
1

Discrete Lyapunov Exponent and Differential
Cryptanalysis

G. Jakimoski and K. P. Subbalakshmi

Abstract—Partly motivated by the developments in chaos-
based block cipher design, a definition of the discrete Lya-
punov exponent for an arbitrary permutation of a finite lat-
tice was recently proposed. We explore the relation between
the discrete Lyapunov exponent and the maximum differen-
tial probability of a bijective mapping (i.e., an S-box or the
mapping defined by a block cipher). Our analysis shows
that “good” encryption transformations have discrete Lya-
punov exponents close to the discrete Lyapunov exponent
of a mapping that has a perfect nonlinearity. The converse
does not hold.
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I. Introduction

Rigorously speaking, there is no chaos in a discrete phase
space, and some of the chaotic properties are “lost” when
the chaotic systems are studied using computer calcula-
tions. For instance, the aperiodicity of trajectories can not
be captured by a computer model of the dynamical sys-
tem, and the digital computers are incapable of showing
the true long-time dynamics of some chaotic systems [1],
[2]. However, due to the complexity of the studied phenom-
ena, digital systems and computers have been often used
in dynamical systems analysis, and vice versa, the chaotic
behavior of digital systems and the applications of chaos
in digital systems have been heavily addressed in the past
years (e.g., [2—12]). Some of these applications of chaos
such as compression, coding and encryption were recently
used as a motivation to introduce the notion of discrete
Lyapunov exponent [14]. In the case of a one-dimensional
bijection F : ZM → ZM , ZM = {0, . . . , M−1}, the discrete
Lyapunov exponent is defined as

λF =
1

M

M−1
∑

i=0

ln |F (ci) − F (i)| (1)

where ci is i + 1 if i is less than M − 1, and cM−1 = M − 2
(i.e., ci is the neighbor of i). Analogous to its continuous
counterpart, the discrete Lyapunov exponent tells us how
far apart two neighboring points will get after one iteration
of the map.

The authors are with the Department of Electrical and Com-
puter Engineering, Burchard 212, Stevens Institute of Technology,
Hoboken, NJ 07030, USA, e-mail: goce.jakimoski@stevens.edu,

ksubbala@stevens.edu.
This work was supported in part by the National Science Founda-

tion under the grant NSF 0627688.
Copyright (c) 2007 IEEE. Personal use of this material is per-

mitted. However, permission to use this material for any other
purposes must be obtained from the IEEE by sending an email to
pubs-permissions@ieee.org.

Differential cryptanalysis [15] is a general method of at-
tacking block encryption algorithms. It exploits the pre-
dictability of the propagation of a chosen plaintext differ-
ence. The complexity of a differential cryptanalysis attack
is determined by the maximum differential probability: the
higher the maximum differential probability the lower the
complexity of the attack. In the case of a one-dimensional
bijection F : ZM → ZM , the maximum differential proba-
bility is defined as:

DPF = max
∆x6=0,∆y

#{x ∈ ZM |F (x + ∆x) − F (x) = ∆y}

M
(2)

where ‘+’ is addition modulo M , and ‘−’ is addition with
the inverse element.

We characterize the discrete Lyapunov exponent in terms
of the maximum differential probability of a given map F .
That is, we derive a lower bound and an upper bound on
the discrete Lyapunov exponent of the map F given the
size of the domain and the maximum differential proba-
bility of the map. We can use these bounds to identify a
region where the discrete Lyapunov exponent of an encryp-
tion transformation with a given domain size M and good
maximum differential probability (close to 2/M) should be-
long.

The paper is organized as follows. In Section II, we de-
rive a lower and upper bounds on the discrete Lyapunov
exponent given the size of the domain and the maximum
differential probability of the map. The security implica-
tions of the derived bounds are discussed in Section III.
The paper ends with concluding remarks.

II. DP characterization of the discrete

Lyapunov exponent

Both, the maximum differential probability and the Lya-
punov exponent are defined by the distribution of the out-
put difference of a given map. While the discrete Lyapunov
exponent is defined by the distribution of the output dif-
ference when the input difference is one, the maximum dif-
ferential probability is a more general characteristic of the
map, and it is defined by the distribution of the output
difference for every non-zero input difference. We used this
observation to provide the following bounds on the discrete
Lyapunov exponent given the parameter M and the maxi-
mum differential probability DP.

Theorem 1: Let F : ZM → ZM (ZM = {0, 1, . . . , M −
1}) be a bijection with maximum differential probability
DPF ≤ 1

2 . The following inequality holds for the discrete
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Lyapunov exponent λF of the map F :

ρ ln(b1/ρc!) ≤ λF ≤ ρ ln
(M − 1)!

(M − d1/ρe − 1)!
+

1

M
ln(M − 1)

where ρ = 2DPF .
Proof: We can rewrite the discrete Lyapunov expo-

nent sum as

λF =
1

M

M−1
∑

∆y=1

n∆y ln ∆y +
1

M
ln |F (M − 2) − F (M − 1)|

where n∆y = #{x ∈ ZM \ {M − 1}|∆y = |F (cx) − F (x)|}
is the number of occurrences of the output difference ∆y
(excluding the case x = M−1). The number of occurrences
n∆y of any difference ∆y is upper bounded by

n∆y = #{x ∈ ZM \ {M − 1}|F (cx) − F (x) = ∆y}
+ #{x ∈ ZM \ {M − 1}|F (cx) − F (x) = −∆y}
≤ 2DPF M = ρM.

Note that the sum
∑M−1

∆y=1 n∆y is equal to M − 1 and
constant for a given map. Hence, the discrete Lyapunov
exponent is maximal when the number of occurrences of
the largest differences is maximal. Similarly, the discrete
Lyapunov exponent is minimal when the number of occur-
rences of the smallest differences is maximal. So, using the
inequality

|F (M − 2) − F (M − 1)| ≤ M − 1,

and the fact that the number of occurrences n∆y is at most
ρM = bρMc = dρMe, we get

λF ≤ 1
M

∑M−1
∆y=M−d1/ρe ρM ln ∆y + 1

M ln(M − 1)

≤ ρ ln (M−1)!
(M−d1/ρe−1)! + 1

M ln(M − 1)

and

λF ≥
1

M

b1/ρc
∑

∆y=1

ρM ln ∆y ≥ ρ ln(b1/ρc!).

The term 1/M ln(M−1) in the upper bound is a result of
the different definition of the neighbor of M − 1 compared
to the rest of the points. This term approaches zero when
M goes to infinity, and often can be ignored for large values
of M . For example, if we analyze a block cipher with block
size 128, then the value of 1/M ln(M−1) is ≈ 0.69×2−121.

III. Security implications of the discrete

Lyapunov exponent

The minimum achievable maximum differential proba-
bility of a given map F : ZM → ZM is DPopt = 2/M since
there are M elements in ZM and M − 1 possible output
differences. To simplify our analysis, we assume that M is
a multiple of four1. In that case, we have

⌊

1

2DPopt

⌋

=

⌈

1

2DPopt

⌉

=
1

2DPopt
=

M

4
. (3)

1Block ciphers operate on bit strings. So, the cardinality of the
domains of the maps in use are powers of two.
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Fig. 1. The range of the discrete Lyapunov exponents of maps with
optimal maximum differential probability. The lower and the upper
bound of relation (4) tightly bound the discrete Lyapunov exponent
of the perfect non-linear maps too.

Using the bounds derived in the previous section, we see
that the discrete Lyapunov exponent for an optimal encryp-

tion mapping is in the following region

4

M
ln

(

M

4
!

)

≤ λF ≤
4

M
ln

(M − 1)!

( 3M
4 − 1)!

+
1

M
ln(M−1). (4)

Having an optimal maximum differential probability im-
plies that for any non-zero input difference, the distribution
of the output difference is close to uniform. A related con-
cept, perfect nonlinearity, was defined in [14]. The map F
has perfect nonlinearity if the differences |F (i + 1)−F (i)|,
i = 0, 1, . . . , M − 2 take all possible values 1, 2, . . . , M − 1.
The discrete Lyapunov exponent of a perfectly nonlinear
map is

λFnon
=

1

M
ln(M−1)!+

1

M
ln |F (M−1)−F (M−2)|. (5)

Using Stirling’s formula2, it is not hard to see that for
large M the lower and the upper bound in (4) are approxi-
mately ln(M/e)−1.38 and ln(M/e)+1.86 respectively, and
the discrete Lyapunov of a perfectly nonlinear map is ap-
proximately ln(M/e). In other words, the good encryption
mappings have discrete Lyapunov exponents close to the
discrete Lyapunov exponent of a perfectly nonlinear map
as depicted in Figure 1. We can use this fact as a security
test. Assume that F is the bijection defined by the block
encryption algorithm for a given key. If one can determine
the discrete Lyapunov exponent (see [16]), and the value
of the discrete Lyapunov exponent is not close to the value
of the discrete Lyapunov exponent of a perfectly nonlin-
ear map, then there exist a differential whose probability
is larger than 2/M .

The next question that naturally comes up is whether
a discrete Lyapunov exponent that is close to the discrete
Lyapunov exponent of a perfectly nonlinear map implies
good maximum differential probability. The answer is no.

2Stirling’s formula n! ≈
√

2πn

`

n

e

´

n

is a well known formula that
approximates n! for large n.
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We demonstrate this using the perfectly nonlinear map
given in [14]:

Fnon(x) =

{

k, if x = 2k; k = 0, . . . , m − 1
M − 1 − k, if x = 2k + 1; k = 0, . . . , m − 1

where M = 2m. The discrete Lyapunov exponent of this
map is λFnon

= 1
M ln(M − 1)! as pointed out in [14]. How-

ever, it is not hard to see that if the input difference
is two, then the output difference is one (or minus one)
in m − 1 cases leading to a high differential probability
DPFnon

≥ (m − 1)/M ≈ 1/2.
We end this section with the following generalization of

our observation regarding the discrete Lyapunov exponent
of maps with optimal maximal differential probability.

Corollary 1: Let F : ZM → ZM , where M = 2m, be
a bijection with maximum differential probability DPF ≤
2d

2m ≪ 1. The following inequality holds for the discrete
Lyapunov exponent λF of F

(m − d) ln 2 − (1 + ln 2) / λF ≤ m ln 2.
Proof: The upper bound follows trivially from the def-

inition of discrete Lyapunov exponent. The lower bound
is derived by replacing ρ with 2d+1−m in the inequality of
Theorem 1, and then using Stirling’s formula to simplify
the expression. The simplified expression is a good ap-
proximation even for relatively small values of m− d (e.g.,
m − d = 5 or 6.).

The previous result implies the following: if the discrete
Lyapunov exponent of a given map is (significantly) lower
than (m−d) ln 2, then the maximum differential probability
of the map is greater than 2−(m−d). It is easy to show that
the converse does not hold (e.g., using the aforementioned
perfectly non-linear map of [14]).

IV. Conclusion

We derive a relation between the maximum differential
probability and the discrete Lyapunov exponent of a bi-
jection. One can use this relation to determine, in some
cases, whether a given block cipher is resistant to differen-
tial cryptanalysis or not.
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