JOINT DISTRIBUTED COMPRESSION AND ENCRYPTION OF CORRELATED DATA IN
SENSOR NETWORKS

M. A. Haleem, Chetan. N. Mathur, and K. P. Subbalakshmi
Department of Electrical and Computer Engineering,
Stevens Institute of Technology, Hoboken, NJ 07030.

Email:mhaleem@stevens.edu

Abstract—In this paper, we propose, formulate, and study a compression and encryption can achieve significant saving
joint distributed data compression and encryption scheme suit- in computational complexity. This approach seeks to identify
able for wireless sensor networks where we adopt the structured the common features of data compression algorithms and

encryption system of Advanced Encryption Standard (AES) [9]. . Lo - . .
The distributed compression is achieved as per the Slepian-Wolf encryption primitives, and to invent techniques to achieve the

coding theorem, using channel codes. Core to achieving optimal tWo goals with the same computational procedures.
compression in the joint compression and encryption is the  The information collected by the sensors in a sensor field
preservation of correlation among different blocks of data despite ijs known to be rich in correlation structures. When the
applying cryptographic primitives. We establish that the corre- jisiance hetween two sensors shrinks, the difference between
lation between sources remains unchanged when cryptographic . . ’ .

primitives, namely key addition and substitution are applied. |nfqrmat|on generated by the two sensors also shrinks. The
However, as a requirement of security in the encryption, any Optimal process of gathering such correlated data should make
correlation between two inputs to a encryption system is removed use of such correlation to compress the data to the best possible
with diffusion techniques. Compliance to the requirements of extent as being routed to the destination. Slepian-Wolf coding
diffusion layer of AES cipher is achieved by designing the haorem [2] establishes the possibility for such a compression

compression function so as to maintairbranch number property techni ithout K inal th lated inf fi
We establish the necessary and sufficient condition for achieving ‘€¢NIquUe without a SEnsor knowing the correlated information

a compression function with branch number property and show generated by the neighboring sensors. It suffices to know
that distributed compression using non-systematic Reed Solomon the correlation structure between the information produced

(RS) code can satisfy this condition. by the two sensors. In principle, all what is required to
know by a sensor (sourceX to compress up to a rate
exceeding the conditional entropsf (X|Y") bits/sample so
Wireless sensor networks have been of increased interdstt to reproduceX with the neighboring sensor outplit as
in monitoring physical and ecological phenomena as well a&le information, is the correlation structure in terms of joint
in military and civil surveillance applications in recent timeprobability mass functionPxy (z,y). The joint probability
Consequently many different issues related to sensor netwonkass function should also be known at the decoder. In [3],
have received significant attention of researchers worldwidle authors presented a constructional approach to achieve this
Efficient and secure techniques for data gathering are amarggnpression rate using channel codes. This has been followed
such issues of interest. Optimal method to process and foy significant studies on achieving any point on the Slepian-
ward the data collected by a sensor field to the destinatigvolf rate region as well as the extension of the technique
(sink) is essential for the efficient use of wireless chann& more than two correlated sources [6]. Linear block codes,
capacity, processing capabilities of the sensors, and limitednvolutional codes, turbo codes, and low density parity check
power available at sensor nodes. In this regard, compressgmules have been among the candidates being studied for
of data from a sensor with the knowledge on the correlatidghe distributed compression of correlated data. In this paper,
to data collected by a neighboring sensor destined to thve show that wireless sensor networks can greatly benefit
same sink can be achieved by the technique of distribut'dm a joint approach to distributed coding and encryption of
source coding with side information as studied in [3][6]correlated data with the use of channel codes for distributed
Along with the necessity for optimization of performanc&ompression.
metrics, security of the information against adversary attacksAs Advanced Encryption Standard (AES) [8] is of wide
such as eavesdropping is of utmost importance. The stateptance as the best known cipher system, we incorporate
of the art in achieving the goals of best performance arhe distributed compression into AES by augmenting atomic
security is to concatenate the tasks of performance relatttryption primitives therein so as to achieve both compres-
processing such asgata compressiorand security related sion and security features. Ten round AES cipher has been part
procedures such acryption There have been studies on thef mandated and optional components to achieve security in
feasibility and advantages/disadvantages of encryption priontireless local area networks (LAN) namely IEEE 802.11i stan-
compression of data as it is beneficial in scenarios wheredard. The security features, Wi-Fi Protected Access 2 (WPA 2)
node does not have the capability to compress but to encrgitlIEEE 802.11i use AES cipher in its mandated CCMP mode
[5]. In this paper we establish that a joint approach to datend the optional offset code book (OCB) mode. In particular,
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the OCB mode which is claimed to have superior performanead diffusion by the same set of computational steps at once
uses AES cipher for encrypting data. OCB mode proposal lEading to significant savings in computation.

NIST for a block-cipher mode of operation simultaneouslx
provides privacy and authenticity [16]. In this paper we present
our findings on the feasibility of joint distributed compression The following Lemma establishes that bit-wise Hamming
and encryption of correlated data and discuss an appro&t$tance remains unchanged under key addition operation.
using Reed-Solomon (RS) code for the distributed compres-Lemma 1:Let z andy be twon-tuples inF3 (binary) and
sion. In Section Il to follow we discuss the concepts behintf Pe a third such-tuple representing the secret key. Then
the proposed approach and establish the results showing the

feasibility of joint distributed compression and encryption. The du(z® K,y ® K) = dp(z,y) 1)

proposed High Diffusion Distributed Compression (HDDC%heredH(. ) is the bit-wise Hamming distance.

is elaborated in Section lIl. In Section IV, we present the  p.oof: The Hamming distance betweenandy can by

implementation of joint compression and encryption using,nq by the XOR operation followed by computation of the
HDDC technigue and discuss the performance of the approz-\l,ggight i.e.d(z,y) = w(z @ y). For example ifz = 01001
and the savings in computational cost. Section V concludes %y _ 11'010 thenaz @y = 10011 andw(z @ y) = 3 which
paper.

Hamming distance under key XOR operation

is the Hamming distance betweenandy. Therefore we can
also write

dp(zao K,y K)=w((z® K)® (y® K)) 2
The problem addressed in this work is as follows. Theg(a:l]r? g\):rri?;?g));gR operation is associative. Therefore we
are two sensor&X andY generating correlated information in
the form of sequences of symbols in Galois field28f The
correlation is such that any block of consecutive symbols dpza K,y K) = w(zey) e (K e K))
generated by differ at most byt(< n) symbols fromn con- = wzdy) a0
secutive symbols simultaneously generatedYbyAs per the
Slepian-Wolf theorem [2]X can be compressed to achieve a
minimum bit requirement approaching the conditional entropy = du(z,y)
H(X]Y) and sent toY” so as to perfectly recovek’ with  thys we prove (1). In the abovirepresents an all zero —
the knowledge of”. The sensotX' does not require to know ¢,
Y to achieve this. In the joint distributed compression and |t can be easily verified that this Lemma is also valid when

encryption problem we consider, we also need to ench/pt ;. ,, andk are n-tuples where the elements are from Galois
and produce a cipher-texix such that an adversary withoutfield, ¢ F(2m) for any positive integern.

the knowledge of cipher key(s) cannot infer any statistics u

on X by observing Ex. In other words we require the . o )

conditional probability distributiod®(X|E) to be equal to the B. Correlation under substitution operation

probability distributionP(X) [10]. Except with one-time-pad  An S-box in AES system performs substitution of a symbol
based key addition [7], the perfect secrecy is known to lv@th another so that, when combined with XOR operations
practically infeasible. Nevertheless, ciphers are consideredviith secret keys (key addition) provides resiliency against
be computationally secure if (a) the time required to brealkfferential cryptanalysis [4][11]. In the substitution layer of
the cipher is more than the useful time of the data beifgES cipher, each byte of the plain-text is uniquely mapped
encrypted and (b) the cost of computation to break the ciphteranother byte in a one-to-one manner. Obviously, the byte-
is more than the value of the information [11]. In AES ciphervise Hamming distance between two multi-byte blocks of
this is achieved via the round functions where each rouddta does not change under the substitution operation. Further,
consists of a sequence of cryptographic primitives namely, ksybstitution operation can be considered a non-linear operation
addition, substitution, row shifting, and column mixing. Weat bit level, and a linear operation if considered byte-wise. We
show here that the key addition and substitution operatioslBow in the sequel that the conditional entrofyX|Y) is

do not alter the Hamming distance between the correlatpteserved under linear or non-linear mapping as long as the
sourcesX and Y. In particular key addition maintains themapping is one-to-one.

bit-wise Hamming distance and substitution maintains byte-Lemma 2:Let the random variablesY and Y assume
wise Hamming distance which suffices to achieve our goal edlues in the discrete sets respectivdly;|: = 1,--- ,n}
preserving the symbol-wise Hamming distance. The purpoaerd {y;|i = 1,--- ,n}. If the joint probability of the random

of row-shifting and column mixing operation being to devariablesX andY is symmetric such thap(X = z;,Y =
correlate two plain-texts that are correlated, by the diffusiayy) = p(X = z;,Y = ;) or simply p(z;,y;) = p(z;,y:)
process, and since the compressionXofusing linear block for all 7,5 = 1,--- ,n then the conditional entropies hold the
code also achieves this goal, we can achieve both compressisult H(X|Y) = H(Y|X).

1. FEASIBILITY OF JOINT DISTRIBUTED CODING AND
ENCRYPTION

= w(zoy)



Proof: p(x;,y;) = p(z;,y;) implies the equality of code. Further, if the Hamming distance betweemand y is
marginal probabilities i.ep(x;) = p(y;) leading top(y;|z;) = <t we have,
p(z;|y;). By definition,

" = cpteg
HX|Y) = Y pY =y)H(X[Y = y,) = ¢ tey
i=1 Yy = Tte. =cCpterte
= = pwi) > p(x;ly:) logy pl;ly:)
i=1 J=1 where ¢, ¢, are the valid codewords within a Hamming
B L 1 distance< ¢, e, ande, are the error patterns corresponding to
- Zzp(xjvyi) 08, p(;]yi) respectivelyr andy, ande, is the error pattern representing
IR the correlation between andy.
_ Zzp(y_ 1) 1ogy p(y;|7:) Now let H be the(n — k) x n parity check matrix (which
L LT 2 is the generator matrix of the dual space of the code space).
. H(Y\)J() Then the projection ofi-tuple x and y onto the dual space
N results in the syndromes, = zH” andS, = yH7 i.e.,
[ |
th(la_r?mma 3:If the mappingX — U = g(X) is one-to-one cHT = e HT + e, HT =0+ 8,
T _ T T _
H(Y]g(X)) = H(Y|X) 3) yH™ = eyH" +e,H =045,
Proof:  With one-to-one mapping we have(X = (8)

xz) = p(u = g(X = z)) and similar result holds for joint

probabilities. The result is self explanatory from the definition

of conditional entropy. [ S, = yH' =2H" +e.H" =5, + 5.
Theorem 1:If (a) the joint probability matrix ofX andY

is symmetric (b) the mappingd — U = ¢(X) is one-to-one

where HT is the transpose off. Further we may write

and then ie.,
H(g(X)IY) = H(X|Y) 4)
Proof: From Lemma 2 we have S. =8+ 8, 9)
H(g(X)|Y) = H(Y|g9(X)) (5) Equation (9) results from the fact that addition and sub-
traction are equivalent i7F'(2™) for any integerm. Note
From Lemma 3 we have that the syndromes arén — k) tuples. This result leads
to the method of compression of with the knowledge
H(g(X)[Y) = H(Y|X) (6) on correlation withY and the lossless decoding with the

knowledge ofY. The transmitter can computg, and send
to the receiver wher&” is available. Then the syndron.
H(g(X)|Y)=H(X|Y) (7) can be computed using the received syndréfpeandy. The
error patterne, corresponding taS. can be computed using

Again from Lemma 2 we have,

Y syndrome decoding technique. With RS code, Berlekamp-

I1l. PROPOSEDHIGH DIFFUSION DISTRIBUTED Massey algorithm provides an iterative decoding procedure

COMPRESSION(HDDC) FOR LOSSLESS DECODING wiTH  that eliminates the need for storing syndromes and error
SIDE INEFORMATION patterns. The:-tuple « can be found from,

In this section, the details on the compression with trans-
forms for diffusion and lossless decoding with side informa-
tion are given. The use of linear block codes for losslessSince then-tuple x is transformed into the: — & tuple
distributed compression is based on the results as follows. prior to transmission, we achieve a compression ratio
Let = be ann-tuple generated at the sourée andy be the of —“—. In the design of joint compression and encryption,
n-tuple simultaneously generated at the correlated sodrce the transform used for compression, namely the parity check
Thenx andy can be considered as noise corrupted versionsmoftrix of the underlying linear block code, should achieve
valid codewords generated with &n, k) linear block code. If the required spreading, or thaiffusion otherwise achieved
dmin 1S the minimum Hamming distance between any paby the row shifting and column mixing operations in the
of valid codewords, then for any-tuple x, there exists a AES cipher. Diffusion is a requirement in cipher to achieve
valid codeword within a Hamming distan¢e= L%J, the robustness against (a) differential cryptanalysis and (b)linear
maximum number of errors correctable by the linear bloakyptanalysis. It has been shown in [13] that the diffusion

T=yY+ee (10)



can be effectively measured using the branch number of a w((f) mm{“(’)(eA)}
function. The Definitions 1-2 and Lemma 4 provides a concise 1 l
description of relevant branch number functions and their 2 -1
properties. : :
Definition 1: The differential branch number of a transfor- r l—(r—1)
mation ¢ mapping an-tuple onto al-tuple is defined as : ;
Byl = min {dy(a1,@2) + du(@(x1), $(w2))} (11) i 0
dp(z1,22)7#0 =

TABLE |

wherez; andz; are two inputn-tuples(z, # ) anddy is MINIMUM CHANGE IN THE OUTPUT TO MAINTAIN BRANCH NUMBER.

the Hamming distance in number of symbols [13].
Definition 2: The linear branch number of a transformation
¢ on mapping ar-tuple x onto al-tuple is defined as

B = min{u(@) + w(6(x))} (12)

The minimum values ofv(e.A) corresponding to the values

where w(.) is the Hamming weight in number of non-zero w(e) to satisfy (15) are as given in Table I.

symbols.
Lemma 4:The upper bound of branch numberlis- 1. It can be seen that fan(e) = r, min{w(eA)} = [—(r—1).
Proof: With a diffusion optimized transforrg, change in | gt the columns of4 be denoted bys;,j = 1,---,1. Then
a single symbol of:; should result in changes in all the outpuyith a givenr for » = 1,--- ,1 we requireA to have at most

symbols leading tddy (z1,22) + dm (d(21), ¢(22))} =1+1 1 columns such that-h; = 0. This implies that in the x
which is the minimum (maximum of this sum being+ 1)  sub-matrix formed by selecting the rows.dfcorresponding to
and therefore is the branch number by Definitions 1 an@a2. the non-zero elements ef everyr xr sub-matrix (Contiguous
The design ofdiffusion layerin Rijndael cipher adopted as well as non-contiguous) should be of full rank. Sincerthe
in AES, ensures this upper bound for all possible valuggn-zero elements in can occur at any out of n positions,

of linear/differential weights of the input [14]. We show inthe above implies that everyx r sub-matrix of.4 should be
Theorem 2 that the necessary and sufficient condition & full rank i.e. positive forr = 1,--- 1. Thus by Definition

achieve such linear and differential branch number propertigs 4 should be a totally positive matrix.
is that the transformp be atotally positive matrix Formal

definition of totally positive matrix is as follows. Next we prove that the total positivity of the transformation
Definition 3: A rectangular matrix A = (a;;),¢ = matrix is sufficient to achieve the maximum branch number.

1,---,n;j =1,---,1is calledtotally positiveif all its minors If A is a totally positive matrix, every x r sub-matrix is

(determinants of sub-matrices) of any order are positive [13jositivei.e., has full rank forr = 1,---,l. Let the rows of
Although the original definition in [12] is for matrices of A be a;,i = 1,--- ,n. Then the linear combination of any

real values, it can be easily extended to the case with elementows, ', a;a; with a; > 0 results in an-tuple with at-

in Galois fieldGF(2™). mostr — 1 zero elements leading to(e) + w(eAd) = 141 and

Theorem 2:Over a field F, the linear transformation of hence achieves the branch number. While this proof explicitly
n-tuples inn dimensional spac&™ into [-tuples in/(< n) addresses the case of differential branch number property, the

dimensional spac&’ by an operationy = x.4 achieves the case of linear branch number property is implicit. ]
branch number properties if (sufficient) and only if (necessary) .
A is a totally positive matrix. From the Theorem 2 above, we achieve a test for branch

Proof: First we prove that the necessary condition tgumber property for any given transform. Further it serves as

satisfy the branch number properties is the total positivitg. 9uideline for designing transforms to achieve the desired
From Definitions 1, 2, and Lemma 4, for transformatidrto ranch number properties. While the testing of all possible
be diffusive, we require that square sub matrices of a matrix for positivity has an exponen-

tial order complexity, Theorem 9 of [17] provides a method

d(x1,22) +d(z1 Ay 20A4) 2 1+ 1 of polynomial order complexity. This theorem states that a
square matrix of size is totally positive if and only if all its
= w(r1 ®x2) +w(@1 A z24) 21 +1 (13) initial minors are positive. The initial minors are minors that

are contiguous and include the first row or the first column.
This approach reduces the number of minors required to be

w(zy ® x2) +w((zy ®w2)A) > 1+1 (14) tested for am x n matrix from ( 27? ) — 1 to n2.

Since A is a linear transformation, (13) implies

Let z; @ x1 = e. Then (14) reduces to . o
One known example of totally positive matrix is tgener-

w(e) +wled) >1+1 (15) alized Vandermondematrix [12] given by



The following matrixA can be used obtain augmented matrix.

1 o a% aﬁp*”
1 a 0/2 a(pfl)
C g (16)
: 2 3 11
-1 1 2 3 1
laqa,% aslp) A:1123
wherel < a; < as < -+ < ay. 31 1 2
It is seen that the parity check matrix of non-systematic RS
code as in (17) is a good example of Vandermonde matrikhys we have
Therefore RS code in non-systematic form provides a readily
?pph.cable transform for diffusive compression by syndrome 187 210 159 2 1 1 3
orming. go_| 18 167 28 3 2 11
a 73 0228 204 1 3 2 1
1 a a2 ... oD 203 146 26 1 1 3 2
1 a2 ot ... 201
a7 where the entries of the matrices are decimal representation
o : : : of the elements itz F(28). Initial minor test confirms that this
1 a? a? ... qip7D) transform satisfies total positivity and hence achieves branch
In (17), « is a root of theprimitive polynomialused in the RS Number property.
code.

It is also possible to obtain a transform for diffusive coma, Special cases
pression starting with a systematic RS code. In essence, we are i i
required to suitably augment the parity check matrix of the RS !t iS seen in our approach to compression, all theuples
code under consideration. In the usual implementation of lindfr@ COSet get mapped onto the same syndrome. Nevertheless,
block codes, the generator matrix is in the systematic form aH$ minimum Hamming distance between a paindtiples in
one can obtain the parity check matiikwith straightforward the same coset being,,;,, = (n — k) + 1, the branch number
manipulation of generator matrix. TH& matrix in systematic Property namely the conditiods (1, 2) + da (e, Sz,) >

form in this scenario is given by, |S.| + 1 is satisfied sincdS,| = n — k for a pair of n-
tuples from the same syndrome. It should also be noted that
H=(P I) (18) @an zero input will result in an all zero output and therefore

the linear branch number property is not achieved in this case.

where P is an (n — k) x k full rank matrix and/ is (7 —  Nevertheless, this special case exist in any cipher system.

k) x (n — k) identity matrix. Obviously, this? matrix may
not comply with the total positivity criteria and therefor is not
suitable for diffusive compression. To remove this effect, the
syndromeS, can be post multiplied by a mixing transform or
equivalently, the matrixt{ can be augmented to achieyg,
by the following transformation.

IV. | MPLEMENTATION AND SIMULATION RESULTS

In the implementation of joint compression and encryption
scheme, the compression is included in the first layer of
ten round AES cipher as the diffusion layer as shown in
Fig. 1. The row shifting and column mixing operations in

S,A=x(H" - A)=zHF (19) the first round is replaced by the High Diffusion Distributed

where Compression (HDDC). Similarly, during the decryption, the
pT inverse-column mix and inverse-row shift operations of the

Hf:( 7 )A (20) last round is replaced by the High Diffusion Distributed

or Decompression (HDDD). In the software implementation of

. our joint distributed compression and encryption scheme, we
HT ( PT-A ) (21) used(7,3) RS code ie.n = 7,k = 3 with the following
¢ A parity check matrix of elements i@F'(2%) obtained with the
In this, A is a(n—k) x (n—k) full rank matrix. As an example, primitive polynomial inGF'(2) given byo®+a*+a’+a?+1
the following matrix corresponds to an RS code systemaf{285 decimal).
form withn =7, k£ = 3, andm = 8.

2 o 0 L0 1 421 146 684 ;g 13126 26045

| 112 130 216 0 1 0 0O H— 22)
H=1 196 161 231 0 0 1 0 1 8 64 58 205 38 45
255 177 116 0 0 0 1 1 16 29 205 76 180 143
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Fig. 1. Flow chart of the proposed joint distributed compression and encryption (a) compression/encryption (b) decompression/decryption.

A. Compression and savings in computation as follows. As for the computational complexity of basic

. . . . ?Perations on a byte namely addition, substitution, and mul-
This implementation achieves a lossless compression r q . . .
mplcatlon we assume one unit of complexity. The actual

of 1o = g. This compression ratio remains same for bo . . : ;
systematic and non-systematic forms for the code. Furth 9mpIeX|ty of these different operations may vary, and highly
’ 0(%‘pendent on the particular architecture. Nevertheless with

there is no penalty in compression ratio due to the use . . .
) e . reqasonably optimized architecture, energy consumptions for
the compression process as the diffusive layer in the rouSl

. . . . ese atomic operations will be comparable and may not be
based cipher. Nevertheless, savings in computation resujts™ . o
compared to a concatenated compression-encryption Systerasst|cally different at the least. In the joint approach, we
{gft with a matrix of7 x 4 bytes of row data. Thus the

. . . ips S
In.partlcular, Fhe savings are in the row shlftln_g aﬂd columin itial key addition requirest x 4 = 28 additions. Equal
mixing operations otherwise necessary in the diffusion layer ou&nber of substitutions follows. In the compression phase
he AES encryption otherwise n ry in th n n ) .
the AES encryption otherwise necessary in the concate aﬁere are28 multiplications and equal number of additions.

approach. Since the diffusion layer in a round is known t]% total there are28 x 4 — 112 operations. Compared to
eliminate the correlation between any two blocks of datfh '

extension of the compression process to more than one Iagﬁe}(:; Irlisn)cciﬂza::eo?ﬁtergsgi% Torzczig:ﬁ:ﬁsﬁéﬁi;ﬂ?ﬁd by
appears to be hard at this tifne yp ' P d P

In the conventional AES cipher, 128 bit blocks of data arthat many additions. The compression stage has an output

arranged in al x 4 matrix [13]. This matrix of data undergo 6 4 x 1 = 16 bytes. In the encryption stage there @

initial key addition and substitution phase. Each of the rounk(? y ad.d|t|on operatmnsl anllﬁ sgbsutuu(;)nﬁ - The row;(;\.n‘_tlng
functions to follow consists of a diffusion layer implemente peration requires6 multiplications and that many additions.

by the row shifting and column mixing operation followed b he column mixing operatioﬁn also requires equal amount of
tk?/e addition of rcg)]und key and subsgtutﬁ)on In the pro Osﬁ:&mputations. Thus there 284 4 x 16 = 120 units of

- . y : ' PrOPOS&L, - rations in total. Similarly, at the decoder, the joint approach
joint compression and encryption scheme, we start with

matrix of 7 x 4 bytes of data, Each column of bytes are r qu|r¢§28 substitutions andSladdmons during kgy addition
compressed using syndrome forming transform obtained fr in,addition to the decompression procedure leadingtas =

P g syn g . BB units of computations. In contrast, the concatenated system
the (7,3) RS-code. This leads to4x 4 data matrix. The key

addition and substitution function of the first round and thréeqUIreS8 x 16 = 128 units of computation in the inverse

functionalities of remaining rounds follow the AES cipher column mixing, row shifting, substitution, and key addition
Th . . tgt' | lexity of the | 'pt " _operations prior to decompression. Thus we have a saving
€ savings In computational compiexity ot the joint Comg¢ 19 128) — (112 4+ 56) = 80 units. The total amount

pression and encryption apprqach compared to a concatenalg putation in the compression and first round of AES cipher
system in a layer (compression followed by encryption) {g the concatenated system beihg 28 + 8 x 16 = 184 units,

" " ating th il dih we have a saving of 43.5% in this round.
e are currently investigating the possibilities to extend the compression . .
to more than one layer with the use of successive projection onto dual spaceconS'dermg all10 rounds of AES cipher we have x

of RS coding. 28 +10 x 8 x 16 + 4 x 16 = 1400 units of computation



= postoecone = less sensor networks. It was shown that under key addition and
substitution primitives of encryption process, the correlation
between blocks of data is preserved leading to the possibility
of compression as per Slepian-Wolf theorem along with such
encryption primitives. We also presented theorems establishing
the necessary and sufficient conditions for diffusive transform
such that to achieve the branch number property required
in the diffusion layer of state of the art data encryption
schemes. These theorems provided systematic methods to
design compression functions via linear block codes so that to
achieve diffusion property required in joint distributed com-
‘ ‘ ‘ ‘ pression and encryption. We presented examples of diffusive
= 8 T e N e transform suitable for compression based on RS-codes and
discussed the implementations. We showed that it is possible
Fig. 2. Decoder performance of joint distributed compression and encryptigh gchieve significant savings in computational complexity by
of correlated data. .. LY . .
the joint distributed compression and encryption compared to
a concatenated approach. Further savings in computational

L . . . complexity will be possible with extension of the approach
0,

thus resqltlng in a saving of 5.7%. Note that if a t_echmque more than one layer of the round based cipher.
progressively compress at more than one round is achievable,

larger saving will result. The computational results from the VI. ACKNOWLEDGMENT
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