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Securing transmission over a wireless network is especially challenging, not only because of the inherently insecure nature of the
medium, but also because of the highly error-prone nature of the wireless environment. In this paper, we take a joint encryption-
error correction approach to ensure secure and robust communication over the wireless link. In particular, we design an error-
correcting cipher (called the high diffusion cipher) and prove bounds on its error-correcting capacity as well as its security. Towards
this end, we propose a new class of error-correcting codes (HD-codes) with built-in security features that we use in the diffusion layer
of the proposed cipher. We construct an example, 128-bit cipher using the HD-codes, and compare it experimentally with two
traditional concatenated systems: (a) AES (Rijndael) followed by Reed-Solomon codes, (b) Rijndael followed by convolutional
codes. We show that the HD-cipher is as resistant to linear and differential cryptanalysis as the Rijndael. We also show that any
chosen plaintext attack that can be performed on the HD cipher can be transformed into a chosen plaintext attack on the Rijndael
cipher. In terms of error correction capacity, the traditional systems using Reed-Solomon codes are comparable to the proposed
joint error-correcting cipher and those that use convolutional codes require 10% more data expansion in order to achieve similar
error correction as the HD-cipher. The original contributions of this work are (1) design of a new joint error-correction-encryption
system, (2) design of a new class of algebraic codes with built-in security criteria, called the high diffusion codes (HD-codes) for
use in the HD-cipher, (3) mathematical properties of these codes, (4) methods for construction of the codes, (5) bounds on the
error-correcting capacity of the HD-cipher, (6) mathematical derivation of the bound on resistance of HD cipher to linear and
differential cryptanalysis, (7) experimental comparison of the HD-cipher with the traditional systems.
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1. INTRODUCTION

The wireless communication medium, as opposed to the
wired counterparts, is noisy and open to intruders. Hence,
additional level of error protection and security is required
to make the wireless network as reliable and secure as the
wired network. The issue of using cryptographically secure
ciphers [1] in noisy channel environments (like the wireless
networks) is that the very same properties (avalanche effect)
that gives ciphers their cryptographic strength makes them
sensitive to channel errors [2]. In block ciphers (which op-
erates on a fixed block length of data at a time), a single bit
flip in the encrypted data can cause a complete decryption
failure. This sensitivity causes retransmissions thus reducing
the overall throughput.

To improve the throughput in noisy environments, chan-
nel coding is performed after encryption. Unfortunately, per-
forming both encryption and coding separately can poten-
tially prove to be too computationally intensive for many
wireless end devices (e.g., personal data assistants (PDA),

mobile phones). In fact, as both encryption and coding can
be performed at the link layer, a single operation which does
both encryption and error correction would be preferable.

Although many mathematical relationships exist be-
tween error correction and cryptography [3–5], there have
been only a few attempts to build error-correcting ciphers.
Some of the notable results include the McEliece cipher
[6], the Hwang and Rao cipher [7], and the Godoy-Pereira
scheme [8]. Some of the issues with these ciphers are (a)
these systems were not designed based on well-known se-
curity principles (and hence are vulnerable to various at-
tacks [9]), (b) they are not as efficient as traditional for-
ward error-correcting (FEC) codes in terms of error cor-
rection capability, as they trade error-correction capacity
to achieve security. In fact, in order to achieve meaningful
error-correction capacity, the parameters of the system have
to be very large, leading to higher computational complex-
ity. The difficulty in designing error-correcting ciphers arise
from the fact that error correction and encryption work at
cross purposes with each other. For example, the avalanche
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effect, which is desirable for security, causes too much er-
ror expansion thereby undermining the goal of an error-
correcting code.

In this paper, we propose an error-correcting block ci-
pher called the high diffusion (HD) cipher. The HD cipher,
like standard block ciphers [10], is composed of several iter-
ations of the round function and mixing with the secret key.
A round function is composed of a nonlinear substitution
layer and a linear diffusion layer. The error-correcting prop-
erty of the HD cipher is due to the use of a novel class of codes
called high diffusion codes that we propose in this paper. We
show that these codes possess maximum diffusion strength
and at the same time achieve optimal error correction. It can
be shown that a subclass of popular error-correcting codes
can be transformed into HD codes by appropriate message
transformations. Specifically, we have shown that it is pos-
sible to convert RS codes to HD codes using some easy-to-
implement message transformations (see Section 2.3).

We prove that the HD ciphers are as secure as the Rijndael
cipher (used in advanced encryption standard [11]) against
the well-known differential and linear cryptanalysis. To as-
sess the performance of our proposed cipher, we compare it
with two traditional concatenated systems. One that uses the
Rijndael cipher [12] followed by Reed Solomon codes [13],
and the other that uses the Rijndael followed by convolu-
tional codes. Simulation results show that error correction
capacity of traditional concatenated systems that use Reed
Solomon codes are comparable to that of the proposed HD
cipher and those that use convolutional codes require 10%
more expansion to match the performance of HD cipher. The
main contributions of this work are (1) design of a new joint
error-correction-encryption system, (2) design of a new class
of algebraic codes with built-in security criteria, (3) a study of
mathematical properties of these codes, (4) methods for con-
struction of the codes, (5) bounds on the error-correcting
capacity of the HD-cipher, (6) mathematical derivation of
the bound on resistance of HD cipher to linear and differen-
tial cryptanalysis, (7) experimental comparison of the HD-
cipher with the traditional system.

The rest of the paper is organized as follows. In Section 2,
we propose a new class of algebraic codes, the high diffusion
codes. This is followed by our proposed error-correction ci-
pher, the high diffusion cipher in Section 3. Security anal-
ysis of HD cipher against well-known cryptanalytic attacks
is performed in Section 4. In Section 5, we prove theoreti-
cal bounds on the burst error-correction capacity of HD ci-
pher. Simulation results are presented in Section 6 followed
by conclusion in Section 7.

2. PROPOSED HIGH DIFFUSION CODES

Since the goal is to design a joint error-correction-encryption
code that does not sacrifice error resilience or security, we
derive two criteria that these codes must satisfy as follows.

(i) Security criterion: since the new code will be used as a
diffusion layer, it needs to spread the statistical prop-
erties of the input block to a large section of the out-
put block. The spreading power, diffusion, is measured

using the concept of branch number. The differential
branch number of a function φ, with an input vector �x
and the output vector φ(�x) is defined as

B(φ) = min
(
Hd
(
�xi, �xj

)
+ Hd

(
φ
(
�xi
)
,φ
(
�xj
)))

, (1)

where, i �= j, i, j ∈ {1, . . . , 2|�x|}, and Hd is the symbol
Hamming distance. To provide good security the HD
codes must have maximum branch number.

(ii) Error resilience criterion: the number of errors that can
be corrected by a code is governed by the pairwise min-
imum distance between the codewords [13]. A large
minimum distance would ensure good error-resilience
property.

2.1. Definition of HD codes

Let us consider an [n, k, q] block code, defined on the Galois
field (GF) of order q; where n refers to the number of output
symbols and k refers to the number of input symbols. The
HD codes are defined as follows.

Definition 1. An [n, k, q, b] code C is said to be a high diffu-
sion (HD) code with the encoding operation, θ, and branch
number b, if it satisfies the following inequality for all i, j ∈
{1, 2, . . . , (qk − 1)} and i �= j:

b = B(θ) � min
(
Hd
(

mi, m j
)

+ Hd
(

ci, c j
)) ≥ n + 1, (2)

where ci = θ(mi).

That is, the branch number of θ is lower bounded by n+1,
since the maximum output difference corresponding to a sin-
gle nonzero symbol input difference is n. The upper bound
for branch number is n+1. Hence, the branch number of HD
codes should be exactly equal to n + 1.

2.2. Properties of HD codes

In this section, we show that the HD codes possess the max-
imum possible diffusion and error correction capacity as de-
sired in the design criteria.

2.2.1. Optimality in diffusion

By definition, HD code has a branch number of n+1. For any
Boolean transformation with n-tuples as its output the maxi-
mum branch number possible is n+1 [14]. As the HD coding
operation θ is a Boolean transformation from k-tuples to n-
tuples with the lower bound on the branch being n + 1, they
achieve optimal diffusion.

2.2.2. Optimality in error correction

We prove that HD codes are maximum distance separable
codes (MDS) [15], and hence show that they are optimal in
terms of the minimum distance of the code.

Theorem 1. An [n, k, q] HD code C with encoding operation
θ is an MDS code with dmin = n− k + 1.
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Proof. Consider two codewords ci and c j and mi and m j be
the corresponding messages. By the definition of HD codes
(Definition 1), we have

Hd
(−→c i,

−→c j
)

+ Hd
(−→mi,

−→m j
) = B(θ),

Hd
(−→c i,

−→c j
)

+ Hd
(−→mi,

−→m j
) = n + 1,

Hd
(−→c i,

−→c j
) = n−Hd

(−→mi,
−→m j
)

+ 1.

(3)

Since the messages are from a k-dimensional space and mini-
mum Hd(−→c i,

−→c j) is achieved when Hd(−→mi,
−→m j) is maximum,

we have

max
i,i �= j

(
Hd
(−→mi,

−→m j
)) = k,

∴ dmin = n− k + 1.
(4)

From (4) we see that HD codes satisfy the Singleton bound
[15] with equality, which implies that HD codes are in fact
MDS codes.

The bound on error-correction capacity, t, of HD codes
is derived from the minimum distance between codewords as
follows:

t =
⌊
dmin

2

⌋
,

∴ t =
⌊
n− k + 1

2

⌋
.

(5)

2.2.3. Bound on n given q

One of the necessary conditions for the existence of an
[n, k, q] HD code is n < q (Theorem 2).

Lemma 1. For any q > 1, qx ≥ q+1 when x > 1. Therefore, for
n > k > 1 the number of messages and the number of codewords
is greater than the number of symbols.

Lemma 2. The first q messages can always be assigned code-
words that satisfy HD code property in an [n, k, q, b] HD code.

Proof. A trivial HD code assignment for the first q messages
is the [n, 1, q] repetition code assignment.

Theorem 2. For a given [n, k, q, b] HD code, n ≤ q − 1.

Proof. To prove n ≤ q−1 for an [n, k, q, b] HD code we show
that, for n > q − 1, branch number of b ≥ n + 1 cannot be
satisfied with respect to all messages.

To prove this we assume the following, without loss of
generality.

(i) For all high diffusion codes the all-zero message −→m0

is mapped to the all-zero codeword −→c0.

(ii) The first q messages can be assigned codewords that
satisfy branch number property (see Lemmas 1 and 2),

−→m0 ←→ −→co = {
0 0 · · · 0

}

−→m1 ←→ −→c1 = {
c1,1 c1,2 · · · c0,n

}

−→m2 ←→ −→c2 = {
c2,1 c2,2 · · · c0,n

}

−→m3 ←→ −→c3 = {
c3,1 c3,2 · · · c3,n

}

... ←→ ... = ...
...

...
...

...
...−−−−→m(q−1) ←→ −−−→c(q−1) =

{
c(q−1),1 c(q−1),2 · · · c(q−1),n

}

−→mq ←→ −→cq = {
cq,1 cq,2 · · · cq,n }

... ←→ ... = ...
...

...
...

...
...

(6)

Consider the codeword assignment above, where the (q − 1)
messages form −→m1 to −→m(q−1) are of weight one, that is, −→mi =
0 � (k − 1)‖qi‖, where i ∈ {1, 2, . . . , q − 1}. The message−→mq = 0 � (k − 2)‖1‖0 is also a weight one message, but
has a distance of two form messages −→m1 to −→mq−1, that is,
Hd(−→mi,

−→mq) = 2 for all i ∈ {1, 2, . . . , q − 1}.
Messages−→m1 through−→m(q−1) are at a distance of one form−→m0, therefore to achieve a branch number of b = n + 1

the codewords corresponding to these messages should be of
weight n. That is,

Hd
(−→c i,

−→c 0
) = n ∀i ∈ {1, 2, . . . , q}. (7)

Now for all i, j ∈ {1, 2, . . . , q − 1} and i �= j, the difference
between messages is

Hd
(−→mi,

−→m j
) = 1. (8)

Therefore, the differences between the codewords corre-
sponding to these messages must be n, that is,

Hd
(−→c i,

−→c j
) = n. (9)

Now let us consider the code assignment for the first q − 1
messages as a separate matrix shown as follows:

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

c1,1 c1,2 c1,3 · · · c1,n

c2,1 c2,2 c2,2 · · · c2,n

c3,1 c3,2 c3,2 · · · c3,n
...

...
...

...
...

c(q−1),1 c(q−1),2 c(q−1),3 . . . c(q−1),n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (10)

Let V(α) be the αth column vector of the matrix V, that is,

V(α) = {c1,α, c2,α, c3,α, . . . , c(q−1),α
} ∀α ∈ {1, 2, 3, . . . ,n}.

(11)

We see that Vi,α �= V j,α for all α ∈ {1, 2, 3, . . . ,n} and for all
i �= j, i, j ∈ {1, 2, 3, . . . , q − 1}. That is, all the entries in each
of the columns of V are unique. If this is not the case, (8)
cannot be satisfied.
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Now try to assign a codeword to the qth message. As the
difference between −→mq and −→m0 is one, the weight of the as-
signed codeword −→c q should be n, that is,

Hd
(−→mq,−→m0

) = 1,

∴ Hd
(−→c q,−→c 0

) = n.
(12)

This implies −→c q cannot have “0” as one its components.
Comparing −→mq with the messages −→mi for all i ∈

{1, 2 . . . , q − 1}, we have

Hd
(−→mq,−→mi

) = 2,

Hd
(−→c q,−→c i

) = n− 1.
(13)

In other words, to achieve a branch number b = n + 1, −→c q

needs to have a distance of at least n − 1 with respect to −→c i

for all i ∈ {1, 2 . . . , q − 1}.
We now try to assign a codeword −→c q to −→mq that satisfies

these conditions. From (8) and (9), we note that

cq,α = Vα,i ∀α ∈ {1, 2, 3, . . . ,n}, (14)

that is, the αth component of −→c q is a repetition of the αth
component of −→c i for some i ∈ {1, 2, 3, . . . ,n}. Now consider
columns α ∈ {1, 2, . . . ,n}, as all elements in −→c q are repeti-
tions of elements in some codeword from −→c 1 to −→c (q−1), we
have

∃i ∈ {1, 2, . . . , (q − 1)
} ∀α ∈ {1, 2, . . . , (q − 1)

}
,

cq,α = Vα,i.
(15)

Without loss of generality, we can assume that the ith com-
ponent of −→c q is the ith component of −→c i, that is, cq,i = ci,i.
Following this technique, we note that when we reach the qth
component of −→c q, we will have one symbol repetition corre-
sponding to each codeword−→c i for i ∈ {1, 2, . . . , (q−1)}. This
means the distance between−→c q and−→c i for i ∈ {1, 2, . . . , (q−
1)} can at most be n − 1. Now when we try to assign any
component to −→c q,q we see that this assignment will be a
repetition of the qth component of some codeword −→c i in
{−→c 1,−→c 2, . . . ,−→c q−1}, let us say −→c j . But this would mean −→c q

now and can be only n − 2 away from −→c j . This would be
a violation of the branch number condition. This situation
cannot be avoided when n > q− 1, therefore n ≤ q− 1 for an
[n, k, q, b] HD code.

2.3. Construction of HD codes

Unlike usual error-correcting codes, the definition of HD codes
involves pairs of messages and their associated codewords. This
makes deriving a closed form expression for the construction
of the codes tricky. A brute force search with backtracking
produces the complete mapping but has the highest expected
runtime. We have, therefore, developed three different short-
cut techniques to generate HD codes.

2.3.1. Coset-based search

The coset-based search makes use of cosets in the code to re-
duce the complexity of the code assignment. The cosets are

Table 1: A [3, 2, 4, 4] HD code.

Message ←→ Codeword

00 ←→ 000

01 ←→ 111

02 ←→ 222

03 ←→ 333

10 ←→ 123

20 ←→ 231

30 ←→ 312

11 ←→ 032

21 ←→ 320

31 ←→ 203

12 ←→ 301

22 ←→ 013

32 ←→ 130

13 ←→ 210

23 ←→ 102

33 ←→ 021

Table 2: Cosets and coset leaders for the [3, 2, 4, 4] HD code.

Cosets ←→ Coset leaders

{00,01,02,03} ←→ No leader

{10,20,30} ←→ 10

{11,21,31} ←→ 11

{12,22,32} ←→ 12

{13,23,33} ←→ 13

formed such that the codewords assigned to the coset lead-
ers and the rest of the coset are related to each other. Of-
ten, they are rotations of each other. This searching technique
only needs to find codewords for the coset leaders.

Example code assignments

Message-codeword assignments of an [n = 3, k = 2, q =
22, b = 4] HD code are given in Table 1. This mapping is not
unique but has several properties that are useful in analyzing
general HD codes. For example, the most useful property of
this mapping is that the set of codewords can be partitioned
into cosets such that the codewords for each of the messages
in a particular coset are rotations of each other. Table 2 iden-
tifies these cosets and their leaders for the code in Table 1.
The coset {00, 01, 02, 03} is unique in that it has no leaders.
It contains the first q messages, the codewords for which can
be defined as −→c i = i� n for all i = {0, 1, 2 . . . , (q − 1)}. The
rest of the cosets, unlike the first coset, have codewords that
are rotations of the codeword assigned to its leader. The iden-
tification of cosets speeds up the search algorithm as code-
words for only the leaders need to be found. For the [2–4]
HD code with the brute force search algorithm, we would
have to search codewords for fifteen messages, whereas using
the coset method implies finding seven mappings.
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Table 3: List of parameters of some HD codes.

Codeword
length (n)

Message
length (k)

Galois
Field GF(q)

Branch
number (b)

Error-correction
capacity (t)

3 2 4 4 0

7 3 8 8 2

7 5 8 8 1

15 9 16 16 3

15 7 16 16 4

15 5 16 16 5

15 3 16 16 6

6 4 256 7 1

2.3.2. Transformation from Reed Solomon codes

We have shown that all HD codes are MDS codes (see
Theorem 1.) Reed Solomon (RS) codes are a subclass of MDS
codes. So another way of constructing a subclass of HD codes
is to start with [q−1, k, q] RS codes and transform them into
[q−1, k, q, q] HD codes, using permutations of the message-
codeword assignments of the original RS code. Note that the
traditional method to generate an RS code cannot be directly
used to generate an HD code, because the HD codes have a sec-
ond property to be satisfied, namely, the branch number cri-
terion. The relationship between the messages of HD codes
and the messages of RS codes that generate the correspond-
ing HD codewords upon RS encoding is still an open prob-
lem. However, we have found transformations for several HD
codes. For example, to generate HD codes from [7,3,8] RS
codes [16], we multiply the message with the transformation

matrix
( 1 5 4

1 3 2
6 2 1

)
before RS encoding using the generator poly-

nomial (x − α)(x − α2)(x − α3)(x − α4). Here, α is the prim-
itive element in GF(23). Similarly, we multiply with the in-

verse transformation matrix
( 4 2 2

2 5 2
1 6 2

)
after RS decoding. A list

of the parameters of HD codes obtained using this method
is given in Table 3. As RS codes are present in most of the
communication systems and the transformations are simple
add-on operations, HD codes can be easily deployed on those
systems. The brute force generation of HD codes from RS
codes that operate in fields greater than GF(16) requires sig-
nificantly higher computational power and memory.

2.3.3. Puncturing existing codes

This gives us an easy way to generate new HD codes from
existing HD codes.

Theorem 3. Punctured HD codes are HD codes.

Proof. Let C be an [n, k, q] HD code and let C′ be the punc-
tured [n − 1, k, q] code obtained from C. Let �mi, �mj be any
two messages with their corresponding codewords �ci, �cj in C

and �c′i,�c′ j in C′. We know that C is an HD code, therefore

Hd(�mi, �mj) + Hd(�ci,�cj) ≥ n + 1. We know that, �c′i and �c′ j
are obtained by puncturing �ci and �cj in one symbol position.

Key (add./trunc.)

P

+

Cipher key

Initial round

Nonlinear trans.

Transpose

HD encode

Key (add./trunc.) +

Round key

r � 1 rounds

Nonlinear trans.

Transpose

Key (add./trunc.) +

Final round key

Final round

C

Figure 1: Block diagram of high diffusion cipher.

This implies that Hd(�mi, �mj) + Hd(�c′i, �c′ j) ≥ n. Hence, C′ is
an HD code.

3. PROPOSED HIGH DIFFUSION CIPHER (HD CIPHER)

The HD-code-based cipher (or HD cipher) encrypts n0
b bits

of plaintext to nrb bits of ciphertext, where r is the number
of encryption/decryption rounds. As HD codes cause bit ex-
pansion, nrb ≥ n0

b. The set of initial, intermediate, and final
block lengths of the HD cipher is {nib; ∀i ∈ [0 · · · r]}. The
nib bits are divided into nit symbols represented bym bits each.
All the operations in the HD cipher are performed in the Gal-
lois field of order 2m. The round transformation, ρ, is defined
as

ρ = θ ◦ π ◦ γ, (16)

where γ is the substitution layer, θ and π form the diffusion
layer. These layers are explained in the following sections.
The number of key bits nk is equal to nrb. We propose to use
the same key schedule algorithm as in Rijndael, which ex-
tends the nrb-bit cipher key into (r + 1) × nrb bits to produce
round keys {k1, k2, . . . , kr}. The r round iterated HD cipher
H is described as follows:

H[k] =σ
[
k(r)
]
◦ ρ(r)

nr−1
b ,nrb

◦ σ
[
χ
(
k(r−1))

]
◦ · · · ◦

σ
[
χ
(
k(1))

]
◦ ρ(1)

n0
b ,n1

b
◦ σ
[
χ
(
k(0))

]
.

(17)

A block diagram of the HD cipher encryption is given in
Figure 1. It follows that HD cipher is a key-alternating block
cipher [12].
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3.1. Key mixing layer (σ , χ)

The key addition operation σ is a bitwise XOR operation of
the cipher state with the round key. As the cipher key uses
nk = nrb < nib (for all i < r) bits, the round keys are larger than
the intermediate cipher states for all but the last round of the
cipher. Additional bits of round keys are removed using the
key truncation operation χ, which simply reduces the size of
the round key to the size of the cipher state.

3.2. Nonlinear substitution layer (γ)

This layer uses a local nonlinear transformation γ. The con-
struction of γ is similar to Rijndael [12], where the substitu-
tion box is generated by inverting elements in the finite field
of 2m and applying an invertible affine transform (to prevent
zeros mapping to zero). The nb input bits to each round oper-
ation, ρ, are represented by a vector (say �a) with nt symbols
each represented by m-bits. An invertible S-box, Sγ, trans-

forms the input vector �a to the output vector �b by acting on
each of the nt symbols independently. The γ transformation
can be expressed by

γ : �b = γ(�a)⇐⇒ bj = Sγ
(
aj
)
, (18)

where aj is one of the nt, m-bit symbols. The inverse of γ op-
eration is denoted by γ. A Symbol or S-box is said to be active,
if the input difference pattern a′ is nonzero for a particular
symbol or S-box position. The number of active S-boxes in a
given pattern, a′, is equal to ws(a′), the symbol weight [12].

3.3. Diffusion layer (π, θ)

In this layer, we use high diffusion codes to jointly attain
maximum diffusion and error-correction capability.

3.3.1. HD coding operation θ

With respect to θ, the symbols of the state are grouped into
number of columns by a partition Ξ of the index space I.
The number of columns is denoted by nΞ. For the state �a, aξ
denotes a column with column number ξ ∈ [1, . . . ,nΞ]. For
HD ciphers, we impose the condition that every column aξ to
have the same length denoted by nξ . To perform HD encoding
θ, every column aξ is encoded using [nξ + dmin − 1,nξ , 2m]
HD code. The resulting state will contain nΞ columns with
nξ + dmin − 1 symbols in each column. We denote the HD
encoding operation, θnξ ,n′ξ , where n′ξ = nξ + dmin − 1, by

θ : �b = θ(�a)⇐⇒ bξ = θnξ ,n′ξ

(
aξ
)
. (19)

Figure 2 represents this operation. Note that in HD cipher,
HD coding is not performed in the last encryption round
(see Figure 1.) The inverse of θ is the decoding operation,
denoted by θ.

A column ξ is said to be active if it consists at least one ac-
tive symbol or S-box. Similar to the symbol weight ws(a) (see
Section 3.2), we denote the column weight by the number
of active columns wc(a). Since all the columns ξ have equal

θnξ ,n�

ξ
(�)

nξ

� � �

� � �

� � � � � � �

� � �

� � �

� � �

� � � � � � ��

� � � � � � ��

� � �

n�

ξ

Figure 2: High-diffusion encoding process (HD encode).

number of symbols, nξ , the branch number of θ is lower
bounded by

B(θ) ≥ nξ + dmin. (20)

3.3.2. Symbol transposition transformation π

The HD coding operation diffuses the columns of the input
state. To spread this effect to all rows a diffusion optimal sym-
bol transposition transformation is used. The symbol trans-
position, π, is defined as

π : b = π(a)⇐⇒ bj,i = ai, j . (21)

It can be observed that this is a matrix transpose operation
and every column of the input matrix to π is turned into the
corresponding row in the output matrix. Matrix transposi-
tion is a diffusion-optimal transformation [17].

4. SECURITY ANALYSIS OF HD CIPHERS

Security of symmetric block ciphers are usually measured by
their key lengths. This is because for a brute force attacker,
the complexity of the attack grows exponentially with the
key length. Although the key length nk used in HD cipher
is nrb bits, we look at the existence of attacks with complex-
ity lesser than O(2n

0
b). This is because the plaintext for HD

cipher is n0
b bits in length. However, a brute force attack is

not the only possible attack. For example, shortcut attacks
make use of the structure of the cipher to come up with a
technique to break it (deduce the secret key) with complexity
lesser than the brute force technique. In this section, we ana-
lyze the security of HD ciphers by looking at the resistance it
offers against some well-known cryptanalytic attacks.

4.1. Linear and differential cryptanalysis

Linear cryptanalysis [18] is a known plaintext-ciphertext at-
tack that makes use of linearity in the cipher to obtain the
key bits. The success of linear cryptanalysis is related to the
weight of a linear trail [12], which is the product of the sum
of the weights of its active S-box positions and the minimum
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Figure 3: (a) Four-round HD cipher encryption. (b) Four-round HD cipher decryption.

correlation weight per S-box. If the input and output parity
for all but a few rounds of a cipher has a correlation with an
amplitude significantly larger than 2−nb/2, it can be attacked
using linear cryptanalysis. Hence, the cipher design should
restrict the amplitude of the correlation between input and
output parities to be lesser than 2−nb/2.

Differential cryptanalysis [19, 20] is a chosen plaintext-
ciphertext attack that makes use of difference propagation
property of a cipher to deduce the key bits. The success prob-
ability of a differential cryptanalysis is the sum of the proba-
bilities of all r round differential trails with a given plaintext
and ciphertext difference. To secure a cipher against differen-
tial cryptanalysis, the design should restrict the probability of
difference propagation to 21−nb . The weight of a differential
trail is the sum of the weights of the difference patterns of the
trails [12].

As the structure of HD cipher is similar to Rijndael (es-
pecially the key alternating property), the maximum input-
output correlation and difference propagation for linear and
differential trails on HD cipher is given by the product of
the sum of active S-boxes in all its selection patterns (for a
few rounds) and the minimum correlation weight or mini-
mum differential weight per S-box. Since our design is also
based on the wide trail strategy, we lower bound the number
of active S-boxes for a four-round trail (see Theorem 5) to
achieve lower bounds on resistance against linear and differ-
ential cryptanalysis. Hence, the security of both HD cipher
and Rijndael against linear and differential cryptanalysis can
be quantified by using this lower bound.

Lemma 3. The total number of active columns of the function
π ◦ θ ◦ π is lower bounded by the branch number of θ, B(θ).

This is true for any diffusion optimal π. Proof given in
[14].

Theorem 4. The number of active S-boxes or symbols for a
two-round trail of HD cipher is lower bounded by the branch
numbers of HD code B(θ1).

Proof. Four-round HD cipher encryption operation is de-
picted in Figure 3(a), consider the first two rounds of HD
cipher. Let a1 represent any input vector with n1

t , m-bit sym-
bols. a2 is the output vector with n2

t , m-bit symbols. Since γ
and σ[χ(·)] operate on the symbols locally, they do not af-
fect the propagation pattern. Hence, the number of active S-
boxes or symbols for a two-round trail, ws(a1) + ws(a2), is
bounded by the propagation property of θ1. From the defi-
nition of HD codes and (20), it follows that the sum of ac-
tive S-boxes before and after θ1 encoding of the first round is
lower bounded by B(θ1).

Theorem 5. The number of active S-boxes or symbols for a
four-round trail starting with round 1 of HD cipher is lower
bounded by B(θ1)×B(θ2).

Proof. The sum of the number of active columns in a2 and b3

is lower bounded by B(θ2) (from Lemma 3). Hence, we have

wc
(
a2) + wc

(
b3) ≥ B

(
θ2), (22)

but wc(b3) = wc(a4) (θ does not change the number of active
columns). Therefore,

wc
(
a2) + wc

(
a4) ≥ B

(
θ2). (23)
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The total number of active S-boxes in b1 and a2 is given by

ws
(
b1) + ws

(
a2) ≥ wc

(
a2)B

(
θ1). (24)

Similarly, the total number of active S-boxes in b3 and a4 is
given by

ws
(
b3) + ws

(
a4) ≥ wc

(
a4)B

(
θ3). (25)

Combining (23), (24), and (25) will give

ws
(
b1) + ws

(
a2) + ws

(
b3) + ws

(
a4)

≥ wc
(
a2)B

(
θ1) + wc

(
a4)B

(
θ3)

≥ (wc
(
a2) + wc

(
a4))B

(
θ1) + wc

(
a4)(d2

min + d3
min − 2

)
.

(26)

Since wc(a4)(d2
min + d3

min − 2) is nonnegative (d2
min,d3

min ≥ 1)
and ws(bj) = ws(aj), we get

ws
(
a1) + ws

(
a2) + ws

(
a3) + ws

(
a4) ≥ B

(
θ1)B

(
θ2).

(27)

The security of HD cipher against linear and differen-
tial cryptanalysis thus depends on the branch number of the
HD coding operation at the diffusion layer. Using a more re-
dundant code would imply higher branch number and hence
higher resistance to linear and differential cryptanalysis.

Note that we do not assume that branch number im-
plies security in all forms. However, in our cipher the
branch number of the HD codes is the only additional en-
tity for which we need to show optimality in security. This
is because we use the “wide trail strategy,” where small
highly nonlinear substitution boxes (S-box) are coupled with
optimal-diffusion operations to achieve a large number of
active S-boxes in a few rounds. This is the same strategy em-
ployed in ciphers like Rijndael, Crypton, and so forth. To
show that ciphers built on wide trail strategy are secure, it
is necessary to show that (a) the S-boxes have high nonlinear
property, (b) the diffusion functions are optimal (have high-
est possible branch number).

The S-boxes that we use in our cipher are based on the
work by Nyberg [21] and are used in Rijndael. These S-
boxes have been shown to be differentially 4 uniform [21]
(i.e., very high nonlinear property). Therefore, the security
of our cipher rests on the optimality of the diffusion opera-
tions. We have shown that HD codes achieve maximum pos-
sible branch number (measure of diffusion). Hence, the high
branch number property of HD codes helps the HD cipher
achieve security.

4.2. Square attack

The square attack (also known as integral attack [22] or the
saturation attack [23]) makes use of the byte oriented na-
ture of the square block cipher which was the predecessor
of Rijndael. As Rijndael is also a byte oriented cipher, this
attack has been extended to reduced versions of Rijndael ci-
pher [24, 25]. Although the attacks described applies directly

to cipher operations with symbol size in bytes, it can be eas-
ily extended to other symbol sizes. HD ciphers also comprise
of symbol-oriented operations, hence HD ciphers with fewer
than seven rounds would be as weak as reduced versions of
the Rijndael cipher against these attacks.

5. ERROR DETECTION AND CORRECTION
CAPACITIES OF HD CIPHERS

In this section, we prove bounds on the error-correction ca-
pacity of HD ciphers. Specifically, we consider a bursty chan-
nel and use the term “full weight burst error” to denote
a burst with all 1’s. After encryption, the ciphertext (rep-
resented in matrix form) is transmitted either rowwise or
columnwise. In our analysis, we consider both these types of
transmissions by considering bursts across rows and columns
in the received ciphertext matrix before decryption. In or-
der to formalize our analysis, we introduce the following as-
sumptions, definitions, and notations. Without loss of gener-
ality, we consider HD ciphers in which HD codes have equal
error-correcting capacity in all rounds. That is, t j = t; for
all j ∈ [1, . . . , r − 1]. A symbol of the cipher state that is in
error (due to channel and/or error propagation due to de-
cryption rounds) is referred to as an error symbol. We denote
an ordered set of error symbols in the cipher state by an error
pattern. The error patterns for each round are denoted by, �aj

for all j ∈ [1, . . . , r]. A column (row) in the error pattern is
said to be in error if there are at least t + 1 error symbols in
the corresponding column (row). We refer to such columns
(rows) as error column (error row), respectively. A decoding
trail is a set of error patterns of the cipher state before each
round of decryption. We say that the error correction is com-
plete in round j if the error pattern, aj , at the output of θ j is
all zero. Similarly, we say that error correction is incomplete
in round j if the error pattern aj at the output of round j is
not all zero. We will now analyze the error-correction capac-
ity of a four-round HD cipher decryption in Lemmas 4, 5 and
Theorem 6. An outline of four-round HD cipher decryption
is represented in the Figure 3(b).

Lemma 4. For a three-round HD cipher, if there are at most t
error columns or rows in the ciphertext before decryption, the
error correction will be complete after at most three rounds of
decryption. Here, t denotes the error-correction capacity of HD
codes used in the HD cipher.

Proof. Consider the first three rounds of HD cipher decryp-
tion in Figure 3. Since the inverse nonlinear transform γ and
round key addition σ operations do not convert an error
symbol to an error-free symbol, it can be excluded from the
analysis.

First, we consider the case in which the error pattern a4

contains at most t error columns. After π4 transformation,
we will have at most t error rows in b4. Since θ

3
has an error-

correcting power of t, errors across each of the columns are
corrected. Hence, the error pattern a3 will contain all zeros.
This implies that the error correction is complete.

Consider the second case, in which the error pattern a4

contains at most t error rows. After π4 transformation, we
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have at most t error columns in b4. This is beyond the error

correction capacity of θ
3
, hence we take the worst case sce-

nario of having at most t error columns in a3. Now, apply-
ing the same argument as the first case, the error pattern a2

should have all zeros, thus proving the theorem.

Lemma 5. For a three-round HD cipher, if there are at least
t + 1 error columns or rows in the ciphertext before decryption,
the error correction will be incomplete even after at three rounds
of decryption.

Proof. First, consider the case in which the error pattern a4

contains t+ 1 error columns. After π4 transformation, b4 will
contain at least t + 1 error rows. This is beyond the error cor-
rection capacity of θ3. Hence a3 will have all of symbols in er-
ror and the decryption will remain incomplete even after θ2

in a2. Similarly, when there are t+1 error rows in a4, there will
be t+ 1 error columns in a3 and every symbol will be in error
in a2. Hence, the decryption will remain incomplete.

We now analyze the maximum full weight burst length
that is guaranteed to be corrected by a four-round HD ci-
pher. Our analysis is independent of the starting and ending
locations of the burst with respect to the cipher state.

Theorem 6. The full weight burst error-correcting capacity of
a four-round HD cipher is (t − 1)(B(θ3)− 1) + 2t + 1.

Proof. Without loss of generality, we consider the rowwise
transmission and hence full weight bursts that occur across
the rows of the cipher text. The following analysis can be triv-
ially extended to columnwise transmission as well.

We know that a burst of t + 1 errors in one row makes
that an error row. Similarly, bursts of 2(t+1) and n4

ξ +2(t+1)
can cause two and three error rows, respectively. Generalizing
this result, we get that a burst length of (l−2)(n4

ξ)+2(t+1) can
cause l error rows. This is in fact the minimum full weight
burst length required to have l error rows. It follows that a
full weight burst length of at least (t − 1)(n4

ξ) + 2(t + 1) is
required to generate l = t + 1 error rows. This implies that a
full weight burst of length (t − 1)(niξ) + 2(t + 1) − 1 cannot
generate l ≥ t+1 error rows. From Lemma 4, a burst of length
(t − 1)(n4

ξ) + 2(t + 1)− 1 is correctable and from Lemma 5 a

burst of length (t−1)(n4
ξ) + 2(t+ 1) is not correctable. Hence

the minimum burst length that is guaranteed to be corrected
by a 4-round HD cipher decryption is (t−1)(n4

ξ)+2(t+1)−1
which is equal to (t− 1)(B(θ3)− 1) + 2t + 1, where B(θ3) =
n4
ξ + 1.

Although this gives the error correction capacity of the
system in some cases, the system can correct longer burst er-
rors. In other words, some longer bursts can be corrected,
depending on their start and end positions. Theorem 7 gives
the smallest burst length for which the probability of com-
plete decoding is zero.

Theorem 7. The smallest burst length of a full weight burst, for
which the probability of complete decoding is zero (by a four-
round HD cipher), is t(B(θ3) + 1) + 1 symbols.

Proof. We again assume rowwise transmission of the cipher-
text and hence full weight burst errors occurring across rows.
The maximum number of error rows for which error correc-
tion will be complete in three rounds is t (Lemma 5). The
minimum length of a full weight burst that makes a row in
error is t + 1, hence the maximum full weight burst length
that can occur in an error-free row is t. Therefore, the max-
imum full weight burst length that produces an error pat-
tern with at most t error rows is tn4

ξ + 2t. This is equal to
t(B(θ3) + 1). Hence, a burst length of t(B(θ3) + 1) + 1 is
the smallest burst length of a full weight burst, for which the
probability of complete decoding is zero.

6. SIMULATION RESULTS

In our experiments, we construct a 10-round HD-cipher
with input data size of 128 bits and output ciphertext and
keysize of 288 bits. This is achieved by using a [4,4,256] HD
code for rounds 1 through 7 and a [6,4,256] HD code for
rounds 8 and 9. The generator matrixes for these HD codes
are

G(r)r=[1···7] =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 3 2

2 1 1 3

3 2 1 1

1 3 2 1

⎞

⎟
⎟
⎟
⎟
⎠

,

G(r)r=[8,9] =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 3 2 189 71

2 1 1 3 169 27

3 2 1 1 192 209

1 3 2 1 91 179

⎞

⎟
⎟
⎟
⎟
⎠
.

(28)

To perform HD encoding, each column of the input ci-
pher state is multiplied with G(r) to obtain the output cipher
state. The branch number B(G(r)) of G(r)r=[1···7] is 5 and
G(r)r=[8,9] is 7. The sum of active S-boxes for a four-round
trail of HD cipher is B(θ1)×B(θ2) = 35. The sum of active
S-boxes for a four-round trail of the AES cipher is 25. The
additional 6 rounds have been added as a security margin
(for both the AES and the HD cipher). In AES, the number
of rounds is increased if (a) the input plaintext block length
increases, (b) the key length increases. Since we use the same
input block length in HD cipher and target the same security
as a 128-bit key length that is used in AES, the number of
rounds in the HD cipher is equal to the number of rounds in
AES which is 10.

To evaluate the performance (error correction) of the
HD cipher, we compare it with the following concatenated
systems A and B (described below) with respect to error-
correction capacity:

(i) concatenated system A: uses AES (128-bit) cipher with
[36,16,256] Reed Solomon code;

(ii) concatenated system B: uses AES (128-bit) cipher and
convolutional codes with rates varying from 1/2 to 1/6.

Wireless communication medium is characterized by
bursty errors and fading phenomenon, which implies that bit
errors occurring in wireless channels have memory. Alajaji
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and Fuja [26] proposed an additive Markov channel (AMC)
model for slow fading wireless channels. According to this
model, the channel can be described by bit-error rate and
correlation parameters. The burstyness of the channel can be
controlled by the correlation parameter. In our experiments,
we set the correlation to 0.9 and varied the bit-error rate from
0.001 to 0.2.

Figure 4 plots the post decryption bit-error rate of the
proposed 128-bit HD cipher and the concatenated system A
against channel-bit-error rate. It can be observed that HD ci-
pher and the concatenated system are comparable in terms of
error-correction capacity over all the channel-bit-error rates.
This is because both HD cipher and the Reed Solomon code
used in the concatenated system are burst error-correcting
codes with similar coding rates. However, as the error cor-
rection is performed during decryption within the HD ci-
pher, there is roughly a savings of two rounds per encryp-
tion/decryption compared to the concatenated system.

For the second set of experiments, we compare the pro-
posed 128-bit HD cipher with the concatenated system B.
Different convolutional codes with rates 1/2, 1/3, 1/4, 1/5,
and 1/6 are considered. Since the channel is assumed to be
bursty, a block interleaver is added after convolutional en-
coder to optimize the performance of the concatenated sys-
tem. Hard decision Viterbi decoder is used at the receiver.
Figure 5 plots the post decryption bit-error rate of the pro-
posed HD cipher and the concatenated system B. The HD
cipher clearly outperforms the concatenated system for all
rates 1/2 through 1/6. Note that the coding rate of the HD
cipher is between that of the concatenated systems with rate
1/5 and 1/6 yet it outperforms the rate 1/6 concatenated
system. Although convolutional codes are more light weight
compared to Reed Solomon codes, the total number of oper-
ations when it is combined with 10-round AES cipher is ap-
proximately equal to the number of operations in a 10-round
HD cipher.

7. CONCLUSION

A new error-correcting cipher was proposed for use in wire-
less networks. Diffusion (measured by the branch number)
and error resilience (measured by minimum distance be-
tween codewords) were identified as the two main criteria
to be satisfied by channel codes that could aid as building
blocks in this novel error-correcting ciphers. A new class of
codes called the high diffusion codes (HD codes) were de-
veloped based on these two criteria. HD codes were shown
to achieve optimal diffusion and error resilience and that
they are MDS codes that satisfy an additional criterion for
security. Several techniques to construct HD codes were pre-
sented. The error-correcting HD cipher, that uses HD codes
in its diffusion layer was constructed. The security of the
four-round HD cipher against linear and differential crypt-
analysis was shown to be lower bounded by B(θ1)B(θ2),
where B(·) is the branch number and θi is the ith round
HD encryption operation. We proved that the full weight
burst error-correction capacity of four-round HD cipher is
(t − 1)(B(θ3) − 1) + 2t + 1 symbols. Simulation results of
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Figure 4: Comparison of error resilience of HD cipher and AES
concatenated with [36, 16, 256] Reed Solomon codes.
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a four-round HD cipher operating in GF(256) revealed that
(a) HD cipher is as secure as AES cipher when security is
quantified in terms of the number of active S-boxes, (b) joint
encryption and error correction in HD cipher are compara-
ble to disjoint error correction and encryption performed by
a traditional concatenated system using AES encryption and
Reed Solomon coding, (c) concatenated systems using AES
encryption and convolutional codes need to increase the data
expansion by 10% to match the performance of HD cipher.
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