transmigdges in the network tG4 and vary the distance constraint
sion sets. That is, there cannot be a transmission that is larffem 0 to 10. Fig 3 plots the reduction in capacity due to
than the all of the transmission sets #i"** and satisfy all increase in the distance constraifig,j. Here we can observe
the specified constraints. that for smaller distance constraints 1-fair and unfair CAA
When|E| > J this algorithm produces optimal solution forperform comparably, however as the distance constraint is
unfair-CAP and the running time is same as tben-F™** increased 1-fair CAA performs poorly compared to unfair
algorithm. CAA. We can also observe that exact fair spectrum assignment

. - . . in
A. Optimal unfair- distance constrained spectrum assignmet



—4— Unfair—-CAA
1-Fair-CAA
—— Fair-CAA |

[2)
T

w » (&)
T T T
L L L

Capacity (links/sub—channel)
N

0 20 40 60 80 100 120 140
Average Number of Links

—4— Unfair—-CAA
1-Fair-CAA ||
—— Fair—-CAA

3.5

N
3
T

=
3
T

Capacity (links/sub—channel)
N

0 5 10 15 20
R __ (meters)
max

Fig. 2. Performance of unfair, 1-fair, and fair CAA in terms of averag€&ig. 4. Performance of unfair, 1-fair, and fair CAA in terms of average
number of links per sub-channel versus the number of edges, in a netwotknber of links per sub-channel versus the maximum range, in a network

with areal00 x 100 square meters, distance constrait = 3 and maximum
range =10 meters.

—A— Unfair-CAA
1-Fair-CAA
6l —— Fair—-CAA
T
c
3
<5 1
[&)
&
>
2]
g4 :
£
>
Ag 3t ]
Q.
S
o
2, 4
0 5 10 15 20

Distance Ratio Constraint (éth)

with 30 nodes, ared00 x 100 square meters andl; = 3.

VIII. CONCLUSIONS

In this paper we systematically studied the spectrum assign-
ment problem in presence of fairness and quality constraints.
We showed that a sub-class of spectrum assignment problems
in the presence of distance constraint can be optimally solved
in polynomial time. We also showed that with fair and 1-
fair constraints the spectrum assignment problem remains
NP complete. A novel tree pruning based spectrum assign-
ment algorithm was presented and applied to solve distance
constrained spectrum allocation in polynomial time. Existing
heuristic algorithms for approximate 1-fair and fair spectrum
assignment were discussed.
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