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ABSTRACT
This paper presents a novel steganalysis technique to at-
tack quantization index modulation (QIM) steganography.
Our method is based on the observation that QIM embed-
ding disturbs neighborhood correlation in the transform do-
main. We estimate the probability density function (pdf) of
this statistical change in a systematic manner using a kernel
density estimate (KDE) method. The estimated paramet-
ric density model is then used for stego message detection.
The impact of the choice of kernels on the estimated den-
sity is investigated experimentally. Simulation results eval-
uated on a large dataset of 6000 quantized images indicate
that the proposed method is reliable. The impact of the
choice of message embedding parameters on the accuracy
of the steganalysis detection is also evaluated. Simulation
results show that the proposed method can distinguish be-
tween the quantized-cover and the QIM-stego with low false
alarm rates (i.e. Pfn ≤ 0.03 and Pfp ≤ 0.19). We demon-
strate that the proposed steganalysis scheme can successfully
attack steganographic tools like Jsteg and JP Hide and Seek
as well.

Keywords
Steganography, Steganalysis, Quantization Index Modula-
tion, Parameteric Estimation, Kernel Density Estimation,
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1. INTRODUCTION
A steganographic information embedding process encodes

a message into the cover-object so that the resulting stego-
object is perceptually and statistically similar to the cover-
object. Rapid proliferation of digital media and the high
degree of redundancy in digital representation (despite com-
pression) are some of the motivations for using multimedia
data as cover-objects for steganographic applications. There
are more than 100 stego softwares available on the Internet
ranging from freeware to sophisticated commercial products.
Many of the existing stego softwares use least significant bit
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(LSB) steganography for message embedding. Researchers
in the steganographic community have also developed com-
plex and more sophisticated steganographic techniques that
are robust to active warden and/or statistical attacks. For
example, quantization index modulation (QIM) based data
hiding [6] provides flexible trade-off among robustness, ca-
pacity, and security of the hidden message. Costa’s seminal
work [7] provides the theoretical basis of QIM data hiding
where the theoretical capacity of the communication with
side information over a Gaussian channel was derived. The
ideal Costa scheme (ICS) gives a theoretical upper bound
on the data hiding capacity under additive white Gaus-
sian noise (AWGN) attack. However, infinite length ran-
dom codebook requirement makes ICS impractical [9]. A
few practical realizations of ICS include, QIM, scalar Costa
scheme (SCS), dither modulation (DM)[9], and quantization
projection (QP) [13].

Steganalysis refers to the analysis of a given multimedia
data (e.g. image, video, audio etc) for the presence of the
hidden message with limited or no access to information
regarding the embedding algorithm used. Steganalysis tech-
niques may be classified into passive or active depending on
whether the aim is to detect the presence or the absence of
the hidden message only or to extract the hidden message
itself. To date, there appears to have been limited investi-
gation of issues related to steganalysis of QIM steganogra-
phy. Guillon et al [10] proposed a framework for steganal-
ysis of SCS by modeling QIM steganography as an addi-
tive noise channel. Sullivan et al [16] proposed a steganal-
ysis scheme for QIM steganography using supervised learn-
ing techniques. Detection performance of machine learning
based schemes are limited by several factors. For example,
detecting zero-day attack [1], i.e. detecting a stego algo-
rithm not used during the training phase, is not possible.
Also, learning based techniques require separate classifier
training for each steganographic algorithm. Furthermore,
the detection performance depends on the selection of fea-
tures used to train the classifier and there is no systematic
rule for feature selection to achieve desired detection perfor-
mance [5]. Hence, a steganalyst has limited control on the
achievable detector performance.

In this paper we propose a steganalysis technique that
does not use a learning based approach. We assume a stego-
only attack model, that is, the steganalyst have access to
the stego image and the message embedding algorithm only.
Although we consider the specific example of image ste-
ganalysis, even though the proposed method is applicable
to other types of data as well. We observe that QIM em-



bedding disturbs neighborhood correlation in the transform
domain. We estimate the probability density function (pdf)
of this statistical change in a systematic manner using a ker-
nel density estimate (KDE) method. The estimated para-
metric density model is then used for stego message detec-
tion. Impact of the choice of kernels on the estimated den-
sity is investigated. Simulation results evaluated on a large
dataset of 6000 quantized images indicates that the proposed
method is reliable. Impact of the choice of message embed-
ding parameters on the steganalysis detection accuracy is
also evaluated.

The paper is organized as follows: Section 2 highlights
irregularities that QIM steganography introduces in the re-
sulting QIM-stego. Details of the randomness mask estima-
tion from the test-image are provided in Section 3.1; a brief
overview of kernel density estimation is provided in Section
3.2. Details of nonparametric density estimation from the
estimated randomness mask using KDE along with detector
design based on the estimated density are provided in Sec-
tion 3.3. Detection performance of the proposed steganalysis
scheme based on the simulation results is discussed in Sec-
tion 5.1. Future directions and concluding remarks are given
in Section 6.

2. QIM STEGANOGRAPHY–SOME OBSERVA-

TIONS

A key issue in QIM steganalysis is to the decide if a given
test-image is quantized-only (xq) or quantized with message
embedding (xQIM ). Some of the experimental observations
on the difference between the QIM-stego and quantized-only
images are noted below. Firstly, we note that the quanti-
zation (with and without message embedding) introduces
smoothness in the pmf of the resulting quantized image.
In order to illustrate this claim, empirical probability mass
function(pmf ) of DCT coefficients of the cover and the corre-
sponding QIM-stego obtained using quantization step-size,
∆ = {0.5, 4, 8} are plotted in Fig. 1. It can be observed
from Fig. 1 that as ∆ increases the empirical pmf of the re-
sulting QIM-stego changes from a super-Gaussian like pmf
(e.g. Laplacian pmf ) to a more Gaussian like pmf. Secondly,
quantization step-size, ∆, controls the amount of smooth-
ness introduced in the pmf of the resulting QIM-stego.
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Figure 1: Empirical pmf based on histogram of
DCT coefficients of the cover (top-left) and quan-
tized DCT coefficients of QIM-stego obtained with
∆ = {0.5, 4, 8}

Finally, for quantization with message embedding intro-
duces more smoothness than the plain-quantization. To in-
vestigate smoothing effect on the cover pmf due to quan-
tization further, the empirical pmf of the quantized-cover
and the QIM-stego are plotted in Fig. 2. It can be ob-
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Figure 2: Empirical pmf of the quantized-cover
(left) and the corresponding QIM-stego (right) both
obtained with ∆ = {0.5, 4}

served from Fig. 2 that for same ∆, the QIM introduces
more smoothness than the plain-quantization. Moreover,
for large ∆, i.e. ∆ ≥ 4, message embedding using QIM
splits the peak of cover pmf around zero into three peaks
(say p−∆, p0, p∆ around −∆, 0, ∆ respectively), which can
be used to distinguish between the quantized-cover and the
QIM-stego. However, such visual attack will fail especially
when smaller ∆ is used for message embedding and/or the
cover-image has smooth pmf. Learning-based steganalysis
techniques have been proposed in the past [16] to distin-
guish between the quantized-cover and the QIM-stego but
as noted earlier, there are some inherent disadvantages with
these steganalysis schemes.

In order to address limitations of learning-based steganal-
ysis schemes for QIM steganography, a steganalysis scheme
based on measure of randomness in the test-image in pro-
posed here. The proposed scheme exploits the fact that mes-
sage embedding using QIM increases entropy of the result-
ing stego, that is, the QIM-stego exhibits more randomness
than the corresponding quantized-cover, though both quan-
tized images are obtained using same quantization step-size.
This fact is illustrated in Fig. 3.

It can be observed from Fig. 3 that the distortion due
to QIM embedding is more random than the distortion due
to plain-quantization (especially in low-texture regions). It
shows that coefficients of the quantized-cover image are more
predictable than the corresponding QIM-stego coefficients.
The proposed steganalysis scheme exploits this observation
to distinguish between the quantized-cover and the QIM-
stego. In order to capture irregularities introduced due to
message embedding using QIM, a randomness mask based
on local similarity is estimated from the test-image. Statis-
tics of the estimated randomness mask is used to distinguish
between the cover and the stego.

3. QIM STEGANALYSIS USING KDE
Every steganographic technique introduces statistical and/or

perceptual irregularities in the resulting stego-image. In
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Figure 3: Quantization noise: quantized-cover (left),
QIM-stego (right) and associated quantization noise

QIM data hiding, these irregularities manifest themselves
as spatial randomness in the quantized DCT coefficients.
The randomness mask, Rcx, based on the local similarity
is estimated from the test-image (details of Rcx estimation
are provided in Section 3.1). The probability density func-
tion (pdf) of the randomness mask is then estimated using
a kernel density estimation technique. Simplicity, compu-
tational efficiency, and direct dependence of the estimated
density on the dataset are the salient features of KDE. First-
and higher-order statistics of the estimated density, f̂x(x),
are used to distinguish between the quantized-cover and
the QIM-stego. Block diagram of the proposed steganal-
ysis scheme to attack QIM steganography is given in Fig.
4. Details of each processing stage involved in the proposed

Figure 4: Block diagram of the proposed steganaly-
sis scheme

steganalysis scheme are discussed in the following sections.

3.1 Randomness Mask Estimation
In order to estimate the randomness mask, Rcx, the test-

image is segmented into non-overlapping blocks, each of 8x8
pixels. Each block is transformed into DCT domain using
the following 2D forward discrete cosine function,

xk1,k2 =

1
4
Gk1Gk2

7∑
n1=0

7∑
n2=0

sn1,n2 cos
(

πk1(2n1+1)
16

)
cos

(
πk2(2n2+1)

16

)
,

k1, k2 = 0, · · · , 7

where

Gk1 , Gk2 =

{
1√
2

if k1 = 0, k2 = 0

1 otherwise

Randomness mask value of coefficient xk1,k2 in the jth

block (or x
(j)
k1,k2

), Rc
(j)
k1,k2

, is calculated based on similar-

ity of x
(j)
k1,k2

with corresponding coefficients in k-neighboring

blocks. Let x
(j)

NH(k1,k2,i), i = 1, · · · , k denote the coefficients

in k-neighboring blocks. Then the similarity value , C
(j)
k1,k2

,

for coefficient x
(j)
k1,k2

is calculated as,

C
(j)
k1,k2

=
1

k

k∑

l=1

1
[x

(j)
k1,k2

]

(
x

(j)

NH(k1,k2,l)

)
(1)

l = 1, · · · , k, and j = 1, · · · , n

and the corresponding randomness mask, Rc
(j)
k1,k2

, is calcu-
lated as,

Rc
(j)
k1,k2

= 1− C
(j)
k1,k2

(2)

where 1 is an indicator function, n = bn1
8
c× bn2

8
c, and b xc

denotes the largest integer not exceeding x.

The Rc
(j)
k1,k2

is a nonnegative real valued random variable,

and 0 ≤ Rc
(j)
k1,k2

≤ 1. When all the neighboring coefficients

are quantized to the same value, Rc
(j)
k1,k2

= 0 implying maxi-
mum similarity between the neighbors and the current value,

x
(j)
k1,k2

. Similarly, Rc
(j)
k1,k2

= 1 implies minimum similarity
that corresponds to the case when all coefficients (the cur-
rent coefficient value and its neighbors) are quantized to k
distinct values. To illustrate the notion of randomness mask
estimation based on k-neighborhood using Eq. (2); the ran-
domness mask estimation for the selected block (or block of
interest (BOI)) using 4-neighborhood is given in Fig. 5.
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Figure 5: Randomness mask estimation for the se-
lected block based on 4-neighborhood

It is important to note that the estimated randomness
mask, Rcx, depends on test-image characteristics, quantiza-
tion step-size, ∆, used to generate the quantized image, and



the hidden message distribution. According to Eq. (2), a
texture rich image would yield lower similarity values than
a low-texture image, both quantized using same ∆. Simi-
larly, quantized images generated using smaller ∆ will yield
randomness mask with higher mean than the quantized-
image generated using larger ∆. For a given image, large
quantization step-size tends to map neighboring coefficients
to fewer distinct quantized value compared to a smaller ∆
value. Therefore, it is reasonable to expect that Rcx esti-
mated from the QIM-stego would have a higher mean value
than the randomness mask estimated from the correspond-
ing quantized-cover, both obtained using same ∆.

The two-dimensional Rcx is then transformed into 64 se-
quences which are used to estimate the underlying density,
fx(x). The mapping of two-dimensional randomness mask,

Rcx, to one-dimensional sequences, x
(j)
n , i = 0, 1, · · · , 63, is

illustrated in Fig. 6.

Figure 6: Mapping of two-dimensional randomness

mask, Rc
(j)
k1,k2

, to one-dimensional sequences, x
(j)
n

3.2 Kernel Density Estimation
A histogram is the simplest and the most frequently used

density estimator. However, it yields non-smooth density
estimate depending on the boundaries and width of bins
(or bandwidth). Kernel density estimators alleviate some
of these problems. In order to remove dependence of the
estimated density on the end points of the bins, kernel esti-
mators center a kernel function, K(x), at each data point,
xi. Smooth kernel functions are generally used to obtain a
smooth density estimate.

More formally, kernel estimators smooth out the contribu-
tion of each observed data point over a local neighborhood
of that data point. The contribution of data point xi to the
estimate at an arbitrary point x depends on how apart xi

and x are. The extent of this contribution depends upon the
shape of the kernel function, K(x), used and its bandwidth.
Let h and xi denote the bandwidth (or variance) and mean
of the kernel K(x) respectively, then the estimated density
at any point x can be expressed as,

f̂(x; h) =
1

n

n∑
i=1

K
(x− xi

h

)
(3)

where
∫

K(t)dt = 1 to ensure that f̂(x) integrates to 1.
The kernel function, K(x), is usually chosen to be a smooth

unimodal function with a peak at 0 [11, 12]. Even though
Gaussian kernel is the most commonly used kernel function

for KDE, there are various choices among kernels as listed
in Table 1.

Table 1: List of commonly used kernels

Kernel K(u)

Uniform 1
2
I(| u |≤ 1)

Triangle (1− | u |) I(| u |≤ 1)

Epanechnikov 3
4
(1− u2)I(| u |≤ 1)

Quartic 15
16

(1− u2)2I(| u |≤ 1)

Triweight 35
32

(1− u2)3I(| u |≤ 1)

Gaussian 1√
2π

exp(− 1
2
u2)

Laplace 1
2
exp(−|u|)

Logistic 1
1+e−u

The quality of a kernel estimate depends less on the shape
of the kernel K(x) than on the value of its bandwidth h.
A suitable bandwidth selection to obtain optimally smooth
density estimate from a given dataset is critical. For ex-
ample, small values of h lead to very spiky estimates (or
under-smooth estimates) while larger h values lead to over-
smoothing. The mean integrated squared error (MISE) met-
ric is commonly used to choose the optimal bandwidth that
minimizes the MISE, that is,

hopt = argmin
h

∫

R2
E{(f̂(x; h)− f(x))2}dx (4)

where f(x) is the target density.
Note that the MISE is a measure of the average perfor-

mance of the kernel density estimator as MISE is indepen-
dent of the actual dataset [11, 12]. One drawback of finding
optimal bandwidth hopt using Eq. (4) is that it does not
have a closed form solution for an arbitrary target density
f(x). Asymptotic approximation of Eq. (4) via a Taylor’s
series expansion is generally used to find hopt [11, 12, 8, 17,
15]. For more details on optimal bandwidth selection see
[11, 12, 15] and references therein.

3.3 Randomness Mask Density Estimation
We use KDE to estimate the probability density of the 64

sequences obtained from the estimated randomness mask,
Rcx. Sequence corresponding to DC coefficients of the test-

image, x
(0)
n , is not used for steganalysis, as DC coefficients of

the cover-image are not modified during QIM-based embed-
ding to avoid blocking artifacts in the resulting stego-image.



The remaining 63 sequences are used to estimate the under-
lying densities using KDE. The KDE package downloaded
from [4] supports all the kernels listed in Table 1. We use the
Gaussian kennel, Kg(x) = 1√

2π
exp(− 1

2
u2). Selection of the

kernel function, Kg(x), for density estimation, is motivated
by the fact that for a given bandwidth, h, the Gaussian ker-
nel yields relatively smoother density estimate, f̂x(x), than
commonly known kernels, such as, logistic, Laplacian, and
Epanechnikov (see Fig. 8). Fig. 8 plots the estimated den-

sity from sequence x
(30)
n estimated from the quantized Girl

image (see Fig. 7), using Gaussian, logistic, Laplacial, and
Epanechnikov kernels each with bandwidth h = 0.1.
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Figure 7: Girl image
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Figure 8: Estimated density from sequence x
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n of

Rcx of quantized Girl Image using Gaussian, logistic,
Laplacial, and Epanechnikov kernels with h = 0.1

Fig. 8 shows that the Gaussian kernel yields relatively
smoother density estimate than the other kernels (i.e. logis-
tic, Laplacial, and Epanechnikov). It is important to men-

tion that the estimated density for Rcx, f̂Rcx(x; h), plotted
in Fig. 8 has nonzero value for x < 0 though 0 ≥ x ≤ 1.
Nonzero estimated density values outside [0, 1] can be at-
tributed to the kernel, K(x), and the bandwidth, h, used for
density estimation. As kernels used for density estimation
(e.g., Gaussian, logistic, Laplacial, and Epanechnikov) plot-
ted in Fig. 8 are continuous and nonzero for (−∞,∞) and
spread of these kernels is controlled by the bandwidth h.

Therefore, though the underlying data is strictly bounded
by range [-R, R] but the estimated density using such ker-
nels might have nonzero value R < x < −R. The amount
of leakage depends on the number of data points around
boundaries of the data range, e.g. around 0 and 1 in case
of Rcx, shape of the kernel used, and the bandwidth. In
order to obtained density estimate which is bounded by the
underlying data range one need to use smaller bandwidth h
and sharply decaying kernel, e.g. uniform kernel. However,
this leakage of the estimated density out side [0, 1] does
not contribute to the detection performance of the proposed
steganalysis scheme. Therefore, for the rest of the paper we
shall assume that the Gaussian kernel is used for density es-
timation with bandwidth h = 0.1 unless otherwise specified.

The estimated density can be used to determine suitable
density model Rcx. It has been observed from the esti-
mated densities using 6000 images (3000 quantized-covers
and 3000 QIM-stego) that the underlying density can be ap-
proximated using a generalized Gamma distribution (GGD),
that is,

fx(x; α, β, γ) = xαγ−1 γ

βαγΓ(α)
e−(x/β)γ

for x > 0 (5)

where α, β, and γ are positive real valued parameters of the
generalized Gamma distribution. The generalized Gamma
distribution includes a wide range of distributions, the Weibull
distribution (α = 1), the exponential distribution (α = γ =
1), Gaussian distribution (α = 1

2
, γ = 2), Gamma distribu-

tion (γ = 1), etc.
To determine a specific underlying density model, we ana-

lyzed natural images with different levels of texture. In this
paper, we used uncompressed color image database (UCID)
downloaded from [3] for performance evaluation of the pro-
posed steganalysis scheme. Experimental results show that
the estimated density from low-texture images is close to the
exponential density, whereas density from high-texture im-
ages is close to the Gaussian density with peak around 0.5.
In addition, images consisting of mixture of uniform and
high-texture regions yielded bimodal density estimate. For
such images a generalized Gamma distribution is observed
to be a good approximation. However, for most of the im-
ages in the UCID database [3], the estimated density using
KDE was close to Gamma density. Therefore, the random-
ness mask, Rcx, is modeled by the Gamma density, given
by,

fRcx(x; α, β) = xα−1 1

βα, Γ(α)
e−(x/β) for x > 0 (6)

In order to verify the goodness of fit (i.e. closeness of
the estimated density to the Gamma distribution), the den-

sity estimated from Rcx, (f̂Rcx(x)), is compared with the

Gamma distribution function using parameters, α̂ and β̂,
computed as likelihood estimates (MLE). Fig. 9 shows the
plots of the KDE density estimate of Rcx estimated from the
QIM-stego of the Girl image (see Fig. 7) and the Gamma
density function corresponding to α = 4.58 and β = 0.078,
estimated by MLE. Fig. 9 shows that both densities have
approximately same mode (peak) and skewness. Therefore
it is reasonable to assume that randomness in the quantized
DCT coefficients of images with moderate texture can be
approximated by the Gamma distribution.

The estimated density is used to distinguish between the
quantized-cover and the QIM-stego images. As discussed
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Figure 9: Estimated density using KDE (solid line)
and Gamma density function based on estimated pa-
rameters α̂ = 4.58 and β̂ = 0.078 (doted line)

earlier, message embedding using QIM increases random-
ness in the resulting stego. Therefore, the estimated den-
sity from RcxQIM (estimated Rcx from the QIM-stego) is
expected to have higher mean value than the correspond-
ing quantized-cover. Statistics of the estimated density can
be used to distinguish between the quantized-cover and the
QIM-stego. To illustrate this, we generated two quantized
images using same ∆, one using plain-quantization and an
other using QIM embedding. The randomness mask was es-
timated from these quantized images. The underlying den-
sity was then estimated from the randomness masks using
KDE. The estimated densities from the randomness masks of
the quantized-cover and the corresponding QIM-stego using
the same set of density estimation parameters (i.e. kernel,
K(x), and bandwidth, h) are shown in Fig. 10.
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Figure 10: Estimated density plots obtained from
Rcx corresponding to the quantized-cover (Girl im-
age) and the QIM-stego ( both obtained using ∆ = 4)

Fig. 10 shows that the estimated density for the quantized-
cover image has a peak (or mode) at zero which implies that
the DCT coefficients of the quantized-cover are highly corre-
lated. This observation also agrees with the fact that there
exist high local spatial correlation in Girl image. Also, the
estimated density from xq exhibits higher skewness than the

density estimated from xQIM . The estimated density from
QIM-stego exhibits a peak near 0.3 which indicates that the
stego coefficients have relatively higher level of randomness
compare to the quantized-cover. This increase in the ran-
domness in the QIM-stego can be attributed to the ran-
domness in the hidden message M . Moreover, the density
estimated from xQIM exhibits lower skewness.

We propose a nonparametric hypothesis test to distin-
guish between the quantized-cover and the QIM-stego based
on the estimated density function. Nonparametric tests
are known to be robust to uncertainties in the assumptions
about underlying probability distributions. To this end, the
proposed scheme uses skewness and the mode of the esti-
mated density to distinguish between the quantized cover
and the QIM-stego. The underlying density parameters,
that is, α and β are estimated by fitting Rcx to Gamma
density using MLE. The skewness, Skew, of the underlying
density is calculated using α̂ and β̂ estimated using the MLE
as,

Skew =
2√
α̂

(7)

and mode, Mode, of the underlying Gamma density is cal-
culated as,

Mode = (α̂− 1)β̂ (8)

Estimated statistics of the underlying density is then used
to distinguish between the quantized-cover and the QIM-
stego. Following binary hypothesis test is used to distinguish
between the xq and xQIM ,

Decide Stego if τ1 ≥ Mode ≤ τ2 OR Skew ≤ τ3 (9)

Decide Cover Otherwise

where τ1,τ1, and τ2 are positive real valued constants.
Here decision thresholds τ1 and τ2 determine the detection

performance of the detector. It has been observed based on
simulation results for 6000 quantized images that decision
thresholds τ1 = 0.20, τ2 = 0.45, and τ3 = 1.1 yield low
false alarm rates, i.e., Pfp < .19 and Pfn < 0.03 for ∆ = 4.
Simulation results presented in this paper are compiled using
decision threshold values τ1 = 0.20, τ2 = 0.45, and τ3 = 1.1.

4. SIMULATION RESULTS
The performance of the proposed steganalysis scheme is

evaluated over UICD database [3]. The UCID database con-
tains around 1400 natural images of almost all textures.
Simulation results presented here are based on first 1000
of the UICD database. These 1000 images were resize to
256x256 pixels each and the transformed to gray scale for
message embedding and steganalysis. Six thousand quan-
tized images (3000 quantized-cover and 3000 QIM-stego )
were generated by quantizing 1000 natural images using uni-
form quantizer with quantization step-size ∆ = {0.5, 2.0, 4.0}.
Each QIM-stego image was generated by embedding 40KB
random binary message with equally probable message sym-
bols. These six thousand quantized images were tested using
the proposed steganalysis scheme. Each test-image was pro-
cessed to generate the randomness mask, Rcx. The under-
lying density was estimated using KDE. Mode and skewness
of the estimated Rcx were used to distinguish between the
quantized-cover and the QIM-stego. In order to illustrate
the effect of QIM embedding, scatter plots of the estimated
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Figure 11: Scatter plots of mode verses skewness of the estimated randomness mask from the quantized-cover
(left column) and the QIM-stego (right column) for ∆ = {0.5, 2, 4} (from top to bottom)



mode and skewness of the underlying density for the quan-
tized and the corresponding stego for ∆ = {0.5, 2, 4} (from
top to bottom) are shown in Fig. 11.

We observe the following from Fig. 11:

• Mode of Rcx estimated from stego images lies between
0.1 and 0.7, i.e. ModeQIM ∈ (0.1, 0.7), range of es-
timated mode shrinks as ∆ increases, and for ∆ ≥
4 ModeQIM ∈ (0.2, 0.5).

• Skewness of Rcx estimated from stego-images lies be-
tween 0 and 1.2, i.e SkewQIM ∈ (0, 1.2) and as ∆ in-
creases the range of estimated skewness reduces slightly.

• Mode of Rcx estimated from quantized-cover images
falls between -1.5 and 0.7, Modeq ∈ (−1.5, 0.7) and as
∆ increases, the estimated mode start shifting towards
-1.

• Skewness of the estimated density from quantized-cover
images falls between 0 and 6, Skewq ∈ (0, 6) and as
∆ increases, the estimated skewness start shifting to-
wards 6.

• With high probability, estimated ModeQIM ∈ (0.2, 0.5)
and SkewQIM ∈ (0, 1.2) from stego-image and this prob-
ability approaches 1 for ∆ ≥ 4

• Probability of estimated Modeq ∈ (0.2, 0.5) and Skewq ∈
(0, 1.2) from the quantized-cover is close to 1 for smaller
∆ and start decreasing as ∆ increases.

Therefore false rates, i.e., Pfn, and Pfn, decreases as ∆ in-
creases. Fig. 11 also shows that for smaller ∆ the pro-
posed scheme yields high false positive rate, as Pr{Modeq ∈
(0.2, 0.5)

⋂
Skewq ∈ (0, 1.2)} ≈ 0.9. However, two clus-

ters start to emerge as ∆ increases and therefore the false
alarm decreases. Detection performance of the proposed ste-
ganalysis scheme in terms false rate, i.e. Pfp and Pfn, for
decision thresholds τ1 = 0.2, τ1 = 0.45 and τ3 = 1.1 are
listed in Table 2.

Table 2: Detection performance as function of quan-
tization step-size

Quantization Step-Size ∆
∆ = 0.5 ∆ = 2 ∆ = 4

Pfp 0.91 0.46 0.19

Pfn 4.5× 10−2 3.4× 10−2 3.0× 10−2

Simulation results presented in Table 2 shows that the
proposed steganalysis scheme can detect QIM-stego, with
low false rates, when the hidden message is embedded using
∆ ≥ 4. Moreover, to ensure security of the hidden message,
smaller ∆, i.e. ∆ ≤ 0.5 should be used. But message em-
bedded using smaller ∆ cannot combat active warden attack.
An active warden deliberately alters every object (stego or
cover) that Alice and Bob are exchanging, to foil covert com-
munication between them. In order to combat active war-
den attack, message should be embedded using larger ∆.
Therefore, at a given capacity, security of the hidden mes-
sage using QIM is achieved at the cost of robustness and
vice versa. On the other hand, if both stronger security
(against steganalyst) and robustness (against active warden
attack) of the hidden message are desirable then embedding
capacity is compromised to achieve these goals.

5. ATTACKING JSTEG
The proposed steganalysis scheme was also used to attack

Jsteg [2], a freeware that hides messages in baseline JPEG
compressed images. Jsteg embeds messages in the GIF im-
age by replacing the LSB of the quantized run-length coded
DCT coefficients with the secret message, during JPEG com-
pression process. To attack Jsteg, quantized AC coefficients
(after run-length coding) of the JPEG test-image are used to
estimate the randomness mask, Rcx. Since for most JPEG
compressed images only the low- and mid-frequency coeffi-
cients survive for the entropy coding stage, the randomness
mask is estimated from these AC coefficients. The under-
lying density of the estimated randomness mask is used to
distinguish between the JPEG-cover and the JEPG-stego.

To illustrate effect of message embedding using Jsteg on
the randomness in the JPEG stego image, a JPEG stego was
generated using Jsteg steganographic tool (available at [2])
by embedding 7KB message in the 512x212 gray scale Lenna
image using quality factor q = 100. Estimated densities
using proposed steganalysis scheme from the JPEG stego
(stego obtained using Jsteg) and the corresponding JPEG
cover are shown in Fig. 12.
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Figure 12: Estimated density plots from the stego
image obtained using Jsteg tool and the correspond-
ing JPEG cover image

It can be observed from Fig. 12 that the estimate density
from the JPEG cover exhibits peak around zero, whereas
density estimated from the JPEG stego has its peak between
0.2 and 0.5. In addition, estimated densities from these
JPEG images also have different skewness values. There-
fore, first- and third-moment of the estimated density can
be used to attack Jsteg [2]. However, we have also observed
through extensive simulations that some times the estimated
densities from the JPEG cover and the corresponding JPEG
stego, i.e., f̂Rcx(x) and f̂RcJST EG(x), are hard to differenti-
ate, especially when the JPEG stego image is carrying small
hidden message. As size of the hidden message directly de-
pends on,

• texture of the cover image

• quality factor, Q, used for compression, and

• the cover image size.

We have observed that low-texture images of size less
than 128x128 pixels when compressed using quality factor,



Q ≤ 75 can carry very small message size, e.g. message size
less than 4KB. As a results first- and third-moment of the
estimated density from such JPEG stego image are approx-
imately same to first- and third-moment of the estimated
density from the corresponding JPEG cover image. There-
fore, the proposed steganalysis fails to detect such JPEG
stego images.

This fact is illustrated in Fig. 14 where estimated density
from Fruits JPEG image of 128x128 pixels (see Fig. 13),
obtained using Q = 50, and the corresponding JPEG stego
image obtained using Jsteg tool [2]. It can be observed from
Fig. 14 that it is hard to distinguish between the JPEG
cover and the JPEG stego based on the mode and skewness
of the underlying density.
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Figure 13: Fruits image
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Figure 14: Estimated density plots from the JPEG
cover image obtained with Q = 50 and the corre-
sponding JPEG stego obtained by embedding 3KB
message using Jsteg tool with Q = 50

To handel such cases, that is, detect JPEG stego images,
carrying small hidden messages, obtained using Jsteg with
50 ≥ Q ≤ 75, the proposed steganalysis scheme in the pre-
vious section 5.1 is modified slightly. To this end, the JPEG
test-image is recompressed using Jsteg to generate the corre-
sponding JPEG(2) stego image, xJSTEG. The recompressed
JPEG(2) stego image is generated by embedding an arbi-
trary message, Ḿ , using Jsteg with quality factor Q. The
recompression stage involves, decompression of the JPEG

test-image followed by JPEG compression using Jsteg. An
arbitrary message, Ḿ , is embedded during JPEG compres-
sion using Jsteg with quality factor Q. Randomness mask is
then estimated from the test-image and JPEG(2) stego im-
age. Estimated randomness masks from these JPEG images,
e.g. Rcx and RcJSTEG, is used to estimate the underlying
densities using KDE, e.g., f̂Rcx(x) and f̂RcJST EG(x). The
Kullback-Leblier (KL) distance between the estimated den-

sities, e.g., f̂Rcx(x) and f̂RcJST EG(x), is used to distinguish
between the JPEG cover and the JPEG stego image. The
KL distance between probability mass functions, fx1(x) and
fx2(x) is defined as,

D
(
f̂x1(x) ‖ f̂x2(x)

)
=

∑

x∈§
fx1(x) log2

(
fx1(x)

fx2(x)

)
(10)

= Efx1

(
log2

(
fx1(x)

fx2(x)

))
(11)

where Efx1 denote expectation over fx1(x).
It is expected that if the test-image is a JPEG stego-image

obtained using Jsteg, than an arbitrary message embedding
using Jsteg again would cause a small change in the level of
randomness in the resulting xJSTEG hence small variation in
the the underlying density estimated from xJSTEG. There-
fore, the KL distance between the estimated densities would
be relatively smaller than the KL distance between the esti-
mated density from the JPEG cover image and the density
estimated from the corresponding JPEG stego image. This
notion is illustrated in 15.
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Figure 15: Estimated density plots from the JPEG
cover (obtained with Q = 50). JPEG stego and

JPEG stego(2) both obtained by embedding 3KB
message using Jsteg tool with Q = 50

It can be observed from Fig. 15 that the densities es-
timated from the JPEG stego and JPEG stego(2) (stego
image obtained by embedding an arbitrary message in the
JPEG stego using Jsteg with Q = 50), f̂RcJST EG(x) and

f̂Rc
JST EG(2) (x), have relatively smaller KL distance (e.g.

0.17 bits/sample) than the KL distance between the den-
sities estimated from the JPEG cover and the JPEG stego,

D
(
f̂Rcx(x) ‖ f̂RcJST EG(x)

)
which is 0.85 bits/sample. The

KL distance between the estimated density based on the
randomness mask from the JPEG test-image and the cor-
responding JPEG(2) stego image, obtained by embedding



an arbitrary message in the JPEG test-image using Jsteg,
can be used to distinguish between the JPEG cover and the
JPEG stego image.

Block diagram of the steganalysis scheme use to distin-
guish between the JPEG cover and the JPEG stego image
is given in Fig. 16.

5.1 Experimental Results
Detection performance of the proposed steganalysis scheme

to attach Jsteg steganographic tool [2] is evaluated for a
datased of 3000 JPEG images. First 500 images of the
UCID image database [3] were used to generate these 3000
JPEG images. The dataset used for performance evalua-
tion of the proposed steganalysis scheme consists of 50%
JPEG cover images and rest 50% JPEG stego. The JPEG
cover images were generated by compressing 500 uncom-
pressed images using baseline JPEG [14] with quality fac-
tor Q = {100, 75, 50}. Whereas, JPEG stego images were
generated by compressing 500 uncompressed images using
Jsteg tool with Q = {100, 75, 50}. A random message was
into each JPEG stego image.

During testing phase, each test-image (JPEG cover or
JPEG stego) was recompressed to generate corresponding

JPEG(2) stego image using Jsteg tool. The JPEG(2) stego
image, XJSTEG, was generated by first decompressing the
JPEG test-image followed by recompression using Jsteg with
associated quality factor Q. An arbitrary message Ḿ was
embedded into each test-image to generate XJSTEG. Ran-
domness mask was then estimated from both the test-image
and the corresponding XJSTEG using run-length coded AC
coefficients. Estimated randomness masks from the test-
image and the JPEG(2) stego image, e.g. Rcx and RcJSTEG,
were used to estimate the underlying densities using KDE.
The KL distance between f̂Rcx(x) (estimated from the JPEG

test-image) and f̂RcJST EG(x) (estimated from the the JPEG(2)

stego image), that is, D
(
f̂Rcx(x) ‖ f̂RcJST EG(x)

)
, was com-

pared against decision threshold, τ4, to distinguish between
the JPEG cover and the JPEG stego.

Detection performance of the proposed steganalysis scheme
with these experimental settings and decision threshold τ4 =
0.5 is given in Table 3.

Table 3: Detection performance as function of quan-
tization step-size

Quality Factor Q
Q = 50 Q = 75 Q = 100

Pfp 0.192 0.192 0.182

Pfn 3.6× 10−2 3.6× 10−2 2.2× 10−2

6. CONCLUSION
This paper presents steganalysis scheme for QIM-based

data hiding. The proposed steganalysis scheme is non-learning
based therefore can address limitations of learning-based ste-
ganalysis schemes. We have shown that QIM based steganog-
raphy increases randomness in the resulting QIM-stego. The
proposed steganalysis scheme therefore uses measure of ran-
domness in the DCT coefficients of the test-image to distin-
guish between the quantized-cover and the QIM-stego. Sim-
ulation results show that the proposed steganalysis scheme
can detect the QIM-stego with low false negative rate. In

addition, detection performance of the proposed scheme de-
pends on quantization-step size used to generate the quan-
tized test-image.

The proposed steganalysis scheme is also extended to at-
tack Jsteg steganographic tool [2]. Experimental results to
evaluated performance of the proposed steganalysis scheme
shows that it can successfully distinguish between the JPEG
cover and the JPEG stego obtained with quality factor as
low as 50 with low false rates.
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Figure 16: Block diagram of the steganalysis scheme used to attack Jsteg steganographic tool


