Exam I Problems for Ma 221 2004 Fall.

1 Exam IA

In Problems 1-3 solve the equations:

1 [25 pts.]

$$y' - y \tan t = \sin t$$
$$y(0) = 2$$

Note: $\int \tan t dt = -\ln(\cos t) + C$.

2 [25 pts.]

$$\frac{dy}{dx} = -\frac{3x^2y^2 + 2xy}{2x^3y + x^2 + y}$$

3 [25 points]

$$\frac{dx}{dt} - tx = t^3 x^2$$

Note: $\int t^3 e^{\frac{t^2}{2}} dt = t^2 e^{\frac{1}{2}t^2} - 2e^{\frac{1}{2}t^2} + C$

4a [15 pts.] The differential equation

$$y'' - 9y = 2e^{3x} ((*))$$

has the general solution

$$y(x) = c_1 e^{-3x} + c_2 e^{3x} + \frac{1}{3} x e^{3x}$$

Find the solution or solutions (if they exist) to (*) with the initial conditions $y\left(0\right)=-\frac{1}{9},y'\left(0\right)=\frac{1}{3}.$

4b [10 **pts.**] Solve the equation

$$x\frac{dy}{dx} = 2(y-4) \quad y \neq 4$$

2 Exam IB

In Problems 1-3 solve the equations:

1 [25 pts.]

$$y' + y \cot t = \cos t$$
$$y\left(\frac{\pi}{2}\right) = 3$$

Note: $\int \cot t dt = \ln(\sin t) + C$

2 [25 **pts.**]

$$\frac{dy}{dx} = -\frac{4xy^2 + 6xy}{4x^2y + 3x^2 + 2}$$

3 [25 **points**]

$$\frac{dx}{dt} - \frac{1}{t}x = 3t^2x^3$$

4a [15 pts.] The differential equation

$$y'' - 9y = 9x^2 \tag{(*)}$$

has the general solution

$$y(x) = c_1 e^{-3x} + c_2 e^{3x} - x^2 - \frac{2}{9}$$

Find the solution or solutions (if they exist) to (*) with the initial conditions $y\left(0\right)=-\frac{1}{9},y'\left(0\right)=\frac{1}{3}.$

4b [10 **pts.**] Solve the equation

$$x^2 \frac{dy}{dx} = 2(y+4) \quad y \neq -4$$