1c) Solve the first-order differential equation:

$$
\left(y e^{x y}+2 x y\right) d x+\left(x e^{x y}+x^{2}\right) d y=0
$$

Notice the DE is neither linear nor separable.

Check for exactness:
$M=y e^{x y}+2 x y, \quad N=x e^{x y}+x^{2}$

The equation is exact, since:
$M_{y}=N_{x}=x y e^{x y}+e^{x y}+2 x$

Then the equation has the form $d f=0$, and consequently $\frac{\partial f}{\partial x}=M$
$f=\int M d x+g(y)=\int\left(y e^{x y}+2 x y\right) d x+g(y)$
So $f=e^{x y}+x^{2} y+g(y)$ where $g(y)$ is an unknown function of y

Now to find $g(y)$, note that $\frac{\partial f}{\partial y}=N$, that is:
$x e^{x y}+x^{2}+g^{\prime}(y)=x e^{x y}+x^{2}$
So $g^{\prime}(y)=0$, and therefore $g(y)=C_{1}$

Integrating the exact differential $d f=0$
we get $f=e^{x y}+x^{2} y+C_{1}=C_{2}$
or $e^{x y}+x^{2} y+C=0 ; \quad$ where $C=C_{1}-C_{2}$

