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Abstract— In this paper, we propose, formulate, and study a
joint distributed data compression and encryption scheme suit-
able for wireless sensor networks where we adopt the structured
encryption system of Advanced Encryption Standard (AES) [9].
The distributed compression is achieved as per the Slepian-Wolf
coding theorem, using channel codes. Core to achieving optimal
compression in the joint compression and encryption is the
preservation of correlation among different blocks of data despite
applying cryptographic primitives. We establish that the corre-
lation between sources remains unchanged when cryptographic
primitives, namely key addition and substitution are applied.
However, as a requirement of security in the encryption, any
correlation between two inputs to a encryption system is removed
with diffusion techniques. Compliance to the requirements of
diffusion layer of AES cipher is achieved by designing the
compression function so as to maintainbranch number property.
We establish the necessary and sufficient condition for achieving
a compression function with branch number property and show
that distributed compression using non-systematic Reed Solomon
(RS) code can satisfy this condition.

I. INTRODUCTION

Wireless sensor networks have been of increased interest
in monitoring physical and ecological phenomena as well as
in military and civil surveillance applications in recent time.
Consequently many different issues related to sensor networks
have received significant attention of researchers worldwide.
Efficient and secure techniques for data gathering are among
such issues of interest. Optimal method to process and for-
ward the data collected by a sensor field to the destination
(sink) is essential for the efficient use of wireless channel
capacity, processing capabilities of the sensors, and limited
power available at sensor nodes. In this regard, compression
of data from a sensor with the knowledge on the correlation
to data collected by a neighboring sensor destined to the
same sink can be achieved by the technique of distributed
source coding with side information as studied in [3][6].
Along with the necessity for optimization of performance
metrics, security of the information against adversary attacks
such as eavesdropping is of utmost importance. The state
of the art in achieving the goals of best performance and
security is to concatenate the tasks of performance related
processing such asdata compressionand security related
procedures such asencryption. There have been studies on the
feasibility and advantages/disadvantages of encryption prior to
compression of data as it is beneficial in scenarios where a
node does not have the capability to compress but to encrypt
[5]. In this paper we establish that a joint approach to data

compression and encryption can achieve significant saving
in computational complexity. This approach seeks to identify
the common features of data compression algorithms and
encryption primitives, and to invent techniques to achieve the
two goals with the same computational procedures.

The information collected by the sensors in a sensor field
is known to be rich in correlation structures. When the
distance between two sensors shrinks, the difference between
information generated by the two sensors also shrinks. The
optimal process of gathering such correlated data should make
use of such correlation to compress the data to the best possible
extent as being routed to the destination. Slepian-Wolf coding
theorem [2] establishes the possibility for such a compression
technique without a sensor knowing the correlated information
generated by the neighboring sensors. It suffices to know
the correlation structure between the information produced
by the two sensors. In principle, all what is required to
know by a sensor (source)X to compress up to a rate
exceeding the conditional entropyH(X|Y ) bits/sample so
that to reproduceX with the neighboring sensor outputY as
side information, is the correlation structure in terms of joint
probability mass functionPXY (x, y). The joint probability
mass function should also be known at the decoder. In [3],
the authors presented a constructional approach to achieve this
compression rate using channel codes. This has been followed
by significant studies on achieving any point on the Slepian-
Wolf rate region as well as the extension of the technique
to more than two correlated sources [6]. Linear block codes,
convolutional codes, turbo codes, and low density parity check
codes have been among the candidates being studied for
the distributed compression of correlated data. In this paper,
we show that wireless sensor networks can greatly benefit
from a joint approach to distributed coding and encryption of
correlated data with the use of channel codes for distributed
compression.

As Advanced Encryption Standard (AES) [8] is of wide
acceptance as the best known cipher system, we incorporate
the distributed compression into AES by augmenting atomic
encryption primitives therein so as to achieve both compres-
sion and security features. Ten round AES cipher has been part
of mandated and optional components to achieve security in
wireless local area networks (LAN) namely IEEE 802.11i stan-
dard. The security features, Wi-Fi Protected Access 2 (WPA 2)
Of IEEE 802.11i use AES cipher in its mandated CCMP mode
and the optional offset code book (OCB) mode. In particular,



the OCB mode which is claimed to have superior performance
uses AES cipher for encrypting data. OCB mode proposal to
NIST for a block-cipher mode of operation simultaneously
provides privacy and authenticity [16]. In this paper we present
our findings on the feasibility of joint distributed compression
and encryption of correlated data and discuss an approach
using Reed-Solomon (RS) code for the distributed compres-
sion. In Section II to follow we discuss the concepts behind
the proposed approach and establish the results showing the
feasibility of joint distributed compression and encryption. The
proposed High Diffusion Distributed Compression (HDDC)
is elaborated in Section III. In Section IV, we present the
implementation of joint compression and encryption using
HDDC technique and discuss the performance of the approach
and the savings in computational cost. Section V concludes the
paper.

II. FEASIBILITY OF JOINT DISTRIBUTED CODING AND

ENCRYPTION

The problem addressed in this work is as follows. There
are two sensorsX andY generating correlated information in
the form of sequences of symbols in Galois field of28. The
correlation is such that any block ofn consecutive symbols
generated byX differ at most byt(< n) symbols fromn con-
secutive symbols simultaneously generated byY . As per the
Slepian-Wolf theorem [2],X can be compressed to achieve a
minimum bit requirement approaching the conditional entropy
H(X|Y ) and sent toY so as to perfectly recoverX with
the knowledge ofY . The sensorX does not require to know
Y to achieve this. In the joint distributed compression and
encryption problem we consider, we also need to encryptX
and produce a cipher-textEX such that an adversary without
the knowledge of cipher key(s) cannot infer any statistics
on X by observing EX . In other words we require the
conditional probability distributionP (X|E) to be equal to the
probability distributionP (X) [10]. Except with one-time-pad
based key addition [7], the perfect secrecy is known to be
practically infeasible. Nevertheless, ciphers are considered to
be computationally secure if (a) the time required to break
the cipher is more than the useful time of the data being
encrypted and (b) the cost of computation to break the cipher
is more than the value of the information [11]. In AES cipher,
this is achieved via the round functions where each round
consists of a sequence of cryptographic primitives namely, key
addition, substitution, row shifting, and column mixing. We
show here that the key addition and substitution operations
do not alter the Hamming distance between the correlated
sourcesX and Y . In particular key addition maintains the
bit-wise Hamming distance and substitution maintains byte-
wise Hamming distance which suffices to achieve our goal of
preserving the symbol-wise Hamming distance. The purpose
of row-shifting and column mixing operation being to de-
correlate two plain-texts that are correlated, by the diffusion
process, and since the compression ofX using linear block
code also achieves this goal, we can achieve both compression

and diffusion by the same set of computational steps at once
leading to significant savings in computation.

A. Hamming distance under key XOR operation

The following Lemma establishes that bit-wise Hamming
distance remains unchanged under key addition operation.

Lemma 1:Let x andy be twon-tuples inFn
2 (binary) and

K be a third suchn-tuple representing the secret key. Then

dH(x⊕K, y ⊕K) = dH(x, y) (1)

wheredH(., .) is the bit-wise Hamming distance.
Proof: The Hamming distance betweenx andy can by

found by the XOR operation followed by computation of the
weight i.e.,dH(x, y) = w(x ⊕ y). For example ifx = 01001
andy = 11010 thenx⊕ y = 10011 andw(x⊕ y) = 3 which
is the Hamming distance betweenx andy. Therefore we can
also write

dH(x⊕K, y ⊕K) = w((x⊕K)⊕ (y ⊕K)) (2)

The operation XOR operation⊕ is associative. Therefore we
can rewrite (2) as

dH(x⊕K, y ⊕K) = w((x⊕ y)⊕ (K ⊕K))
= w(x⊕ y)⊕ 0
= w(x⊕ y)
= dH(x, y)

thus we prove (1). In the above0 represents an all zeron −
tuple.

It can be easily verified that this Lemma is also valid when
x, y, and k are n-tuples where the elements are from Galois
field, GF (2m) for any positive integerm.

B. Correlation under substitution operation

An S-box in AES system performs substitution of a symbol
with another so that, when combined with XOR operations
with secret keys (key addition) provides resiliency against
differential cryptanalysis [4][11]. In the substitution layer of
AES cipher, each byte of the plain-text is uniquely mapped
to another byte in a one-to-one manner. Obviously, the byte-
wise Hamming distance between two multi-byte blocks of
data does not change under the substitution operation. Further,
substitution operation can be considered a non-linear operation
at bit level, and a linear operation if considered byte-wise. We
show in the sequel that the conditional entropyH(X|Y ) is
preserved under linear or non-linear mapping as long as the
mapping is one-to-one.

Lemma 2:Let the random variablesX and Y assume
values in the discrete sets respectively{xi|i = 1, · · · , n}
and{yi|i = 1, · · · , n}. If the joint probability of the random
variablesX and Y is symmetric such thatp(X = xi, Y =
yj) = p(X = xj , Y = yi) or simply p(xi, yj) = p(xj , yi)
for all i, j = 1, · · · , n then the conditional entropies hold the
resultH(X|Y ) = H(Y |X).



Proof: p(xi, yj) = p(xj , yi) implies the equality of
marginal probabilities i.e.,p(xi) = p(yi) leading top(yj |xi) =
p(xj |yi). By definition,

H(X|Y ) =
n∑

i=1

p(Y = yi)H(X|Y = yi)

= −
n∑

i=1

p(yi)
n∑

j=1

p(xj |yi) log2 p(xj |yi)

= −
n∑

i=1

n∑

j=1

p(xj , yi) log2 p(xj |yi)

= −
n∑

i=1

n∑

j=1

p(yj , xi) log2 p(yj |xi)

= H(Y |X)

Lemma 3: If the mappingX → U = g(X) is one-to-one,
then

H(Y |g(X)) = H(Y |X) (3)
Proof: With one-to-one mapping we havep(X =

x) = p(u = g(X = x)) and similar result holds for joint
probabilities. The result is self explanatory from the definition
of conditional entropy.

Theorem 1:If (a) the joint probability matrix ofX andY
is symmetric (b) the mappingX → U = g(X) is one-to-one
and then

H(g(X)|Y ) = H(X|Y ) (4)
Proof: From Lemma 2 we have

H(g(X)|Y ) = H(Y |g(X)) (5)

From Lemma 3 we have

H(g(X)|Y ) = H(Y |X) (6)

Again from Lemma 2 we have,

H(g(X)|Y ) = H(X|Y ) (7)

III. PROPOSEDHIGH DIFFUSION DISTRIBUTED

COMPRESSION(HDDC) FOR LOSSLESS DECODING WITH

SIDE INFORMATION

In this section, the details on the compression with trans-
forms for diffusion and lossless decoding with side informa-
tion are given. The use of linear block codes for lossless
distributed compression is based on the results as follows.
Let x be ann-tuple generated at the sourceX and y be the
n-tuple simultaneously generated at the correlated sourceY .
Thenx andy can be considered as noise corrupted versions of
valid codewords generated with an(n, k) linear block code. If
dmin is the minimum Hamming distance between any pair
of valid codewords, then for anyn-tuple x, there exists a
valid codeword within a Hamming distancet = bdmin

2 c, the
maximum number of errors correctable by the linear block

code. Further, if the Hamming distance betweenx and y is
≤ t we have,

x = cx + ex

y = cy + ey

y = x + ec = cx + ex + ec

where cx, cy are the valid codewords within a Hamming
distance≤ t, ex andey are the error patterns corresponding to
respectivelyx and y, andec is the error pattern representing
the correlation betweenx andy.

Now let H be the(n− k)× n parity check matrix (which
is the generator matrix of the dual space of the code space).
Then the projection ofn-tuple x and y onto the dual space
results in the syndromesSx = xHT andSy = yHT i.e.,

xHT = cxHT + exHT = 0 + Sx

yHT = cyHT + eyHT = 0 + Sy

(8)

whereHT is the transpose ofH. Further we may write

Sy = yHT = xHT + ecH
T = Sx + Sc

i.e.,

Sc = Sx + Sy (9)

Equation (9) results from the fact that addition and sub-
traction are equivalent inGF (2m) for any integerm. Note
that the syndromes are(n − k) tuples. This result leads
to the method of compression ofX with the knowledge
on correlation withY and the lossless decoding with the
knowledge ofY . The transmitter can computeSx and send
to the receiver whereY is available. Then the syndromeSc

can be computed using the received syndromeSx andy. The
error patternec corresponding toSc can be computed using
a syndrome decoding technique. With RS code, Berlekamp-
Massey algorithm provides an iterative decoding procedure
that eliminates the need for storing syndromes and error
patterns. Then-tuple x can be found from,

x = y + ec (10)

Since then-tuple x is transformed into then − k tuple
Sx prior to transmission, we achieve a compression ratio
of n

n−k . In the design of joint compression and encryption,
the transform used for compression, namely the parity check
matrix of the underlying linear block code, should achieve
the required spreading, or thediffusion otherwise achieved
by the row shifting and column mixing operations in the
AES cipher. Diffusion is a requirement in cipher to achieve
robustness against (a) differential cryptanalysis and (b)linear
cryptanalysis. It has been shown in [13] that the diffusion



can be effectively measured using the branch number of a
function. The Definitions 1-2 and Lemma 4 provides a concise
description of relevant branch number functions and their
properties.

Definition 1: The differential branch number of a transfor-
mationφ mapping an-tuple onto al-tuple is defined as

Bdiff
d = min

dH(x1,x2)6=0
{dH(x1, x2) + dH(φ(x1), φ(x2))} (11)

wherex1 andx2 are two inputn-tuples(x1 6= x2) anddH is
the Hamming distance in number of symbols [13].

Definition 2: The linear branch number of a transformation
φ on mapping an-tuple x onto al-tuple is defined as

Blin
d = min

x6=0
{w(x) + w(φ(x))} (12)

where w(.) is the Hamming weight in number of non-zero
symbols.

Lemma 4:The upper bound of branch number isl + 1.
Proof: With a diffusion optimized transformφ, change in

a single symbol ofx1 should result in changes in all the output
symbols leading to{dH(x1, x2)+ dH(φ(x1), φ(x2))} = l +1
which is the minimum (maximum of this sum beingn + l)
and therefore is the branch number by Definitions 1 and 2.

The design ofdiffusion layer in Rijndael cipher adopted
in AES, ensures this upper bound for all possible values
of linear/differential weights of the input [14]. We show in
Theorem 2 that the necessary and sufficient condition to
achieve such linear and differential branch number properties
is that the transformφ be a totally positive matrix. Formal
definition of totally positive matrix is as follows.

Definition 3: A rectangular matrixA = (aij), i =
1, · · · , n; j = 1, · · · , l is calledtotally positiveif all its minors
(determinants of sub-matrices) of any order are positive [12].

Although the original definition in [12] is for matrices of
real values, it can be easily extended to the case with elements
in Galois fieldGF (2m).

Theorem 2:Over a fieldF , the linear transformation of
n-tuples inn dimensional spaceV n into l-tuples in l(6 n)
dimensional spaceV l by an operationy = xA achieves the
branch number properties if (sufficient) and only if (necessary)
A is a totally positive matrix.

Proof: First we prove that the necessary condition to
satisfy the branch number properties is the total positivity.
From Definitions 1, 2, and Lemma 4, for transformationA to
be diffusive, we require that

d(x1, x2) + d(x1A, x2A) > l + 1

⇒ w(x1 ⊕ x2) + w(x1A⊕ x2A) > l + 1 (13)

SinceA is a linear transformation, (13) implies

w(x1 ⊕ x2) + w((x1 ⊕ x2)A) > l + 1 (14)

Let x1 ⊕ x1 = e. Then (14) reduces to

w(e) + w(eA) > l + 1 (15)

w(e) min{w(eA)}
0 0
1 l
2 l− 1
...

...
r l− (r − 1)
...

...
l 1

> l + 1 0

TABLE I

M INIMUM CHANGE IN THE OUTPUT TO MAINTAIN BRANCH NUMBER .

The minimum values ofw(eA) corresponding to the values
of w(e) to satisfy (15) are as given in Table I.

It can be seen that forw(e) = r, min{w(eA)} = l−(r−1).
Let the columns ofA be denoted byhj , j = 1, · · · , l. Then
with a givenr for r = 1, · · · , l we requireA to have at most
r−1 columns such thate·hj = 0. This implies that in ther×l
sub-matrix formed by selecting the rows ofA corresponding to
the non-zero elements ofe, everyr×r sub-matrix (contiguous
as well as non-contiguous) should be of full rank. Since ther
non-zero elements ine can occur at anyr out of n positions,
the above implies that everyr× r sub-matrix ofA should be
of full rank i.e., positive forr = 1, · · · , l. Thus by Definition
3, A should be a totally positive matrix.

Next we prove that the total positivity of the transformation
matrix is sufficient to achieve the maximum branch number.
If A is a totally positive matrix, everyr × r sub-matrix is
positive i.e., has full rank forr = 1, · · · , l. Let the rows of
A be ai, i = 1, · · · , n. Then the linear combination of any
r rows,

∑r
i=1 αiai with αi > 0 results in anl-tuple with at-

mostr−1 zero elements leading tow(e)+w(eA) = l+1 and
hence achieves the branch number. While this proof explicitly
addresses the case of differential branch number property, the
case of linear branch number property is implicit.

From the Theorem 2 above, we achieve a test for branch
number property for any given transform. Further it serves as
a guideline for designing transforms to achieve the desired
branch number properties. While the testing of all possible
square sub matrices of a matrix for positivity has an exponen-
tial order complexity, Theorem 9 of [17] provides a method
of polynomial order complexity. This theorem states that a
square matrix of size is totally positive if and only if all its
initial minors are positive. The initial minors are minors that
are contiguous and include the first row or the first column.
This approach reduces the number of minors required to be

tested for ann× n matrix from

(
2n
n

)
− 1 to n2.

One known example of totally positive matrix is thegener-
alized Vandermondematrix [12] given by






1 a1 a2
1 · · · a

(p−1)
1

1 a2 a2
2 · · · a

(p−1)
2

...
...

...
. . .

...

1 aq a2
n · · · a

(p−1)
n




(16)

where0 < a1 < a2 < · · · < an.
It is seen that the parity check matrix of non-systematic RS
code as in (17) is a good example of Vandermonde matrix.
Therefore RS code in non-systematic form provides a readily
applicable transform for diffusive compression by syndrome
forming.




1 α α2 · · · α(p−1)

1 α2 α4 · · · α2(p−1)

...
...

...
. . .

...
1 αq α2 · · · αq(p−1)


 (17)

In (17), α is a root of theprimitive polynomialused in the RS
code.

It is also possible to obtain a transform for diffusive com-
pression starting with a systematic RS code. In essence, we are
required to suitably augment the parity check matrix of the RS
code under consideration. In the usual implementation of linear
block codes, the generator matrix is in the systematic form and
one can obtain the parity check matrixH with straightforward
manipulation of generator matrix. TheH matrix in systematic
form in this scenario is given by,

H =
(

P I
)

(18)

whereP is an (n − k) × k full rank matrix andI is a (n −
k) × (n − k) identity matrix. Obviously, thisH matrix may
not comply with the total positivity criteria and therefor is not
suitable for diffusive compression. To remove this effect, the
syndromeSx can be post multiplied by a mixing transform or
equivalently, the matrixH can be augmented to achieveHa

by the following transformation.

SxA = x(HT ·A) = xHT
a (19)

where

HT
a =

(
PT

I

)
A (20)

or

HT
a =

(
PT ·A

A

)
(21)

In this,A is a(n−k)×(n−k) full rank matrix. As an example,
the following matrix corresponds to an RS code systematic
form with n = 7, k = 3, andm = 8.

H =




218 145 30 1 0 0 0
112 130 216 0 1 0 0
126 161 231 0 0 1 0
255 177 116 0 0 0 1




The following matrixA can be used obtain augmented matrix.

A =




2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2




Thus we have

Ha =




187 210 159 2 1 1 3
18 167 28 3 2 1 1
73 228 204 1 3 2 1
203 146 26 1 1 3 2




where the entries of the matrices are decimal representation
of the elements inGF (28). Initial minor test confirms that this
transform satisfies total positivity and hence achieves branch
number property.

A. Special cases

It is seen in our approach to compression, all then-tuples
in a coset get mapped onto the same syndrome. Nevertheless,
the minimum Hamming distance between a pair ofn-tuples in
the same coset beingdmin = (n− k) + 1, the branch number
property namely the conditiondH(x1, x2) + dH(Sx1 , Sx2) ≥
|Sx| + 1 is satisfied since|Sx| = n − k for a pair of n-
tuples from the same syndrome. It should also be noted that
an zero input will result in an all zero output and therefore
the linear branch number property is not achieved in this case.
Nevertheless, this special case exist in any cipher system.

IV. I MPLEMENTATION AND SIMULATION RESULTS

In the implementation of joint compression and encryption
scheme, the compression is included in the first layer of
ten round AES cipher as the diffusion layer as shown in
Fig. 1. The row shifting and column mixing operations in
the first round is replaced by the High Diffusion Distributed
Compression (HDDC). Similarly, during the decryption, the
inverse-column mix and inverse-row shift operations of the
last round is replaced by the High Diffusion Distributed
Decompression (HDDD). In the software implementation of
our joint distributed compression and encryption scheme, we
used (7, 3) RS code i.e.,n = 7, k = 3 with the following
parity check matrix of elements inGF (28) obtained with the
primitive polynomial inGF (2) given byα8+α4+α3+α2+1
(285 decimal).

H =




1 2 4 8 16 32 64
1 4 16 64 29 116 205
1 8 64 58 205 38 45
1 16 29 205 76 180 143


 (22)



Fig. 1. Flow chart of the proposed joint distributed compression and encryption (a) compression/encryption (b) decompression/decryption.

A. Compression and savings in computation

This implementation achieves a lossless compression ratio
of n

n−k = 7
4 . This compression ratio remains same for both

systematic and non-systematic forms for the code. Further,
there is no penalty in compression ratio due to the use of
the compression process as the diffusive layer in the round
based cipher. Nevertheless, savings in computation results
compared to a concatenated compression-encryption system.
In particular, the savings are in the row shifting and column
mixing operations otherwise necessary in the diffusion layer of
the AES encryption otherwise necessary in the concatenated
approach. Since the diffusion layer in a round is known to
eliminate the correlation between any two blocks of data,
extension of the compression process to more than one layer
appears to be hard at this time1.

In the conventional AES cipher, 128 bit blocks of data are
arranged in a4× 4 matrix [13]. This matrix of data undergo
initial key addition and substitution phase. Each of the round
functions to follow consists of a diffusion layer implemented
by the row shifting and column mixing operation followed by
the addition of round key and substitution. In the proposed
joint compression and encryption scheme, we start with a
matrix of 7 × 4 bytes of data. Each column of7 bytes are
compressed using syndrome forming transform obtained from
the (7, 3) RS-code. This leads to a4× 4 data matrix. The key
addition and substitution function of the first round and the
functionalities of remaining rounds follow the AES cipher.

The savings in computational complexity of the joint com-
pression and encryption approach compared to a concatenated
system in a layer (compression followed by encryption) is

1We are currently investigating the possibilities to extend the compression
to more than one layer with the use of successive projection onto dual space
of RS coding.

as follows. As for the computational complexity of basic
operations on a byte namely addition, substitution, and mul-
tiplication we assume one unit of complexity. The actual
complexity of these different operations may vary, and highly
dependent on the particular architecture. Nevertheless with
reasonably optimized architecture, energy consumptions for
these atomic operations will be comparable and may not be
drastically different at the least. In the joint approach, we
start with a matrix of7 × 4 bytes of row data. Thus the
initial key addition requires7 × 4 = 28 additions. Equal
number of substitutions follows. In the compression phase
there are28 multiplications and equal number of additions.
In total there are28 × 4 = 112 operations. Compared to
that, in a concatenated approach (compression followed by
encryption), the compression requires28 multiplications and
that many additions. The compression stage has an output
of 4 × 4 = 16 bytes. In the encryption stage there are16
key addition operations and16 substitutions. The row shifting
operation requires16 multiplications and that many additions.
The column mixing operation also requires equal amount of
computations. Thus there are2× 28 + 4× 16 = 120 units of
operations in total. Similarly, at the decoder, the joint approach
requires28 substitutions and28 additions during key addition
in addition to the decompression procedure leading to2×28 =
56 units of computations. In contrast, the concatenated system
requires8 × 16 = 128 units of computation in the inverse
column mixing, row shifting, substitution, and key addition
operations prior to decompression. Thus we have a saving
of (120 + 128) − (112 + 56) = 80 units. The total amount
computation in the compression and first round of AES cipher
in the concatenated system being2×28+8×16 = 184 units,
we have a saving of 43.5% in this round.

Considering all10 rounds of AES cipher we have2 ×
28 + 10 × 8 × 16 + 4 × 16 = 1400 units of computation
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Fig. 2. Decoder performance of joint distributed compression and encryption
of correlated data.

thus resulting in a saving of 5.7%. Note that if a technique to
progressively compress at more than one round is achievable,
larger saving will result. The computational results from the
implementation shows that in all the cases with Hamming
distances≤ t between the correlated vectorsx and y, x is
perfectly decoded with the knowledge ofy in compliance with
the theoretical conclusions.

B. Decoding Error Performance

In this section, we illustrate the decoder performance in
terms of the decoding error rates. Basically, since the Reed-
Solomon code being used in the compression has the capability
to decode the transmitted information perfectly when the
Hamming distance between the compressed block of data and
the side information is within the correctable limit. In our
simulations, the source to be compressed was a stream of iid
bits where a bit assumes0/1 with equal probability. The side
information was a noise corrupted version of the source. The
noise was modeled using binary symmetric channel (BSC)
with a variable cross-over probabilityp. The source was jointly
compressed and encrypted28 bytes at time resulting in a16
byte block thus achieving a compression ration of1.75. The
diffusive compression layer processes data blocks of7 bytes
at time to output a4 byte compressed data to transmit. When
the number of bytes in error are less than or equal to2, the
data is perfectly. A byte is in error whenever one or more bits
in the byte are in error.

Fig. 2 shows the post-decoding bit error rate against the
cross-over probabilityp. Below p = 0.005, the decoding error
is observed to be zero (within a significantly large sample
size). Also shown in the figure is the Hamming distance
between the source and the side information (bits) as a fraction
of the number of bits in the block. Asp is increased the
decoding error approaches the Hamming distance and the two
converge aroundp = 0.1.

V. CONCLUSION

In this paper We presented a joint approach to distributed
compression and encryption of correlated data such as in wire-

less sensor networks. It was shown that under key addition and
substitution primitives of encryption process, the correlation
between blocks of data is preserved leading to the possibility
of compression as per Slepian-Wolf theorem along with such
encryption primitives. We also presented theorems establishing
the necessary and sufficient conditions for diffusive transform
such that to achieve the branch number property required
in the diffusion layer of state of the art data encryption
schemes. These theorems provided systematic methods to
design compression functions via linear block codes so that to
achieve diffusion property required in joint distributed com-
pression and encryption. We presented examples of diffusive
transform suitable for compression based on RS-codes and
discussed the implementations. We showed that it is possible
to achieve significant savings in computational complexity by
the joint distributed compression and encryption compared to
a concatenated approach. Further savings in computational
complexity will be possible with extension of the approach
to more than one layer of the round based cipher.
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