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Abstract

In this paper, an empirically optimized channel-matched quantizer, and a joint stochastic-control based rate con-

troller and channel estimator for H.261 based video transmission over a noisy channel is proposed. The rate controller

adaptively learns to choose the correct channel matched quantizer using a stochastic learning algorithm. The stochastic

automaton based learning algorithm aids in estimating the channel bit error rate based on a one bit feedback from the

decoder. The algorithm is observed to converge to the optimal choice of the quantizer very quickly for various channel

bit error probabilities and for different video sequences. When compared to traditional channel estimation schemes the

proposed technique has several advantages. First, the proposed method results in a significant reduction in the delay

and bandwidth requirement for channel estimation when compared to pilot symbol aided channel estimation schemes.

Next, the stochastic learning algorithm used to estimate the channel bit error rate has simple computations. This makes

it attractive for low power applications such as wireless video communications. This is in contrast to traditional blind

channel estimation schemes that are computationally expensive, in general.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Multimedia applications such as the wireless

video transmission have lead to the study of issues
in error-resilient low bit-rate video transmission

over noisy channels. Wireless links not only suffer

from limited bandwidth problems but are also

highly vulnerable to channel errors. Video com-

pression standards like the H.261 (Bhaskaran and

Konstantinides, 1995) alleviate the bandwidth
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problem to a certain extent. The H.261 standard

also known as the p � 64 standard was developed

for video coding and decoding at the rate of p � 64

kbits/s, where p is an integer from 1 to 30.
Most of the state-of-the-art video codecs treat

source and channel coding separately. Bandwidth

reduction is achieved by the source coder by

removing the redundancy in the source statistics.

Error protection against channel error is take care

of by the channel coder through the addition of

redundancy in the transmitted data. However, this

separation is justifiable only in the limit of an
arbitrary encoding/decoding complexity. But, we

know that in practice complexity and delay are the

main constraints for communication systems.
ed.
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Therefore, the separation of source and channel

coding is no longer optimal. This implies that

source and channel coding should depend on each

other leading to joint source–channel coding

(JSCC) (Kurtenbach and Wintz, 1969).

JSCC has been receiving significant attention
lately as a viable solution for achieving reliable

communication of signals across noisy channels.

The rationale behind using such techniques is the

observation that Shannon�s source–channel sepa-

ration theorem (Shannon, 1949) does not usually

hold under delay and complexity constraints or for

all channels (Vembu et al., 1995). JSCC tries to

design the source coder and channel coder in some
joint way, which can provide better error protec-

tion and bandwidth utilization. JSCC schemes can

be broadly classified into three different categories,

joint source–channel encoding (JSCE) (Dunham

and Gray, 1981; Farvardin, 1990; Phamdo et al.,

1997), joint source–channel decoding (JSCD)

(Sayood and Borkenhagen, 1991; Sayood et al.,

1994; Phamdo and Farvardin, 1994; Park and
Miller, 1997, 2000; Demir and Sayood, 1998; Wen

and Villasenor, 1999; Bauer and Hagenauer,

2000a,b; Hedayat and Nosratinia, 2002; Kliewer

and Thobaben, 2002; Guivarch et al., 2000; Sub-

balakshmi and Vaisey, 1998, 1999a,b, 2001, in

press; Murad and Fuja, 1998a,b; Lakovic et al.,

1999; Lakovic and Villasenor, 2002; Alajaji et al.,

1996; Burlina and Alajaji, 1998; Kopansky and
Bystrom, 1999; Bystrom et al., 2001; Sub-

balakshmi and Chen, 2002; Chen and Sub-

balakshmi, 2003) and rate allocation strategies

(Hochwald and Zeger, 1997; Bystrom and

Modestino, 1998; Cheung and Zakhor, 2000). As

the names suggest, these deal with the joint design

of encoders, decoders and the rate allocation be-

tween the channel and source codes respectively.
One early work in this class is by Dunham and

Gray (1981), where they demonstrate the existence

of a joint source–channel system for special source

and channel pair, by showing that a communica-

tion system using trellis encoding of a stationary,

ergodic source over a discrete memoryless noisy

channel can perform arbitrarily close to the source

distortion-rate function evaluated at the channel
capacity. Other works include an index assignment

algorithm proposed for the optimal vector quan-
tizer on a noisy channel (Farvardin, 1990) and the

design of quantizers for memoryless and Gauss–

Markov sources over binary Markov channels

(Phamdo et al., 1997).

Work on rate allocation between the channel

and source codes includes the optimal allocation
algorithm between a vector quantizer and a

channel coder for transmission over a binary

symmetric channel (BSC) (Hochwald and Zeger,

1997), the optimal source–channel rate allocation

to transmit H.263 coded video with trellis-coded

modulation over a slow fading Rician channel

(Bystrom and Modestino, 1998) and an algorithm

to distribute the available source and channel
coding bits among the sub-bands of scalable video

transmitted over BSC to minimize the expected

distortion (Cheung and Zakhor, 2000).

JSCD schemes can be further classified into

constrained JSCDs and integrated JSCDs. Con-

strained JSCDs are typically source decoders that

are built using prior knowledge of channel char-

acteristics while integrated JSCDs combine the
source and channel decoder into one unit. One

example of constrained JSCD for fixed length

encoded sources is the work of Sayood and

Borkenhagen (1991), who investigated the use of

residual redundancy left in the source after coding

it with a differential pulse code modulation (DPCM)

source coder in providing error protection over a

BSC. This was then extended to include conven-
tional source coder/convolutional coder combina-

tions (Sayood et al., 1994). Other work in this class

includes the design of a MAP detector for fixed

length encoded binary Markov source over a BSC

(Phamdo and Farvardin, 1994) and a MAP deco-

der for hidden Markov source (Park and Miller,

1997). Channel-matched source rate control or

quantization has been shown to be an effective way
to add error-resilience to the transmission of

compressed images and video over noisy channels

(Kurtenbach and Wintz, 1969; Shannon, 1949;

Vembu et al., 1995; Dunham and Gray, 1981;

Farvardin, 1990; Phamdo et al., 1997; Sayood and

Borkenhagen, 1991; Sayood et al., 1994; Phamdo

and Farvardin, 1994; Park and Miller, 1997, 2000;

Demir and Sayood, 1998; Wen and Villasenor,
1999; Bauer and Hagenauer, 2000a,b; Hedayat

and Nosratinia, 2002; Kliewer and Thobaben,
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2002; Guivarch et al., 2000; Subbalakshmi and

Vaisey, 1998, 1999a,b, 2001, in press; Murad

and Fuja, 1998a,b; Lakovic et al., 1999; Lakovic

and Villasenor, 2002; Alajaji and Fuja, 1994;

Alajaji et al., 1996; Burlina and Alajaji, 1998;

Kopansky and Bystrom, 1999; Bystrom et al.,
2001; Fano, 1963; Subbalakshmi and Chen, 2002;

Chen and Subbalakshmi, 2003; Hochwald and

Zeger, 1997; Bystrom and Modestino, 1998;

Cheung and Zakhor, 2000; Chandramouli et al.,

1998a).

The H.261 standard recommends the use of

Huffman encoding to achieve an additional gain in

the compression ratio. But, it is known that vari-
able length codes are highly susceptible to channel

errors. The critical bits need to be protected from

channel errors in order to prevent the complete

loss of a transmitted video sequence. If, during

transmission some bits are flipped, added or

dropped, the synchronization of the decoder to the

received bit stream could be lost. This leads to

error propagation and the loss of the source
symbols. The loss of a few blocks of symbols

causes displacements in the received image. Error

correcting codes can be used to protect the critical

bits from channel errors. Examples of the critical

bits are the EOB (end of block) markers and the

most significant bit of a source symbol. An error in

the most significant bit could cause higher degra-

dation than a corrupted least significant bit. The
Fig. 1. Effect of error propogation. (a) Origi
loss of EOB due to errors leads to catastrophic

error propagation as shown in Fig. 1. Therefore,

the high priority bits need to be protected using

channel coding or other methods. But the redun-

dancy due to channel coding reduces the effect of

the compression efficiency. Therefore, an optimal
trade-off between the rate of the source coder and

the channel coder is essential.

Channel-matched source quantization and

adaptive source rate control based on the channel

characteristics are effective ways of reducing the

effects of channel noise on the received video sig-

nal. However, the performance depends on how

fast and reliably the channel parameters (such as
the bit error probability pe) can be estimated. In

many applications, pe is computed using pilot

symbol aided techniques. This causes large delays

which may not be acceptable for real-time appli-

cations. It has also been observed that up to a 14%

loss in capacity can be incurred due to pilot sym-

boling (Cavers, 1991). Therefore, it is desirable to

reliably estimate the channel statistics and also
achieve rate control through adaptive quantization

on the fly with minimal overhead.

In this paper, a channel-matched quantizer, and

a fast and reliable simultaneous rate control and

channel estimation algorithm based on the sto-

chastic learning automaton (Narendra and Tha-

thachar, 1989) for a H.261 based video codec over

channels that cause random bit errors is proposed.
nal image, (b) error propagated image.
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A stochastic learning automaton at the encoder

estimates and tracks the channel bit error prob-

ability. For simplicity, we only consider pe ¼ 10�1,

10�2 and 10�3 only in this work as they are typical

of the wireless channels. However, we note that

this method can be extended to finite state channel
models with more number of states by expanding

the action set of the learning automaton. The

learning is based on a one bit decision feedback

from the decoder summarizing the peak signal to

noise ratio (PSNR) of the received video frames

for a particular choice of the source quantizer. The

optimal quantizer (and hence the bit rate due to

the one-to-one mapping) for that channel bit error
probability is learnt and selected by the learning

automaton using a linear reward inaction (LRI)

learning scheme. We realized that the LRI scheme

has absorbing barriers (Narendra and Thathachar,

1989). One way to overcome this would be to

trigger the learning process if the received video

quality is consistently below a certain threshold.

There is no additional overhead of pilot symbols in
the proposed approach. We also note that the

proposed technique is particularly suited for low
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Fig. 2. Proposed H.2
power wireless video applications where compu-

tationally simplicity in encoding and decoding is

emphasized. The system designer has the flexibility

to control the convergence rate of the learning

algorithm depending on the reliability and delay

constraints. To our knowledge, this is the first at-
tempt in using stochastic learning automaton for

rate control in low-bit rate video transmission. In

order to prevent sync losses at the decoder, the fast

error resilient entropy code in (Chandramouli

et al., 1998b) is also used. We organize the paper

as follows. In Section 2 the channel-matched

quantization technique is discussed. The variable

structure stochastic learning automaton is intro-
duced in Section 2.3 followed by the rate control

and channel estimation algorithm. Performance of

the proposed algorithm is studied in Section 3 and

concluding remarks are given in Section 4.
2. Quantizer design

The proposed H.261 based video codec is

shown in Fig. 2. The adaptive quantizer is
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  8      16      19      22      26      27       29     34

16      16      22      24      27      29       34     37

19      22      26      27      29      34       34     38

22      22      26      27      29      34       37     40

22      26      27      29      32      35       40     48

26      27      29      32      35      40       48     58

26      27      29      34      38      46       56     69

27      29      35      38      46      56       69     83

Fig. 3. Quantization table.
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implemented using a VSLA. This will be discussed

subsequently. To prevent synchronization loss

due to error propagation in the variable length

coded transmitted data a error-resilience code

called FEREC (Chandramouli et al., 1998c) is

used. We now discuss a channel matched source
quantization scheme. This is similar to the one

proposed for the transmission of JPEG com-

pressed images (Chandramouli et al., 1998c). The

video frames are categorized into two classes,

namely, the intra frame or the I-frame and the

predicted frame or the P-frame. One in every 32

frames are intra frame coded. The I-frame coding

is similar to the JPEG still image coding which
consists of the discrete cosine transform (DCT),

quantization and Huffman encoding. The P-frame

coding is based on DPCM and motion estima-

tion. I-frames are coded without reference to the

preceding frames; whereas the P-frames are coded

with respect to the temporally closest preceding I/

P-frame. In P-frame coding the best match for

each macroblock of the current frame is found in
a search area in the previous intra frame using a

block matching technique. The two macroblocks

are subtracted and the difference is transformed

using DCT, quantized and Huffman encoded.

Motion estimation is done based on an exhaustive

search based block matching technique (Borko

and Westwater, 1997). The quantization of the

DCT coefficients is implemented based on scaling
each coefficient by an entry in the quantization

table (Bhaskaran and Konstantinides, 1995). We

assume that the same quantization table is used

for I and P frames in this paper for simplicity.

However, the proposed joint rate control and

channel estimation is independent of this

assumption. The quantization table for 8 · 8 DCT

blocks used for the simulations is shown in Fig. 3.
Clearly, the DC coefficient and the low frequency

AC coefficients are finely quantized. The high

frequency AC coefficients which have less energy

are coarsely quantized.

2.1. Channel matched source quantization

Errors in the received frame are both due to the
quantization and channel errors. At high bit error

rates, pe, a high rate quantizer is more sensitive to
the channel errors (Kurtenbach and Wintz, 1969).
This causes many received blocks of data to be in

error. Therefore, by adjusting the quantization

rate to match the channel bit error rate error-

resilience can be achieved. The quantization rate

can be varied by multiplying each entry in the

quantization table by a quantizer factor, say, M .

When a coarse quantizer is used by increasing the

quantizer factor, M , for a given pe the errors in the
received signal reduce. It reaches a minimum for

the optimal choice, namely, M�. If the bit rate is

reduced further then the quantization errors con-

tribute significantly to the degradation in the re-

ceived signal. The number of blocks in error

increases again. Hence, it is necessary to compute

the optimal quantization parameter for the channel

limited or quantizer limited region. In other words,
if X denotes the source video frame, U is the

quantized frame and V is the received frame, then

the reconstruction error variance for transmission

over a noisy channel is given by

r2
rec ¼ E X½ � V �2 ¼ E½ðX � UÞ þ ðU � V Þ�2

¼ E½X � U �2 þ E½U � V �2

þ 2E½ðX � UÞðU � V Þ�
¼ r2

q þ r2
c þ 2r2

m ð1Þ

The quantities r2
q, r2

c and r2
m denote the quanti-

zation, channel and the mutual error variance. The

contribution of r2
m can be neglected for a small bit

error probability. However, we account for this in

our simulations. Under noise free conditions the

quantization error variance is minimized using the
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perceptually optimized quantization values given
in Fig. 3. When the channel is noisy, r2

c is mini-

mized by a proper choice of the quantizer

parameter, M . Therefore, r2
rec is minimized by the

optimal choice of M . Thus, the optimal value M� is

a function of r2
q and r2

c as shown in Fig. 4. Com-

puting a closed form solution for M� may not be

possible due to the presence of VLC. Therefore,

we resort to simulative methods.

2.2. Q–C modeling

A model that relates the number of block errors

in the reconstructed frame and M is developed in

this section. The parameters of the model are

computed using extensive simulations for bit error

rates ranging from 10�3 to 10�1. The channel is
assumed to cause random bit errors. We call the

quantizer-channel error trade-off as the Q–C curve

(Chandramouli et al., 1998a). The rate of the

quantizer can be adapted to the channel bit error

rate by suitably changing M . The value of M is

increased in steps of 0.2 for a fixed pe and the

number of significantly corrupted reconstructed

blocks are computed. The higher the value of M
the coarser is the quantization. The I-frames are

assumed to be sufficiently protected from channel

errors and there are 30 P-frames between any two

I-frames. The successive received frames are

reconstructed from the nearest I-frame after mo-

tion compensation. A 8 · 8 reconstructed image

block is termed erroneous if the PSNR of the

reconstructed block defined as
PSNR¼ 10log10

2552

1

N 2

Xi¼N�1

i¼0

Xj¼N�1

j¼0

ðX ði;jÞ�V ði;jÞÞ2

0
BBBB@

1
CCCCA

ð2Þ
is less than 30 dB. The Q–C curve is the average

number of erroneous blocks averaged over a

number of video frames and sequences for various

values of M . This produces a Q–C curve for that

pe. The same procedure is repeated for other
channel bit error rates also. The experimental Q–C

curves (non-smooth) are shown in Figs. 5–7. A
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Table 1

Look-up table for M�

pe M�

10�1 2

10�2 1.3

10�3 1
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second order regression model for the average
number of blocks in error is fitted to the experi-

mental results shown as the solid curve. The

optimal value of the quantizer factor, M� mini-

mizes the average number of blocks in error in the

regression model. The optimal quantizer values are

given in Table 1. For example Fig. 8(a) and (b)

shows the received frame for pe ¼ 10�2 for two

different quantizers. We see that using the value of
M� from Table 1 for this bit error rate results in a

reduction in the total number of corrupted blocks.
Fig. 8. Quantized video frame for p2 ¼ 10�2. (a) Finer quantization––M
A similar performance improvement is seen for
other bit error rates also.

2.3. Stochastic learning automaton

In this section we briefly discuss the concept

behind the variable structure stochastic learning

automaton (VSLA) (Narendra and Thathachar,

1989). Fig. 9 shows the schematic of the stochas-
tic learning automaton. Abstractly, a learning

automaton can be considered to be an object that

can choose from a finite number of actions. For

every action that it chooses, the random environ-

ment in which it operates evaluates that action. A

corresponding feedback is sent to the automaton

based on which the next action is chosen. As this

process progresses the automaton learns to choose
the optimal action asymptotically. The rule used by

the automaton to select its successive actions based

on the environment�s response defines the sto-

chastic learning algorithm. An important property

of the learning automaton is its ability to improve
issa frame no. 15, (b) coarser quantization––Missa frame no. 15.
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Fig. 9. Schematic of stochastic learning automaton.
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its performance with time. This can be used to

optimize functionals which may not be known

completely.
A VSLA is described by a 5-tuple fa; b; p; T ;Cg,

where

• a ¼ fa1; a2; . . . ; arg is the set of r actions from

which the automaton can choose any action at

time n denoted by aðnÞ.
• b ¼ f0; 1g is the set of binary response to the

VSLA from the environment for a chosen ac-
tion; b ¼ 0 is a reward and b ¼ 1 corresponds

to a penalty.

• p ¼ fp1; p2; . . . ; prg is the set of probabilities.

• T is the stochastic learning algorithm according

to which the elements of the set p are updated at

each time n, i.e., pðnþ 1Þ ¼ T ½aðnÞ;bðnÞ; pðnÞ�,
where the ith element of the set pðnÞ is

piðnÞ ¼ PrðaðnÞ ¼ aiÞ, i¼ 1;2; . . . ; r,
Pr

i¼1 piðnÞ ¼
1;8n and pið1Þ ¼ 1

r ;8i:
• C ¼ fc1; c2; . . . ; crg is the set of penalty prob-

abilities conditioned on the chosen action,

where ci ¼ Prðb ¼ 1jaðnÞ ¼ aiÞ, i ¼ 1; 2; . . . ; r.

The stationary random environment is repre-

sented by C ¼ fc1; c2; . . . ; crg. The values of ci are

unknown and it is assumed that C has a unique
minimum element. For a stationary random envi-

ronment the penalty probabilities are constant.

The working of the learning automaton can be

described as follows. Initially at n ¼ 1 one of the

actions is chosen by the automaton at random
with a given probability. This action is then ap-

plied to the system and the response from the

environment is observed. If the response is favor-

able (b ¼ 0) then the probability of choosing that

action for the next period of time is updated

according to the updating rule T . Then, another
action is chosen and the response is observed. This

process is repeated until a stopping criterion is

reached. When the learning process stops the

algorithm has learnt some characteristics of the

random environment. In this paper, we consider

the operator T to be linear. When T is the LRI

algorithm it can be described by Narendra and

Thathachar (1989)

if biðnÞ ¼ 0

piðnþ 1Þ ¼ piðnÞ þ
X
j

ð1 � aÞpjðnÞ; 8j; j 6¼ i

pjðnþ 1Þ ¼ apjðnÞ; 8j 6¼ i

if biðnÞ ¼ 1

piðnþ 1Þ ¼ piðnÞ; 8i
ð3Þ

where biðnÞ is the response when action i is chosen

at time n and a is the reward parameter. The idea

behind these update equations is that when a

chosen action results in a reward the probability of

choosing that action in the future is increased by a

small amount and the other action probabilities
are decreased. If a penalty is received then the

probabilities are not updated. We now establish

the theoretical basis of LRI. Let the average pen-

alty received by the automaton be

WðnÞ ¼ E½bðnÞjpðnÞ� ¼
Xr

i¼1

cipiðnÞ ð4Þ

where E½�� is the expectation operator.

Definition 1 (Narendra and Thathachar, 1989).

A learning automaton is absolutely expedient if

E½Wðnþ 1ÞjpðnÞ� < WðnÞ, 8n, 8piðnÞ 2 ð0; 1Þ and

for all possible ci, i ¼ 1; 2; . . . ; r.

This means that absolutely expedient learning

results in a decreasing average penalty function.
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Definition 2 (Narendra and Thathachar, 1989). A

learning automaton is �-optimal if limn!1 E½WðnÞ� <
mini fcig þ � for any arbitrary � > 0.

That is, using �-optimal learning we can obtain
a solution whose cost is arbitrarily close to the

optimal cost. It is shown in (Narendra and Tha-

thachar, 1989) that the unit vectors in Rr are

absorbing states of the Markov process fpðnÞg for

LRI learning. The process fpðnÞg gets absorbed

w.p. l under certain conditions. From this we

conclude that the learning process using LRI ter-

minates w.p. l. Further, LRI is absolutely expe-
dient and �-optimal.

2.4. Joint rate control and channel estimation

Adaptive rate control is one way of achieving

error-resilience. For channel matched source rate

control the channel bit error probability needs to

be estimated first. Transmitting pilot symbols to
estimate pe is a common solution. But, this intro-

duces delay and costs bandwidth. We now discuss

a way to overcome this problem by jointly con-

trolling the rate of quantization and on-line esti-

mation of pe using VSLA. We assume that pe can

take only one of the three values, 10�1, 10�2, or

10�3. At the beginning of the transmission the

actual pe for the channel is unknown. Now, let the
set of actions of the automaton, a ¼ fa1; a2; a3g
correspond to the three channel matched empiri-

cally optimal quantizers for channel bit error rates

10�1, 10�2, and 10�3 respectively. Since there is a

one-to-one correspondence between quantizers

and the channel bit error probability, by learning

the optimal quantization parameter we also esti-

mate pe. Let a favorable response (b ¼ 0) from the
decoder for a chosen quantizer imply that the

PSNR of the current received video frame is

greater than or equal to that of the previous frame

and 1 is an unfavorable response. We assume here

that PSNR and the number of blocks in error in

the received frame are inversely proportional.

Therefore, a high PSNR implies fewer number of

blocks in error. The penalty probabilities for the
choice of each action is unknown and defines the

environment (channel�s conditions). The goal is to

maximize the PSNR of the received video signal by
learning the channel condition and choosing the

corresponding optimal rate for the source quan-

tizer. This corresponds to learning the action with

the minimum penalty probability. The probability

of choosing the quantizers are updated using LRI.

The typical steps involved in the proposed algo-
rithm are as follows:

• I-frame is quantized using a high rate quantizer

and transmitted with sufficient protection.

• The decoder, after reconstructing this frame,

quantizes the frame using the quantization ta-
bles that have been empirically optimized for

the three channel bit error probabilities and

stores them in a buffer.

• The VSLA chooses a quantizer randomly for

the nth frame with the given probability

fp1ðnÞ; p2ðnÞ; p3ðnÞg.
• The quantized frame is transmitted along with

the the quantizer information as protected side
information.

• A response b based on the PSNR of the de-

coded frame is transmitted as a feedback infor-

mation.

• Based on this feedback the probabilities of

choosing the quantizers for the ðnþ 1Þst frame

is computed using LRI.

• The algorithm learns until the probability of
choosing the optimal action for the unknown

pe converges to 1.
When the algorithm converges it has learnt the

unknown pe of the channel by the optimal choice

of the quantizer factor. Of course, this method

could result in the first few frames to be sub-

optimally quantized. This is the cost incurred in

on-line channel estimation. However, the learning

delay can be controlled by the value of the reward
parameter. Depending on the value of the error

tolerance � a suitable reward parameter can be

chosen. A higher reward parameter results in fas-

ter convergence of the LRI learning. Since pðnÞ
converge w.p. l let limn!1 WðnÞ ¼ W� w.p. l. Then,

the average rate of convergence of LRI learning

is (Narendra and Thathachar, 1989) qav �
E½Wðnþ1Þ�W��
E½WðnÞ�W�� . After every frame n, E½WðnÞ � W�� de-

creases by a factor of qav. If eT is the time taken for
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E½Wð0Þ � W�� to decrease to d times its value, theneT ¼ log d= log qav. For slowly changing channels,

if the channel bit error probability changes then

the encoder will receive a series of penalties. Then

the learning process can be started again. There-

fore, the encoder is in sync with the channel again.
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Fig. 11. Susie sequence, a ¼ 0:3.
3. Performance analysis

In this section we discuss the performance of

the adaptive quantizer and on-line channel esti-

mator. The H.261 video codec used for experi-

ments was implemented in C by the authors and

their students. Results are presented for the stan-

dard grey level, qcif format, Miss America video

sequence at 10 frames/s. The uncompressed bit

rate was about 2 Mbps and the highest compressed
video sequence had a rate of 35 Kbps for a par-

ticular choice of the quantization factor given in

the following experimental results. Before we

present the experimental results we make note of

some points on the advantage of the proposed

joint rate control and channel estimation tech-

nique with regards to transmission power savings

and channel capacity usage. In the proposed
scheme only one bit feed back is assumed. This

significantly reduces the feed back channel

requirement and thus enhances the reverse channel

capacity. Feed back channel transmission power

requirement is also reduced. This could be useful

in uplink communications when mobile devices are

battery power limited. As as aside, we note that

many wireless systems use several bits of feed back
for rate control as against the one bit feed back in

the algorithm presented in this paper. Also, since

the proposed algorithms does not need a pilot

channel for wireless link state estimation, the

transmission power used for this channel is saved.

This savings could be significant (in 3G systems up

to 25% of total transmitted power is used in pilot

signaling).
Figs. 10–12 show the convergence of the linear

LRI learning to the optimal quantizer when

pe ¼ 10�1. It is seen that p1ðnÞ corresponding to the

optimal quantizer converges to 1 and p2ðnÞ and

p3ðnÞ converge to zero for all the three sequences.

Both p2ðnÞ and p3ðnÞ have the same behavior as n
varies. We also observe that increasing the value of

the reward parameter results in a faster learning.
We find similar convergence results for other bit

error probabilities and other video sequences too.

Fig. 13 shows the reconstructed frames of the

Miss America sequence when pe ¼ 10�1. Clearly,

the optimal quantizer when M ¼ 2 results in a

decrease in the number of corrupted blocks. A

similar behavior is seen in Fig. 14 when p2 ¼ 10�2.

This performance can be further enhanced by
using additional error protection. Fig. 15 shows

the trajectory of PSNR using the adaptive learning

rate control algorithm when the average rate was

1 Mbps. Here, 125 frames of the Miss America

sequence was used and the channel bit error rate
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was allowed to change from 10�2 to 10�1. The

learning parameter a ¼ 0:3 was chosen. We see

from the figure that during the channel transition
period (at the 50th frame) the rate controller senses

the change and starts searching the space of

empirically optimized quantizers. This search

continues for nearly 14 frames when the right

quantizer is obtained with a high probability. The

performance at the decoder during these 14 frames

fluctuates as seen in Fig. 15. Similar performances

have been observed for other video sequences.
Clearly, there is an important related question
Fig. 13. Reconstructed Miss America frames for pe ¼ 10
here: how often to trigger the learning algorithm in

a dynamically changing wireless environment?

Unfortunately this question does not have a

straightforward answer. However, there is a clear

trade-off here. Consider the two cases: (a) the

channel has changed significantly and the learning
algorithm has not been triggered and (b) learning

algorithm has been triggered erroneously. In the

first case, suppose the channel has changed from a

higher bit error rate to a lower one, then, by not

triggering the learning algorithm to compute the

new (higher) source coding rate, the source coder

induced distortion at the receiver will be high. On

the other hand, if the channel has changed from a
lower bit error rate to higher, then the channel

induced distortion will be larger. In case (b), the

loss will be in terms of PSNR during the learning

period when the quantizer randomly tries different

quantization parameters. One way to alleviate this

problem would be not to rely only upon physical

layer information but also use information from

higher layers of the protocol stack.
4. Conclusion

A joint adaptive rate control and channel esti-

mation algorithm based on stochastic learning is

presented. First, channel-matched quantizer de-

sign is discussed. The quantizers are optimized
�1. (a) Frame 15, M ¼ 1:3, (b) frame 15, M ¼ 2:0.
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empirically based on simulation data. The appli-

cation of LRI learning to source rate control for

video transmission is studied. Some convergence

properties of this method are analyzed. The con-

vergence of the algorithm to the optimal channel

matched quantizer is fast. The learning delay and

optimal quantization can be traded-off using the

learning parameter. Simulation results are given
for different channel bit error probabilities and for

various video sequences. The delay in the existing

schemes that employ pilot signaling for channel

identification before transmission is avoided in this
method thus enabling on-line rate control. The

PSNR of the received video signal is shown to be

better using the proposed approach. Finally, we

note that this method is suitable for low power

wireless video applications.
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