1a) Solve $\quad y^{\prime}+2 x y=4 x \quad y(0)=4$

The DE is linear: $\quad P(x)=2 x, \quad Q(x)=4 x$

The integrating factor is $I=e^{\int P d x}=e^{x^{2}}$

Multiplying both sides by I yields:

$$
\begin{align*}
& \frac{d}{d x}\left[y e^{x^{2}}\right]=4 x e^{x^{2}} \tag{1}\\
& y e^{x^{2}}=\int 4 x e^{x^{2}} d x=2 e^{x^{2}}+C \tag{2}
\end{align*}
$$

Therefore $y=C e^{-x^{2}}+2$

Now, applying the initial condition to the general solution $y=C e^{-x^{2}}+2$, we get:
$y(0)=4 \Rightarrow 4=C+2 \Rightarrow C=2$

So finally, $y=2\left(e^{-x^{2}}+1\right)$

