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Abstract— Wireless network security based on encryption is
widely prevalent at this time. However, encryption techniques
do not take into account wireless network characteristics such
as random bit errors due to noise and burst errors due to
fading. We note that avalanche effect that makes a block cipher
secure also causes them to be sensitive to bit errors. This results
in a fundamental trade-off between security and throughput
in encryption based wireless security†. Further, if there is an
adversary with a certain attack strength present in the wireless
network, we see an additional twist to the security-throughput
trade-off issue.

In this paper, we propose a framework called opportunistic
encryption that uses channel opportunities (acceptable signal
to noise ratio) to maximize the throughput subject to desired
security constraints. To illustrate this framework and compare it
with some current approaches, this paper presents the following:
(a) mathematical models to capture the security-throughput
trade-off; (b) adversary models and their effects; (c) joint op-
timization of encryption and modulation (single and multi-rate);
(d) the use of Forward Error Correcting (FEC) codes to protect
encrypted packets from bit errors; and (e) simulation results
for Rijndael cipher. We observe that opportunistic encryption
produces significant improvement in the performance compared
to traditional approaches ‡.

Index Terms— Stochastic Optimization, encryption, wireless
security.

I. INTRODUCTION

W IRELESS communication medium is open to intruders.
In a wireless network, an eavesdropper can intercept a

communication by listening to the transmitted signal. Hence,
encrypting the transmitted packets helps to achieve confiden-
tiality. Traditionally, design of encryption algorithms and their
parameters has used only security against an adversary attack
as the main criterion. To achieve this goal, the encrypted data,
or the cipher is made to satisfy several properties including
the avalanche effect [17].

The avalanche criterion requires that a single bit change to
the plain text or the key must result in significant and random-
looking changes to the cipher text. Typically, an average of
one half of the decrypted bits should change whenever a
single input bit to the decryption device is complemented. This
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guarantees that there will not be any noticeable resemblance
between two cipher texts obtained by applying two neighbor-
ing keys for encrypting the same plain text. Otherwise, there
would be considerable reduction of the keyspace search by the
cryptanalyst.

It is clear that block ciphers that satisfy the avalanche
property are very sensitive to bit errors induced by the wireless
link. That is, a single bit error in the received encrypted
block will lead to an error in every bit of the decrypted
block with probability 1/2. Therefore, we have severe error
propagation. This leads to a fundamental trade-off between
security (w.r.t. brute force attack) and throughput in encryption
based wireless security as seen in Fig. 1. In this figure, for a
given channel condition, the throughput decreases with the
encryption block length whereas the security increases with
the block length. With the assumption that the encryption key
length is always equal to or greater than the block length, the
level of security of an encrypted block is decided by the block
length. Throughput (normalized) is given by (1−Pb)N where
Pb is the bit error probability and N is the encryption block
length. The security here is defined as log2 N (normalized
by the maximum). This choice results in a monotonically
increasing function capturing the strength of a cipher in a
suitable manner and also is a convenience for the optimization.
We explore throughput-security trade-off in this paper and
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Fig. 1. Throughput (normalized) and security (normalized) as a function of
encryption block length at channel bit error probability, Pb = 10−2.

investigate a framework called opportunistic encryption to
optimize it. The term “opportunity” is used to mean channel
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opportunities, i.e., the time durations when channel Signal to
Noise Ratio (SNR) is reasonably high (equivalently the bit
error rate is low). Note that the channel SNR is a random
time-varying parameter. Opportunistic encryption provides a
framework that exploits channel opportunities in order to
optimize some encryption parameters (e.g., encryption block
length) based on the security as well as throughput constraints.
It helps to control error propagation due to channel induced
bit errors in the received encrypted data. In the process we
exploit the variable encryption block length feature offered
by Rijndael [16]. In Section I-A to follow different modes
of cipher in use are discussed and the specific mode of our
interest is explained. Section I-B describes the methods of
modelling and measure of the security of a cipher.

A. Different modes in ciphers

There are five basic modes of operation for a block ci-
pher. The Electronic CodeBook (ECB) mode, Cipher Block
Chaining (CBC) mode, Cipher FeedBack (CFB) mode, Output
FeedBack (OFB) mode and the CounTeR (CTR) mode. The
ECB and CBC modes are referred to as block modes as the
plaintext is encrypted a block at a time to produce the cor-
responding ciphertexts. In CFB, OFB and CTR modes, some
random value (usually a counter) is encrypted and the resulting
ciphertext bits are XORed with the plaintext bits to encrypt
the plaintext. Since, the encryption here (CFB, OFB, CTR) can
be performed one bit at a time, these modes are considered
as stream modes. In the ECB mode every plaintext block is
independently encrypted to a ciphertext block. That is, error
in one ciphertext block does not propagate to other ciphertext
blocks during decryption. However, for lengthy messages ECB
mode may not be secure as the cryptanalyst can use structures
within the message to break the cipher [15]. In CBC mode, a
given plaintext block is XORed with the previous ciphertext
block before encryption. This is done to hide the structures
within the message, however due to chaining, an error in one
ciphertext block will result in errors in multiple decrypted
plaintext blocks. Stream modes of operation do not propagate
any errors during transmission. Since, the problem of error
propagation and the resulting loss of throughput is inherent
only to the block modes, in this paper we consider the security
- throughput trade off with respect to only the block modes of
operation. A problem similar to the one studied in this paper
is presented in [25]. In it the authors deal exclusively with the
CFB mode of encryption. The overall throughput is formulated
as a function of channel bit error rate, encryption block length,
and the number of stages in CFB mode. It is shown that, as
the number of stages increase the throughput increases up to
a peak value and then gradually decreases. The throughput
formulation is used to derive the optimal number of stages for
a given channel condition.

B. Security of a Cipher

The level of security against cryptanalysis may be mea-
sured as the amount of work (computations) required by the
adversary to break the cipher. Ideally, a computationally secure
encryption system would make it impossible to break the

cipher with an exhaustive search approach having exponential
order complexity. Nevertheless, practical encryption systems
may have vulnerabilities leading to possible short cut attacks
making it possible to break the cipher with algorithms of
complexities less than an exponential order. Meanwhile, it is
reasonable to say that there is no such thing as a completely
secure encryption system, and the level of security can only
be quantified relative to the strength of the adversary present
in the environment. It is possible to model the adversary’s
“strength” to break a cipher as a random parameter using a
probability distribution. It is reasonable to assume that the
ability of the adversary to break the cipher becomes less prob-
able as the key length, block length, diffusion etc. increase.
In this work, we consider some probability distributions to
model the adversary’s strength and investigate their effects on
the security-throughput trade-off.

In the sequel, first we discuss mathematical models to
capture the security versus throughput trade-off. Then, maxi-
mization of throughput subject to a security constraint is set-
up formally as an optimization problem. Several scenarios
are considered in the formulations. The effect of modulation
and coding on the security-throughput trade-off is studied.
At the receiver side the problem is modelled as a Markov
Decision Process (MDP). The proposed analytical techniques
are applied and tested on Rijndael cipher using computer
simulations. Detailed comparison with a traditional approach
is presented.

The rest of the paper is organized as follows. Section II
discusses the channel model and measures of security used
in this work. The concept of opportunistic encryption is
introduced in Section III. In Section IV we discuss the use of
FEC with and without opportunistic encryption. In section V
we propose solutions with limited knowledge of channel.
Conclusions are presented in Section VI.

II. CHANNEL MODEL AND SECURITY MEASURE

There are several ways in which one can quantify the
strength of an encryption scheme [19]. One way is to measure
the work involved in breaking it by the best known cryptanaly-
sis method (or shortcut attack). In the absence of any shortcut
attacks (e.g., 10 round Advanced Encryption Standard (AES)
[16] cipher), the only way to crack the encryption key is to
use the brute force technique (i.e., for a given ciphertext, try
decrypting with all possible encryption keys until it decrypts to
the corresponding plaintext). Let us consider a simple example.
For an AES cipher with key length of 128 bits, there are
2128 possible key combinations. Assuming unit complexity for
testing one key (single decryption), the complexity involved
in cracking 128 bit AES cipher is 2128. Note however, this
is the worst case complexity. This motivates a choice of a
security measure (w.r.t. brute force attacks) to be S(N) =
log2(N) where N is the encryption block length. Note that
in many practical encryption schemes the block length and
key length are equal. We will exploit this fact throughout
in this paper. With the maximum block length of Nmax, we
define the normalized security level as s(N) = log2 N

Smax
where

Smax = log2 Nmax.
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A. Why we need one key per block length

In this paper, we propose to use a different encryption
key for each possible block length in the block cipher. If a
common key is to be used for all the block lengths, then an
attack on the smaller block length would reveal a part of the
key. After a part of the key is revealed, increasing the block
length would not exponentially increase the security of the
cipher. Since, keys are changed only once in every session and
thousands of encryption operations are performed before each
key change, we expect minimal impact on the complexity of
key management due to our requirement of having a separate
encryption key per block length.

B. Security Quantification for a Brute Force Attack

Packet mode communication can be of fixed frame length
or variable frame length. In either case, frame lengths are in
general several times as large as encryption block lengths. We
assume that each frame has a length (bits) that is equal to
an integer multiple of encryption block length used in the
frame. The security level of a frame is determined by the
block length used in the encryption. Let, a message consists
of n frames with encrypted block length Ni bits for frame
i = 1, · · · , n. Ni is selected by the optimization procedure
based on the channel condition. With the block fading [22]
assumption of wireless channel, all the information bits in a
frame are encrypted using the same encryption block length
since the quality of the channel is assumed to be fixed over
the frame duration. We make the assumption that every frame
of the message (sequence of frames) is equally important to
decode the message. In other words one cannot decode the
message unless every frame is decrypted. This applies to a
scenario such as encryption of compressed image. Then a
reasonable measure is the mean of the security levels achieved
by the individual frames. Thus we have here,

s̄ =
1

nSmax

n∑

i=1

log2 Ni (1)

where Ni ∈ QN , the set of possible discrete encryption block
lengths. Note 0 6 s̄ 6 1.

C. Security Quantification with an Adversary Model

In addition to the discussion on the measure of security
in Section II-B, in this section we propose a measure of
vulnerability having an inverse relationship to security, to be
used in the optimization process with a probabilistic adversary
model. As in the previous case, the amount of work needed to
crack a cipher with brute force attack decides the security of
a cipher. However in this case, instead of a security measure
based solely on the encryption parameters, we include in it,
the attacker’s behavior. In particular, the attacker’s capability
to crack a cipher of certain block length is associated with a
Probability Mass Function (PMF). Thus we define the param-
eter “attacker strength” (denoted by α) having the dimension
of block length, and write the probability of cracking a cipher
of block length N as Pr(α = N). The attacker with strength
α has the capability to crack any cipher with block length ≤ α

within the useful time of the encrypted information and with
a cost less than the value of it.

Let, there be n frames of length Li, i = 1, · · · , n in the
message to be transmitted. A frame i is to be encrypted using
block length Ni. In the discussion to follow, we assume that
there is a fixed integer multiple c of encrypted blocks in a given
frame, thus Li = cNi. The approach can be easily extended
to other cases. Hence, We define the vulnerability (which
increases as the encryption block length is decreased) 0 6 Φ 6
1 of a message as the expected fraction of the total message
being successfully cracked by the adversary. Let the frames be
arranged in the ascending order of the respective encryption
block lengths. If the adversary’s attack strength is α bits, then
the adversary can successfully crack all the data frames with
encryption block length less than or equal to α. Assume that
there are K(6 n) distinct encryption block lengths being used
and nk be the number of frames with encryption block length
less than or equal to Nk, k = 1, · · · , K, and Pr(α = Nk)
be the probability that the attacker’s strength α is Nk. Note
that Pr(α = Nk) also is the probability with which the nk

frames (in the ordered list) would be cracked by the adversary
resulting in the leakage of a fraction xk =

∑nk

i=1 li of the total
message, where li is the frame length normalized by message
length (li = Li∑n

j=1 Lj
). Thus we can define the vulnerability Φ

of the message as the expected leakage given by,

Φ =
K∑

k=1

xkP (xk) (2)

where P (xk) = Pr(α = Nk) is the probability of exposing
a fraction xk of the total message. From a known result in
probability theory, this is equivalent to

Φ =
K∑

k=1

Pr(x > xk). (3)

Further, if each frame is encrypted with a distinct block length
we have K = n and the above equation reduces to

Φ =
n∑

i=1

Pr(α > Ni) (4)

III. OPTIMIZING SECURITY-THROUGHPUT TRADEOFF

As discussed in the introduction, avalanche effect causes one
or more errors within an encryption block to propagate within
the particular encryption block. Therefore a single bit error
in the received encrypted block will cause the loss of entire
block due to error propagation after decryption. Nevertheless,
other blocks in the frame are not effected. Therefore, we make
the assumption that a frame is not discarded due to errors in
individual encryption blocks in that frame. The problem then
is to maximize the overall throughput while guaranteeing a
minimum and/or an average security level(s) for the message.
The throughput per block and hence a frame is given by Ri(1−
Pi)Ni ≈ Ri(1−NiPi) for Pi << 1 and for a given and fixed
Ni where Ri and Pi are respectively the transmission rate
selected for the frame and the channel bit error probability. The
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throughput of the message (sequence of frames) can therefore
be expressed as

T =
1

nRmax

n∑

i=1

Ri(1−NiPi) (5)

Here the throughput is normalized by the maximum trans-
mission rate Rmax = max

i
{Ri}. The discussions on the

optimization to follow assume exact channel knowledge over
the sequence of frames (message). Let the channel SNR γi

be known for the frames i = 1, · · · , n. We present here the
optimization problems for the two different attack models
given in Section II. The essence of the procedure is to
optimally choose the encryption block lengths based on the
channel condition as well as required security.

Any strategy for optimum block length allocation depends
on the knowledge of channel conditions. Further, there should
be a mechanism for the receiver to know the encryption
block length used during the transmission of each frame. The
straightforward approach to achieve this is to include the block
length information as clear text payload in the frame. An
alternative would be for the receiver to compute it from the
security constraints and the channel state during the reception
of the frame. This is feasible as the security constraints
are agreed upon apriori, and the receivers usually have the
capability to estimate the forward channel. Nevertheless there
could be computational overheads at the receiver. In the case
where the frame length is a fixed integer multiple (known to
receiver) of the block length, it is trivial for the receiver to
compute the block length from the frame length.

The channel adaptive encryption methods presented in this
paper heavily depend on the ability to know the channel
quality in terms of SNR or the channel Bit Error Rates (BER)
in advance. Although beyond the scope of this paper, the
sensitivity of the performance to errors in channel knowledge
has to be studied. Nevertheless, we mention here published
work on channel estimation, tracking, and prediction. Chan-
nel estimation techniques for Orthogonal Frequency Division
Multiplexing (OFDM) is discussed for instance in [26]. A
technique for the prediction of channel in the short term for
multiuser OFDM scenario can be found in [27]. Similarly
[28] present the methods for long range channel prediction
for OFDM systems.

A. Bruteforce Attack Model

We are required to maximize the throughput subject to an
overall security requirement over a finite horizon. This can be
stated as a constrained optimization problem given by

max
{Ni}

1
nRmax

n∑

i=1

Ri(1−NiPi)

such that
1

nSmax

n∑

i=1

log2 Ni = sreq

(6)

Note that Pi = Pi(γi, Ri) is a function of channel SNR γi

and the transmission rate used for the frame Ri, and sreq is
the required level of security. As shown in the appendices, the
optimal block lengths are given by

N∗
i =

(
∏n

i=1 RiPi)
1
n

RiPi
e(Smaxsreq) loge 2 (7)

In the case where the transmission rate is fixed, the above
result reduces to

N∗
i =

(
∏n

i=1 Pi)
1
n

Pi
e(Smaxsreq) loge 2 (8)

Clearly we see that the optimal encryption block lengths as
computed above are inversely proportional to the probability
of channel bit error. This implies that “opportunistically”
allocating larger block lengths for better channels and vice
versa is the best strategy in the case of fixed rate.

First we consider transmission with a fixed rate namely
Binary Phase Shift Keying (BPSK). Thus the maximum
achievable throughput is 1 bit/symbol. The bit error probability
of BPSK signaling is given by

Pi =
1
2

erfc(
√

γi)§ (9)

The assumption of a “flat fading” wireless channel with a
Rayleigh probability density function (pdf) for signal envelop
and thus an exponential pdf for received SNR we have

p(γi) =
1
γ̄

e
γi
γ̄ (10)

where γ̄ is the average SNR.
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Fig. 2. Normalized throughput and security with opportunistic and fixed
block size encryption for known channel SNR sequence and BPSK modula-
tion.

Comparison of the throughput observed in simulations using
opportunistic encryption block lengths computed from (8) and
fixed block size encryption is shown in Fig. 2. For the purpose
of illustrating the optimization process, we let the block length
to assume any positive integer value. In the sequel however, we
adopt block lengths as per to Rijndael cipher with practically
useful block lengths.The overall security requirement setting

§erfc(x) = 2√
π

∫∞
x e−t2dt
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Fig. 4. Throughput comparison of opportunistic and fixed block length
Rijndael encryption using BPSK modulation.

for this result is sreq = 0.9759, which is equivalent to the
security of a 224 bit fixed block encryption and Smax =
log2(256) = 8. The gain in throughput was computed as
Topt−Tfixed

Tfixed
, where Topt and Tfixed are throughput of optimum

and fixed block length allocations. Shown in Fig. 3 are gains
for two different settings of overall security values of 0.875
and 0.9759. We observe that the gain varies over the range of
average SNR values. Maximum gain of about 73% is observed
around 7 dB average SNR with sreq = 0.875. The decline
in gain above 7dB average SNR is explained by the low bit
error probabilities in this range. The throughput is close to the
maximum for all values Ni under consideration. At lower SNR

the bit error rates are high and in (8), the factor (∏n
i=1 Pi)

1
n

Pi

approaches unity. Therefore Ni → e(Smaxsreq) loge 2, i =
1, · · · , n which is the fixed block length corresponding to the

security level. Hence the gain in throughput w.r.t. fixed block
length encryption approaches zero.

Fig. 4 compares the throughput of opportunistic and fixed
block length Rijndael [16] encryption. For the opportunistic
encryption, the encryption block lengths were selected from
the set QN = {128, 160, 192, 224, 256} (bits) and the plaintext
block size for fixed block length encryption was 224 bits. It is
seen in this figure that the observed throughput gain is smaller
than the theoretical gain. This is due to the fact that the number
of available block sizes in Rijndael cipher is small. Next we
consider an example with multiple transmission rates including
BPSK and higher order Quadrature Amplitude Modulation
(QAM) schemes . The probability of bit error of M-ary QAM
signal is given by the well known approximation [2] by

Pi ≈
√

M − 1√
M log2

√
M

erfc

[√
3 log2 M

2(M − 1)
γi

]
(11)

where M is the constellation size. We use BPSK and the set
QM = {4, 16, 64} in this work. Correspondingly the set of
maximum achievable throughput values are QR = {1, 2, 4, 6}
bits/symbol.
Fig. 5 shows the gain in throughput with variable rates. A gain
of 109% is observable around 9 dB average SNR. Fluctuation
in the gain is observed with increasing SNR, and this is due
to the discrete rate control.

B. Adversarial Attack

For the discussion in this section, we consider two probabil-
ity distributions namely uniform and exponential to model the
adversary strength. We show in the sequel that with uniform
distribution, the optimization problem is equivalent to “frac-
tional knapsack” problem and therefore the optimum algorithm
has linear execution time. With the exponential distribution,
the optimal solution resembles “water-filling” algorithm. As
before we assume that the frames are not discarded due to bit
errors in some encryption block in the frame.
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1) Linear Adversary Strength Model: Let the probability
mass function describing an adversary’s strength has uniform
distribution, i.e., Pr(α = Ni) = 1

Nmax−Nmin
for i = 1, · · · , n

where Nmin and Nmax are the minimum and maximum block
lengths available in the crypto system. That is, the probability
that the adversary can successfully attack a ciphertext block
(key) length Ni is uniformly distributed. This conclusion leads
to

φi = Pr(α > Ni) =
Nmax −Ni

Nmax −Nmin
, i = 1, · · · , n. (12)

Now we are required to maximize the throughput given by

T =
1

nRmax

n∑

i=1

Ri(1−Pi(Nmax−(Nmax−Nmin)φi)) (13)

subject to the conditions

φmin 6 φi 6 φmax, i = 1, · · · , n

1
n

n∑

i=1

φi 6 Φ0 (14)

Φ0 is the maximum allowable average vulnerability level,
and φmin and φmax are the corresponding minimum and
maximum allowable values for a frame. It is easily seen that
the optimal solution is achieved with equality in the condition
(14). By expanding (13) and omitting the terms that are
independent of φi,∀i, the problem reduces to the following.

max
Ni

T ′ =
n∑

i=1

wiφi (15)

where, wi = PiRi. This problem is a special case of fractional
knapsack problem which is solvable in polynomial time. It can
be seen that selecting the φis in the non-increasing order of
maximum wi maximizes T ′ and hence T [23]. Observe that
for every frame i we should allocate a minimum vulnerability
level, φmin corresponding to the maximum encryption block
length, Nmax. Therefore the formulation can be modified such
that the optimization problem is

max
φ1,··· ,φn

n∑

i=1

wiφi such that

1
n

n∑

i=1

φi 6 Φ′0; 0 6 φi 6 φmax − φmin (16)

where Φ′0 = Φ0−nφmin. The following algorithm solves the
problem optimally [24].

1) Initialization: Allocate a vulnerability level of φmin for
all frames i, i = 1, · · · , n.

2) Sort the frames in the non-increasing order of wi =
PiRi, i = 1, · · · , n.

3) Allocate the additional maximum allowed vulnerability
level less than or equal to φmax − φmin for each frame
i in the sorted order, i.e., wi > wi+1. That is, allocate
φmax − φmin units to frames i = 1, · · · , j∗ − 1 for
some j∗, and fewer than φmax − φmin or 0 for frame
i = j∗ with the sum total of the additional allocation
equal to Φ′0. Frames i = j∗+1, · · · , n get no additional
allocation above φmin.

2) Exponential Adversary Strength Model: Let the attacker
strength be given by:

φi = Pr(α > Ni) = e−kNi (17)

where k > 0 is a constant. We are required to maximize the
throughput given by

T =
1

nRmax

n∑

i=1

Ri(1 +
Pi

k
loge φi) (18)

subject to the conditions

φi − φmin > 0, i = 1, · · · , n (19)
φmax − φi > 0, i = 1, · · · , n (20)

Φ0 − 1
n

n∑

i=1

φi = 0 (21)

where Φ0 is the maximum allowable overall vulnerability
level. The equality in (21) results from the observation that
maximum of T is achieved by using the maximum allowed
overall vulnerability. The augmented objective function can
then be written as,

C =
1

nRmax

n∑

i=1

Ri(1 +
Pi

k
loge φi) + ν(nΦ0 −

n∑

i=1

φi)

+
n∑

i=1

λi(φi − φmin) +
n∑

i=1

µi(φmax − φi) (22)

where ν, λi, µi, i = 1, · · · , n are constants (Lagrange multi-
pliers). The Karush Kuhn-Tucker Conditions (KKC) [6] for
this problem are obtained by considering the vanishing point
of the first order derivative of C w.r.t. φi and also from the
complimentary slackness. Thus we have,

φi =
RiPi

knRmax(µi + ν − λi)
λi(φi − φmin) = 0
µi(φmax − φi) = 0

λi > 0
µi > 0

Φ0 −
n∑

i=1

φi = 0

ν > 0 (23)

for i = 1, · · · , n. Therefore the optimal value of φi, for i =
1, · · · , n is found from one of the following three cases.

Case 1: λi = 0, µi = 0 ⇒ φmin < φi < φmax and we
have φi = αwi with α = 1

kνnRmax
, ν > 0 and

wi = RiPi

Case 2: λi = 0, µi 6= 0 ⇒ φi = φmax

Case 3: λi 6= 0, µi = 0 ⇒ φi = φmin

The following iterative algorithm provides the optimal solu-
tion. Any value of φi, i = 1, · · · , n computed complies with
one of the three cases above.
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1) Sort the channels in the non-increasing order of wi, i =
1, · · · , n; let j = 1

2) Compute α = φmin

wj

3) Compute φi = αwi for i = 1, · · · , n; if φi < φmin set
φi = φmin; if φi > φmax set φi = φmax

4) If nΦ0 >
∑n

k=1 φi set j = j + 1 and goto step 2); else
goto step 5)

5) If nΦ0 =
∑n

k=1 φi the current set of φi, i = 1, · · · , n
are optimal; else goto step 6)

6) The optimum α is in between the two values say αj and
αj−1 computed in the last two iterations. Fine tune as
follows. Default to the allocation corresponding to α =
αj−1. Let l be the index of the largest wi, i = 1, · · · , n
such that φi < φmax, and imin is the index of smallest
wi such that φi > φmin

7) Set α = φmax

wl
; if α < φmin

wimin+1
set φi = αwi, i =

1, · · · , n; φi(φi < φmin) = φmin; φi(φi > φmax) =
φmax; goto the step (8); else set l = l− 1 and goto step
(9)

8) If
∑n

i=1 φi = nΦ0 optimal values are found; else if∑n
i=1 φi < nΦ0 set l = l +1 and goto step (7); else set

l = l − 1; goto step (9)
9) The optimal α is found from α = 1∑l

i=imin
wi

(nΦ0 −
(n − imin)φmin + (l − 1)φmax); set φi = αwi, i =
1, · · · , n, φi(φi < φmin) = φmin, and φi(φi >
φmax) = φmax

Appendices provide an explanation as to how this algorithm
indeed provides the optimal solution.
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Fig. 6. Throughput gain due to proposed channel adaptive encryption com-
pared to fixed block length encryption for single rate (BPSK) transmission.
Both linear and exponential adversary attack models are shown.

We carried out computations of sample performance curves
with certain parameter settings. A case with fixed transmis-
sion rate namely BPSK and multi-rate namely MQAM were
considered. Block length equivalents of the target, minimum,
and maximum security levels for this computation are respec-
tively 128, 16 and 1024 bits. For the adversary model with
exponential probability distribution, the decay constant ki was
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Fig. 7. Throughput gain due to proposed channel adaptive encryption com-
pared to fixed block length encryption for multi- rate (MQAM) transmission.
Both linear and exponential adversary attack models are shown.

set to 0.0001 for all i = 1, ·, n. It was assumed that the
channel gain remains fixed during the transmission of a frame.
For the optimization, n = 5000 channel samples were drawn
using a Rayleigh distribution with a given average SNR. The
optimum encryption block lengths were assigned based on the
algorithm for each of the adversary models. The throughput
was computed with optimum allocation of block lengths and
with fixed block length of 128 bits.

Fig. 6 shows the gain in throughput with respect to fixed
block length encryption. The results are given for the two
different probabilistic models of the attacker and for single rate
(BPSK) signaling. As seen in the results, a throughput gain
of 2.5 fold is observable at γ̄ = 0dB. Note in the example
that the performance when the adversary is modelled with
exponential distribution is slightly inferior to that of uniform
distribution at low average SNR, in all cases. With exponential
model, adversary has a larger probability of breaking the
encryption with smaller encryption block length compared to
a larger block length. Thus the optimization process has a
tendency to allocate larger block lengths to a larger fraction
of frames compared to the case with uniform distribution.
Therefore higher frame error rates results more frequently with
exponential probability distribution than in the case of uniform
distribution of adversary strength.

Fig. 7 shows the performance with multi-rate (MQAM)
transmissions. It is seen that with exponential model, the
gain has a peak at moderate average SNR values. This is
akin to the fact that with exponential model, the optimization
algorithms have a tendency to select larger encryption block
lengths for a larger fraction of channel instantiations compared
to the case with linear model. The fact that transmission
rates are optimally selected for the channels, and encryption
block lengths mostly large regardless of the channel conditions
brings the throughput performance close to that of fixed block
length encryption. However, there is a range of SNR in which
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the optimization process has higher gains.
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The throughput performance with the probabilistic models
of attacker for finite set of encryption block sizes available in
the Rijndael cipher is shown in Fig. 8. As with the determin-
istic models in the previous cases, we observe marginal gain
in throughput due to limited flexibility in the encryption block
length sizes.

IV. FORWARD ERROR CORRECTION CODES

In order to investigate the performance of opportunistic
encryption compared to concatenated encryption and forward
error correction codes with fixed block length encryption, we
used Read-Solomon (RS) code. In RS coding redundancy is
added to a k symbols of information block to achieve a n
symbol codeword leading to (n, k) code. In a q − ary RS
code with error correction capability of t symbols, we have
n = q − 1 and k = q − 1 − 2t. Setting the leading l
symbols to zero does not change the error correction capability.
Thus deleting this leading l symbols, we obtain the shortened
(q − 1 − l, q − 1 − 2t − l) RS code with an error correction
capability of t symbols [21]. In the cipher system we consider
in this work, information is processed in bytes. Therefore an
RS code with q = 28 is an appropriate choice. Thus we adopt
a code capable of handling blocks of 255 bytes or less as
input. The post-decoding bit error probability of this code can
be approximated by

Pbc ≈ 1
8k

(
1−

t∑

i=0

(
255− l

i

)
P i

s(1− Ps)
255−i−l

)
(24)

Ps = 1− (1− Pb)8 here is the byte error probability without
coding and Pb is the bit error probability.

The throughput performance for fixed block length encryp-
tion and opportunistic encryption with BPSK with and without
FEC (RS code) with t = 15 is illustrated in Fig. 9. This result
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Fig. 9. Throughput of opportunistic encryption and fixed block length
encryption with and without FEC (RS code with t = 15) as average SNR
varies.

was obtained with the optimization technique based on the
deterministic measure of security as presented in section III-A.
It is seen that at low SNR values, the throughput performance
of fixed block length encryption with FEC outperforms op-
portunistic encryption. As the SNR increases the opportunistic
encryption without FEC tends to significantly outperform fixed
block length encryption with FEC. At low SNR values the
reduction in block error rate due to FEC has larger effect
than the benefit of adaptive block length selection. However
as the SNR is increased, the opportunistic encryption achieves
higher flexibility to optimize the throughput using the large
dynamic range in encryption block lengths with minimal effect
on throughput.

V. OPPORTUNISTIC ENCRYPTION AS STOCHASTIC
OPTIMIZATION

Optimal block length selection for encryption with a known
sequence of channel gain serves as the way to derive the op-
timal tradeoff in security and performance. Such an approach
may be applicable if the current and future channel states are
known exactly. In the absence of such knowledge, optimization
under uncertainty may be essential. In this section we present
stochastic optimization approaches with two different levels of
channel knowledge.

A. Optimization Based on Finite State Markov Channel Model

In this section we present a method applicable when the
channel state transitions can be modelled by a Finite State
Markov Chain (FSMC) [7]. It is assumed that the actual state
of the current channel is known prior to each transmission.
Then the selection of encryption block lengths can be con-
sidered as the control decisions considering the current and
future channel states with the formulation of a finite horizon
discrete time Markov decision process [9]. To this end we are
required to define the state space, the transition probabilities,
and the control actions.
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1) Finite State Markov Chain Model for the Wireless Chan-
nel: For the model, the fading is assumed to be sufficiently
slow such that the channel is assumed to remain constant
during the transmission of a data frame. The signal power
and hence the SNR, γ of Rayleigh fading channel has an
exponential probability density function given by (10). The bit
error probability of BPSK signaling as a function of received
SNR is given by (9).Thus the steady state probability of a state
i is defined by a range of SNR from γi to γi+1 as [7],

pi =
∫ γi+1

γi

1
γ̄

e
γ
γ̄ dγ = e−

γi
γ̄ − e−

γi+1
γ̄ (25)

and the probability of bit error, or the crossover probability in
state i, is

P
(i)
b =

[
∫ γi+1

γi
e−

γ
γ̄ erfc(

√
γ)dγ]

[
∫ γi+1

γi
e−

γ
γ̄ dγ]

(26)

The probability of transition from state i to state i + 1 (for
i = 1, · · · , r − 1) is approximately given by,

Pi,i+1 ≈ Ki+1

Rblpi
(27)

whereas the probability of transition from state i to state i−1
(for i = 2, · · · , r) is by,

Pi,i−1 ≈ Ki

Rblpi
(28)

Here Rbl is the transmission rate in number of frames per
second, and pi is the probability the channel is in state i as
in (25). Ki+1 is the expected number of level crossing per
second and is a function of maximum Doppler frequency, fm

and the SNR level, γi given by

Ki =
√

2πγi

γ̄
fme−

γi
γ̄ (29)

The maximum Doppler frequency is defined as fm = v
λ with

v, the speed of the vehicle and λ, the wavelength of the
carrier. As is the case with practical scenarios, we assume
that the probabilities of transition to states other than adjacent
are negligible and therefore we have

Pi,i = 1− Pi,i+1 − Pi,i−1 (30)

one step transition to states other than self and adjacent
states is not possible.

2) Markov Decision Process (MDP) Formulation: We de-
fine the state of the system by a combination of channel state
and the amount of data successfully transmitted. Thus a state is
given by the a tuple i ∈ {(ci, bi)|ci = 1, · · · , r; bi = 1, · · · , q}
where ci, bi, r, and q are respectively the channel state, the
number of bits successfully transmitted, the number of channel
states, and the capacity of the receiver buffer in number of bits.
Note that two distinct system states i and j such that i 6= j,
does not imply ci 6= cj or bi 6= bj . However if ci = cj and bi =
bj then i ≡ j. Following a transmission, the success/failure
of the correct reception is feeded back to the transmitter by
an ACK/NACK signal. We define the set of actions as the

available encryption block lengths. Then we can write the
receiver buffer occupancy bi as a sum of a combination of
encryption block lengths. Thus bi =

∑k
a=1 maNa where there

are k different possible encryption block lengths, and ma

blocks of length Na were successfully transmitted. It should
be noted that there are more than one possible combinations of
encryption block lengths resulting in the same bi. A transition
from state i to state j implies that the channel has changed
from state ci to cj and the total number of bits transmitted
has changed from bi to bj . When the channel is statistically
stationary, the probability of transition from a state i to state
j under action a is independent of the time n and can be
expressed as

Pij(a) = Pr(c(n + 1) = cj ,

b(n + 1) = bj |c(n) = ci, b(n) = bi, a)
(31)

where the action a represents the selection of corresponding
encryption length Na. We observe from (27) and (28) that the
channel state transition probabilities depend on the frame rate
Rbl. We discuss here a scenario where the frame length is
same as the encryption block length, Na, and the extension to
the case with fixed frame length is straightforward. Note that
the frame rate is inversely proportional to Na. It is easy to see
that (31) can be re-written as:

Pij(a) =





Pr(c(n + 1) = cj |c(n) = ci)(1− Pbl,a(ci)),
bj = bi + Na, |cj − ci| 6 1

Pr(c(n + 1) = cj |c(n) = ci)Pbl,a(ci),
bj = bi, |cj − ci| 6 1
0 otherwise.

(32)

where Pr(cn+1 = cj |cn = ci) is the channel transition
probability, and the block error probability Pbl,a(ci) in channel
state ci under action a is given by

Pbl,a(ci) = 1− (1− Pb(ci))Na (33)

Here Pb(ci) is the channel bit error probability in channel
state ci. Equation (32) is written considering the fact that the
total number of transmitted bits will increase with number
of successfully transmitted frames and remain the same with
failures.

Substituting from (27)-(30) and (33) into (32) along with
the use of the expression for block rate, Rbl,a = Rb

Na
in terms

of the bit rate Rb and encryption block length, Na, we get
Having defined the state space, the action set, and the

transition probabilities, the iterative value function of the MDP
is given by the Bellman’s equation and can be written as

vα,T (i) = max
a



r(i, a) + α

∑

j

Pij(a)vα,T−1(j)



 (35)

where vα,T (i) the optimal function value computed using T
steps into the future, is the optimal reward. We define the
reward for taking the action a at state i as r(i, a) = bi +
Na(1 − Pbl,a(ci)). Here the first term is the reward for the
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Pij(a) =





√
2πγi+1

γ̄ fme−
γi+1

γ̄
Na(1−Pb(ci))

Na

Rbpi
, bj = bi + Na, cj = ci + 1√

2πγi

γ̄ fme−
γi
γ̄

Na(1−Pb(ci))
Na

Rbpi
, bj = bi + Na, cj = ci − 1

[1− (
√

2πγi+1
γ̄ e−

γi+1
γ̄ +

√
2πγi

γ̄ e−
γi
γ̄ )fm]Na(1−Pb(ci))

Na

Rbpi
, bj = bi + Na, cj = ci√

2πγi+1
γ̄ fme−

γi+1
γ̄

Na(1−(1−Pb(ci))
Na )

Rbpi
, bj = bi, cj = ci + 1√

2πγi

γ̄ fme−
γi
γ̄

Na(1−(1−Pb(ci))
Na )

Rbpi
, bj = bi, cj = ci − 1

[1− (
√

2πγi+1
γ̄ e−

γi+1
γ̄ +

√
2πγi

γ̄ e−
γi
γ̄ )fm]Na(1−(1−Pb(ci))

Na )
Rbpi

, bj = bi, cj = ci

0, otherwise.

(34)

total number of bits successfully transmitted. The second term
is the reward of achieved encryption strength (on successful
transmission). 0 < α < 1 is a discount factor to give a desired
weight to the future rewards. We do not assume a termination
reward. The computation of optimal function values along with
the optimal action is performed recursively.

TABLE I
CHANNEL STATES AND SNR RANGES AT 10 DB AVERAGE SNR

state SNR range
1 −∞ - 1.2558
2 1.2558 - 4.5891
3 4.5891 - 6.7210
4 6.7210 - 8.4083
5 8.4083 - 9.9159
6 9.9159 - 11.4186
7 11.4186 - 13.1795
8 13.1795 - ∞

Numerical simulations for the MDP formulation were car-
ried out as follows. The SNR regions for each state was
selected with the assumption of equal steady state probabilities
for the states. The state transition probability matrix of (34)
was computed for the parameter settings, fm = 10Hz, r = 8,
γ̄ = 0, 5, 10dB, and pi = 1

r for all i. TABLE I shows
The SNR ranges corresponding to each state at γ̄ = 10dB
as an example. We have used the Rijndael ciphers with
encryption block lengths Na ∈ {128, 160, 192, 224, 256}. The
encryption block lengths for various channel instances for
the Rijndael cipher were calculated using the MDP based
approach, with the set of Nas as the set of control actions
and the channel transition probability matrix as discussed
above. In the MDP, we set r = 8, q = 30, T = 1000 and
α = 0.5. As a baseline of comparison we consider a 224
bit fixed block length encryption for all channel instances.
We observed that (Fig. 10) using opportunistic encryption and
the knowledge of the channel model, we can achieve higher
throughput when compared to the present encryption method
where the selection of encryption block length is independent
of the channel conditions. Fig. 10 gives the comparison of
throughput achieved by opportunistic encryption and the fixed
block length allocation (224 bit) over a range of average SNR,
γ̄. We can observe a gain in the throughput over all SNR
values. Moreover, for low SNR values, the throughput gain
using opportunistic encryption is observed to be higher than
that at high SNR values which is explained by the optimal

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AVERAGE SNR

T
H

R
O

U
G

H
P

U
T

S
avg

  = 0.975

Opportunistic Encryption
256 BIT AES Encryption            

Fig. 10. Throughput comparison between opportunistic encryption and the
fixed block length allocation over all average SNRs for a fixed security
requirement of log2(224)

log2(256)
= 0.975 with the MDP approach.

selection of smaller block sizes at low SNR.

VI. CONCLUSION

The work presented in this paper shows that opportunistic
encryption based on wireless channel states could lead to
significant gains in the throughput achieved for a specified
security constraint. Three different approaches are presented
each with varying levels of channel knowledge. Both analytical
and experimental results are presented. For the case where we
assume exact channel knowledge and continuous encryption
block length we get an improvement of 95% (around 5dB
SNR) in the throughput over fixed block length encryption.
For the case where only the average SNR and the probability
distribution are known we get an improvement of 32% (around
5dB SNR) in the throughput variable block length encryp-
tion. Finally, for the case when a Markov channel model is
available, using MDP techniques we observe an improvement
of 50% (around 5dB SNR) in the throughput over the fixed
encryption.
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APPENDIX I
OPTIMUM SOLUTION WITH BRUTE FORCE ATTACK

We are required to maximize the throughput subject to an
overall security requirement over a finite horizon. This can be
stated as a constrained optimization problem given by

max
{Ni}

1
nRmax

n∑

i=1

Ri(1−NiPi)

such that
1

nSmax

n∑

i=1

log2 Ni = sreq

(36)

Note that Pi = Pi(γi, Ri) is a function of channel SNR γi

and the transmission rate used for the frame Ri and sreq is
the required level of security. This constrained optimization
problem can be converted to an unconstrained optimization
problem using the Lagrange optimization technique where the
object function can be written as

C =
1

nRmax

n∑

i=1

Ri(1−NiPi)+λ

(
1

nSmax

n∑

i=1

log2 Ni − sreq

)

(37)
where the parameter λ is the Lagrange multiplier. Taking
partial derivatives of (??) w.r.t. Ni and setting them equal to
zero we obtain

N∗
i =

λ

loge 2
Rmax

Smax

1
RiPi

, i = 1, · · · , n (38)

where the superscript ∗ indicates the optimality. Constraint in
(36) and Equation (??) leads to

N∗
i =

(
∏n

i=1 RiPi)
1
n

RiPi
e(Smaxsreq) loge 2 (39)

In the case where the transmission rate is fixed, the above
result reduces to

N∗
i =

(
∏n

i=1 Pi)
1
n

Pi
e(Smaxsreq) loge 2 (40)

APPENDIX II
OPTIMALITY OF THE ALGORITHM UNDER EXPONENTIAL

ATTACK MODEL

The following discussion establishes that the algorithm
presented in Section III-B.2 is indeed optimal. Consider the
quantity to be maximized namely T = 1

nRmax

∑n
i=1 Ri(1 +

Pi

k loge φi) subject to the constraints as in (19)-(21). This
is equivalent to maximizing S =

∑n
i=1 wi loge φi where

wi = RiPi with the set of constraints. Each of the summands
in S is concave and therefore the optimum allocation of φi

resembles “water-filling” solution [20]. If yi = wi loge φi then
the marginal gain of additional allocation to the ith channel
is given by ∂yi

∂φi
= wi

φi
. Let the channels be ordered such that

w1 > w2 > · · · > wn. The optimal allocation procedure
should first allocate φi = φmin for i = 1, · · · , n. Next, starting
with the first channel in the ordered list, φ1 should be increased
from the initial value of φmin until the condition ∂y1

∂φ1
= ∂y2

∂φ2

is reached which is equivalent to φ1
w1

= φ2
w2

with φ2 = φmin.
From this point onward both φ1 and φ2 should be increased

such that φ1
w1

= φ2
w2

until the common ratio is equal to φ3
wmin

.
The procedure continues including more and more channels
while maintaining equal marginal gains for all channels under
consideration. Due to the upper limit of φmax on φi, they may
be capped at φmax as the procedure continues. The procedure
continues until the condition nΦ0 =

∑n
i=1 φi is met. Our

formulation of the algorithm is to carry out this allocation
process in discrete values for computational efficiency.

The algorithm starts by allocating φi = φmin, i = 1, · · · , n
and proceeds with the iteration by selecting increasing values
for α so as to assign φi > φmin to more and more channels in
the increasing order of wi until the condition nΦ0 >

∑n
k=1 φi

is achieved. If the equality of constraint is not achieved, the
subsequent steps perform fine tuning to achieve the optimal
solution.
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