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Abstract— The MPEG-4 video coding standard uses variable
length codes (VLCs) to encode the indices of intra and inter
macroblocks after discrete cosine transform and quantization.
Although VLCs can achieve good compression, they are very
sensitive to channel errors. Joint source-channel decoding (JSCD)
is emerging as an efficient method for dealing with this sensitivity
to channel errors. This paper proposes an integrated joint source-
channel decoder (I-JSCD) for first order Markov sources coded
with Huffman codes and convolutional codes over a binary
symmetric channel. The proposed decoder combines the source
state space of the Huffman decoder and channel state space
of the Viterbi decoder together to construct a joint decoder
with a Viterbi-like structure. We applied this I-JSCD to VLCs
of both inter and intra macroblocks in MPEG-4 coded video.
Experiments indicate that the proposed decoder gives significant
improvements (maximum 7 dB) than a separate scheme, where
a constrained joint source-channel decoder is concatenated with
a Viterbi decoder at the same rate.

I. INTRODUCTION

With the benefit of increasing bandwidth in the Internet and
wireless networks, many new video communications applica-
tions like Internet video streaming and mobile visual phone,
are becoming more and more popular. Currently, most of the
video coding standards, like MPEG-4, use variable length
codes (VLC). Although VLCs provide good compression
efficiency, they are very sensitive to channel errors. A single bit
error can cause the decoder to parse the codeword boundaries
incorrectly leading to a loss in synchronization. Such loss
of synchronization adversely affects the reconstructed video
quality.

The MPEG-4 standard provides a set of tools to deal with
the error resilience problem which include: reversible variable
length codes (RVLC) [1], [2], resynchronization markers and
data partitioning [3]. Although these error resilience tools can
protect the video stream from some channel errors and can
recover some corrupted video frames; they can only restrict
the propagation of errors to a small region of time or space
and not eliminate the errors completely. Therefore, when the
channel bit error rate is very high, the decoded video sequence
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will still have many corrupted blocks, which could potentially
degrade the visual quality significantly.

Joint source-channel coding (JSCC) is regarded as a good
alternative for achieving reliable communication of signals
across noisy channels. The rationale behind using JSCC is that
in practical systems, Shannon’s source-channel separation the-
orem [4] does not hold under delay and complexity constraints.
JSCC tries to design the source coder and channel coder in
some joint fashion, so as to provide better error protection and
bandwidth utilization. JSCC schemes can be broadly classified
into three different categories: joint source-channel encoding
(JSCE) [5], [6], joint source-channel decoding (JSCD) [7]-
[14], and rate allocation strategies [15]. As the names suggest,
these deal with the joint design of encoders, decoders and
the rate allocation between the channel and source codes
respectively. JSCD uses the redundancy remaining in the
compressed stream after source coding to reduce the effect
of the channel noise in the decoded signal. JSCD schemes
can be further classified into constrained JSCD (C-JSCD) [7]-
[11] and integrated JSCD (I-JSCD) [12]-[14]. C-JSCDs are
typically source decoders that are built using prior knowledge
of channel characteristics while I-JSCDs combine the source
and channel decoder into one unit. Examples of C-JSCDs for
sources with memory include [7]-[11]. In [7], a source-symbol
synchronized Viterbi decoder was designed for convolutional
and VLC coded sources. Authors in [8] developed exact
and approximate MAP decoder for variable length encoded
data transmitted over BSC. We recently developed a novel
state-space structure and designed a maximum a posteriori
probability (MAP) decoder for VLC encoded memoryless
sources [9] and Markov sources [10], [11] transmitted over
binary symmetric channels (BSCs) for the case where the
number of transmitted words is not known to the decoder.

Some researchers have proposed iterative JSCDs, where
the VLC decoder and the soft channel decoder are serially
concatenated and the decoding is done iteratively; e.g. the
work on symbol by symbol MAP decoding for VLC coded
memoryless source [16]. Hedayat et al compared an iterative
JSCC with a separable system under the same overall rate
and computational complexity [17]. Kliewer et al designed



an iterative decoder consisting of an a posteriori probability
based channel decoder and an a posteriori probability based
VLC source decoder [18].

In [12], an I-JSCD was developed for convolutional encoded
Huffman codes by appropriately combining the graph repre-
sentation of the Markov source, the Huffman source decoder,
and the convolutional channel decoder. This algorithm was
then used to exploit the residual redundancy in motion vectors
(MVs) [13]. Lakovic and Villasenor proposed a modified
Viterbi decoding trellis [14], incorporating information about
the structure of the Huffman source code. This decoder differs
from [12] in that it is designed for memoryless sources. The
authors then incorporated it into a turbo decoder in [19], giving
better performance.

In this paper we design a MAP based I-JSCD for VLC
coded first order Markov sources, convolutional encoded for
transmission over a BSC. The proposed decoder combines the
source and channel state space to construct a delayed decision,
joint decoder. Our joint state space is smaller than that of [12]
and thus has less computational complexity. Our work differs
from [14] in that we consider a first order Markov source
rather than a memoryless source.

As we showed in [20], [21], the VLC coded inter and intra
macroblocks (MBs) in MPEG-4 coded video can be modelled
as 1-D Markov processes. Hence, in this paper we apply the
proposed I-JSCD for the MPEG-4 source and then compare
the results with a system that uses the C-JSCD developed in
[11], concatenated with a Viterbi decoder.

II. PROBLEM FORMULATION

We define our I-JSCD problem as a MAP decision problem,
which is equivalent to minimizing the probability of deci-
sion error for the sequence. In this paper we generalize the
constrained MAP decoder developed in [11] to include the
decoder for the convolutional code as well. In other words, we
design a MAP based integrated joint source-channel decoder.
Mathematically, this problem can be expressed by Equation
1, where tĵ is the most probable transmitted stream after
convolutional coding from all possible transmitted streams
{tj} and ri is the received stream.

tĵ = arg max
tj

Pr(ri|tj) Pr(tj) (1)

Let jth sequence from the set of all possible VLCs sequences
of a first order Markov source be denoted by cj ; and let tj
represent the stream obtained from convolutional encoding cj .
Note that there is an one-to-one mapping between cj and tj .
Hence, the most probable VLCs stream cĵ is calculated as:

cĵ = arg max
cj

Pr(ri|tj) Pr(cj) (2)

Since the source is 1-D Markov and the channel is BSC, we
can break the source term Pr(cj) and channel term Pr(ri|tj)

into smaller terms. Let cj = {cj,k}
n(j)
k=1 , where cj,k is the

codeword corresponding to the kth symbol in the VLC stream
and n(j) is the total number of codewords in this sequence.
Let tj,k denote the convolutional coded symbol corresponding

to cj,k and lk is the length of tj,k in bits. Similarly, let ri,k

be the kth symbol of the received bitstream under the same
partition as tj . Then Equation 2 becomes:

cĵ = arg max
cj

[Pr(cj,1)ε
dH [tj,1,ri,1](1− ε)

(l1−dH [tj,1,ri,1])×

n(j)∏

k=2

Pr(cj,k|cj,(k−1))ε
dH [tj,k,ri,k](1− ε)

(lk−dH [tj,k,ri,k])
]

(3)

Here Pr(cj,1) is the probability that codeword cj,1 was
transmitted first, Pr(cj,k|cj,k−1) is the probability that the
codeword cj,k was transmitted immediately after the code-
word cj,k−1, dH [sj,k, ri,k] is the Hamming distance between
the transmitted symbols sj,k and the corresponding received
symbols ri,k. This maximization over j, effectively searches
through all possible error sequences and bit stream partitions.
This process can be cast as a dynamic programming problem
once an appropriate state-space and the corresponding trellis
are defined. We develop the state-space in Section III.

III. INTEGRATED SOURCE-CHANNEL STATE SPACE

In [11], [22], we developed a state-space for the C-JSCD on
the Huffman coded Markov source. This state-space consisted
of complete and incomplete states corresponding to whether
the decoder had just received the last bit of a codeword or
was in the middle of a codeword. The complete state consisted
of all the Huffman codewords. For our current problem, we
start with two state-spaces: one for the Huffman coded Markov
source and one for the channel code. These are then combined
appropriately to give the overall state-space for the I-JSCD.
The source state-space now contains all internal nodes (other
than the root) of the Huffman tree as well. These correspond
to the incomplete states, whereas the leaves correspond to the
complete states.

Figure 1(a) illustrates the source state-space for the Huff-
man code C = {0, 10, 110, 111}. The complete states are
a(0), b(10), c(110), d(111) and the states e(1) and f(11) are
the incomplete states. These source states may further be
divided into two groups according to whether the rightmost
bit in these states is a ’1’ (d, e and f ) or a ’0’ (a, b and c).
This classification essentially corresponds to the input bit from
the channel decoder to the source decoder.

The channel state-space is simply the state-space associated
with the convolutional code. Figure 1(b) shows a channel
decoder state-space for the 1/3 convolutional code given in
[23]. The states here correspond to the contents of the shift
register: s0 → 00, s1 → 10, s2 → 01, s3 → 11. These states
can also be divided into two groups corresponding to whether
the channel decoder output is a ’1’ (s1, s3) or a ’0’ (s2, s4).

Since the output of the channel decoder is the input of the
source decoder, we can combine the corresponding groups in
the source state space and the channel state space. The inte-
grated state space for the example Huffman and convolutional
codes is given in Figure 1(c). Each state in this state space
reflects the current status of the joint decoder. For example,
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Fig. 1. Combing source and channel state space. (a) source state space.
(b) channel state space. (c) integrated state space.
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Fig. 2. Splitting the channel states.

state as0 means the decoder is in state s0 and currently
producing codeword a. Note that the size of the integrated state
space is reduced in this diagram. States (bs0, cs0, ds1, fs1) are
eliminated because they can never be reached by other states.
Take bs0 as an example, from Figure 1(a) and (b), we see that
bs0 can only be reached from a state combing source state e
and channel state s0 or s2. However, such combinations are
not possible because they are in the different groups.

While the above procedure works for a k/n convolutional
code where k = 1, channel splitting needs to be done for
k > 1. In this case, there are multiple output symbols for each
transition between channel states. However, there is only one
input symbol for each source state transition. So, to combine
the source and channel state, each channel state has to be split
into k sub-states. An example is given in Figure 2. The state
space of a rate 2/3 convolutional code has four channel states
(s0 ∼ s3). Each state si is split into two sub-states s0

i and s1
i .

There are only two types of transitions: from s0
i to s1

i or from
s1

j to s0
i . For each of these, there is only one symbol produced,

which enables the channel state space to be combined with
the source state space. In this example, as usual we can divide

Fig. 3. Experimental Set-up for MPEG-4 video

these sub-states into two groups and combing them with the
source states in the same group. Using channel state split, we
can combine the state space of any k/n convolutional code
with that of any Huffman code.

From the point view of the source state representation,
Murad’s algorithm [12] needs Nleaf × (Ninternal + 1) states
where Nleaf is the number of leaves in the Huffman tree and
Ninternal is the number of internal nodes in the Huffman tree
(except root). Our algorithm needs Nleaf + Ninternal states. It
can be shown that when Ninternal ≥ 1, Nleaf + Ninternal <
Nleaf×(Ninternal+1). For the example in Figure 1(a), Murad’s
algorithm needs 12 source states while ours only need 6 states.

IV. EXPERIMENTAL SETUP AND RESULTS

In our experiments, we encode the MPEG-4 inter and intra
coded MBs using VLCs and decode them with the proposed
I-JSCD developed for VLCs over BSCs. For comparison,
results of a C-JSCD [11] and a traditional MPEG-4 decoder
preceded by the usual Viterbi decoder (for the convolutional
code) are also presented. The experimental set-up is depicted
in Figure 3. The bit streams corresponding to inter and intra
MB are corrupted separately through eight instances of the
BSC (simulated using different random seeds). The Microsoft
MPEG-4 VM encoder and decoder program are used for all
our experiments and the data partitioning and resynchroniza-
tion markers are deployed in all experiments. The remaining
portions of the MPEG-4 video stream (MV, control bits, etc)
are assumed to be very well protected using strong forward
error correcting schemes. Twelve frames from the Susie
sequence containing one object are encoded as 2 I-frames (the
1st and 7th,) and 10 P-frames. We choose frames 42nd to
53rd from the total (150 frames) because this section exhibits
comparatively higher activity. The source rate of the encoded
sequences for all experiments are kept the same at 0.3 bits per
pixel. The same video sequence is used in the training step to
get the probability distribution. Although the video bit-stream
can be highly non-stationary, we can potentially estimate the
probability of the stream on the fly for smaller segments and
update the decoder with the new statistics. Different channel
bit error rates (ε) in the [10−4, 10−1.5] range are simulated
to corrupt the encoded stream. The results presented here are
the average of eight realizations of the channel, corresponding
to eight different error patterns. The rate 2/3 convolutional
encoder in [23] was used as the channel code.

Figures 4 provides a frame-by-frame comparison of the
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performance among proposed I-JSCD, the C-JSCD in [11]
and the MPEG-4 decoder in terms of the average PSNR for
the Y component of the decoded video frames. The channel
error rate is fixed at 10−1.5 for this plot. We see that the
performance of the proposed decoder is significantly superior
to the standard MPEG-4 decoder and the C-JSCD. The average
improvement over the C-JSCD is 6.5 dB.

Figure 5 plots the average PSNR of the Y component of
the whole video sequence at different channel bit error rates.
From this figure, we see that the I-JSCD performs much
better than the C-JSCD and the standard MPEG-4 decoder
when ε is between 10−3.0 and 10−1.5. When ε < 10−3.0,
the performance of the I-JSCD is almost the same as the C-
JSCD. This is because at low error rates, the convolutional
codes and C-JSCD can correct almost all the channel noise
and hence there is little to be gained by using the I-JSCD.
Finally, in Figure 6 we observe the actual I-JSCD, C-JSCD

(a) (b)

(c) (d)

Fig. 6. First frame of the Susie sequence. (a) MPEG-4 decoder decoded
frame without channel error. (b) MPEG-4 decoder decoded frame at ε =

10
−2.0. (c) C-JSCD decoded frame at ε = 10

−2.0. (d) I-JSCD decoded
frame at ε = 10

−2.0.

and MPEG-4 decoded frames for the Susie sequence when
ε = 10−2.0, giving a more perceptual idea of the performance
of the decoders. The decoded frame without channel errors is
also provided. The I-JSCD seems to correct most of the block
errors caused by the channel, which the C-JSCD decoder can
not salvage.

V. CONCLUSIONS

This paper presented an optimal integrated joint source-
channel MAP decoder for variable length encoded 1-D Markov
source. The proposed decoder was then applied to VLC coded
inter MB and intra MB of a MPEG-4 video stream over a
BSC. Simulation results demonstrate that this I-JSCD does
significantly better than both the system comprising of the
constrained MAP decoder followed by the Viterbi decoder and
the conventional MPEG-4 decoder at various error rates.
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