Exam I Solutions for Ma 2212004 Fall.

1 Exam IA

In Problems $1-3$ solve the equations:
1 [25 pts.]

$$
y^{\prime}-y \tan t=\sin t \quad y(0)=2
$$

Note: $\int \tan t d t=-\ln (\cos t)+C$.
Solution: This equation is first order linear with $P(t)=-\tan t$. Hence

$$
e^{\int P(t) d t}=e^{-\int \tan t d t}=e^{\ln (\cos t)}=\cos t
$$

Multiplying the original DE by $\cos t$ we get

$$
\cos t y^{\prime}-y \sin t=\cos t \sin t
$$

or

$$
(y \cos t)^{\prime}=\cos t \sin t
$$

so that integrating both sides leads to

$$
y \cos t=\int \cos t \sin t d t=\frac{\sin ^{2} t}{2}+C \text { or }-\frac{\cos ^{2} t}{2}+C^{\prime}
$$

so

$$
y(t)=\frac{\sin ^{2} t}{2 \cos t}+\frac{C}{\cos t} \text { or } y(t)=-\frac{\cos t}{2}+\frac{C^{\prime}}{\cos t}
$$

The initial condition implies

$$
C=2 \quad \text { or } \quad C^{\prime}=\frac{5}{2}
$$

Thus

$$
y(t)=\frac{\sin ^{2} t}{2 \cos t}+\frac{2}{\cos t} \quad \text { or } y(t)=-\frac{\cos t}{2}+\frac{5}{2 \cos t}
$$

These two expressions are equivalent since

$$
y(t)=\frac{\sin ^{2} t}{2 \cos t}+\frac{2}{\cos t}=\frac{1-\cos ^{2} t}{2 \cos t}+\frac{2}{\cos t}=-\frac{\cos t}{2}+\frac{5}{2 \cos t}
$$

2 [25 pts.]

$$
\frac{d y}{d x}=-\frac{3 x^{2} y^{2}+2 x y}{2 x^{3} y+x^{2}+y}
$$

Solution: We rewrite the equation as

$$
\left(3 x^{2} y^{2}+2 x y\right) d x+\left(2 x^{3} y+x^{2}+y\right) d y=0
$$

Letting $M=3 x^{2} y^{2}+2 x y$ and $N=2 x^{3} y+x^{2}+y$, we see that $M_{y}=$ $6 x^{2} y+2 x=N_{x}$ so this equation is exact. The there exists a function $F(x, y)$ such that

$$
\begin{aligned}
& F_{x}=M=3 x^{2} y^{2}+2 x y \\
& F_{y}=N=2 x^{3} y+x^{2}+y
\end{aligned}
$$

Integrating the first equation with respect to x while holding y fixed leads to

$$
F=x^{3} y^{2}+x^{2} y+g(y)
$$

so

$$
F_{y}=2 x^{3} y+x^{2}+g^{\prime}(y)=N=2 x^{3} y+x^{2}+y
$$

Therefore $g^{\prime}(y)=y$, so that $g(y)=\frac{y^{2}}{2}+C$. Hence

$$
F=x^{3} y^{2}+x^{2} y+\frac{y^{2}}{2}+C
$$

and the solution is given by

$$
x^{3} y^{2}+x^{2} y+\frac{y^{2}}{2}=K
$$

3 [25 points]

$$
\frac{d x}{d t}-t x=t^{3} x^{2}
$$

Note: $\int t^{3} e^{\frac{t^{2}}{2}} d t=t^{2} e^{\frac{1}{2} t^{2}}-2 e^{\frac{1}{2} t^{2}}+C$
Solution: This is a Bernoulli equation. The equation may be rewritten as

$$
x^{-2} x^{\prime}-t x^{-1}=t^{3}
$$

Let $v=x^{-1}$. Then $v^{\prime}=-x^{-2} x^{\prime}$ and the DE can be written as

$$
-v^{\prime}-t v=t^{3}
$$

or

$$
v^{\prime}+t v=-t^{3}
$$

Then

$$
e^{\int P d t}=e^{\int t d t}=e^{\frac{t^{2}}{2}}
$$

Multiplying the DE by this we get

$$
e^{\frac{t^{2}}{2}} v^{\prime}+t e^{\frac{t^{2}}{2}} v=-t^{3} e^{\frac{t^{2}}{2}}
$$

or

$$
\left(e^{\frac{t^{2}}{2}} v\right)^{\prime}=-t^{3} e^{\frac{t^{2}}{2}}
$$

Integrating gives

$$
e^{\frac{t^{2}}{2}} v=-t^{2} e^{\frac{1}{2} t^{2}}+2 e^{\frac{1}{2} t^{2}}+C
$$

so that

$$
\frac{1}{x}=-t^{2}+2+C e^{-\frac{t^{2}}{2}}
$$

$4 \mathbf{a}(15 \mathrm{pts}$.$) The differential equation$

$$
\begin{equation*}
y^{\prime \prime}-9 y=2 e^{3 x} \tag{*}
\end{equation*}
$$

has the general solution

$$
y(x)=c_{1} e^{-3 x}+c_{2} e^{3 x}+\frac{1}{3} x e^{3 x}
$$

Find the solution or solutions (if they exist) to $(*)$ with the initial conditions $y(0)=-\frac{1}{9}, y^{\prime}(0)=\frac{1}{3}$.

Solution:

$$
\begin{gathered}
y(0)=c_{1}+c_{2}=-\frac{1}{9} \\
y^{\prime}(x)=-3 c_{1} e^{-3 x}+3 c_{2} e^{3 x}+\frac{1}{3} e^{3 x}+x e^{3 x} \\
y^{\prime}(0)=-3 c_{1}+3 c_{2}+\frac{1}{3}=\frac{1}{3}
\end{gathered}
$$

or

$$
-c_{1}+c_{2}=0
$$

so $c_{1}=c_{2}$ and $2 c_{1}=-\frac{1}{9}$ so $c_{1}=c_{2}=-\frac{1}{18}$. Thus

$$
y(x)=\frac{1}{3} x e^{3 x}-\frac{1}{18} e^{3 x}-\frac{1}{18} e^{-3 x}
$$

4b (10 pts.) Solve the equation

$$
x \frac{d y}{d x}=2(y-4) \quad y \neq 4
$$

Solution: This equation is separable. Hence

$$
\frac{d y}{y-4}=2 \frac{d x}{x}
$$

Therefore

$$
\ln (y-4)=2 \ln x+C
$$

or

$$
\frac{y-4}{x^{2}}=K
$$

2 Exam IB

In Problems $1-3$ solve the equations:

1 [25 pts.]

$$
\begin{aligned}
y^{\prime}+y \cot t & =\cos t \\
y\left(\frac{\pi}{2}\right) & =3
\end{aligned}
$$

Note: $\int \cot t d t=\ln (\sin t)+C$.
Solution: This equation is first order linear with $P(t)=\cot t$. Hence the integrating factor is

$$
e^{\int P(t) d t}=e^{\int \cot t d t}=e^{\ln (\sin t)}=\sin t
$$

Multiplying the orginal DE by cost we get

$$
\sin t y^{\prime}+y \cos x=\sin t \cos t
$$

or

$$
(y \sin t)^{\prime}=\sin t \cos t
$$

so that integrating both sides leads to

$$
y \sin t=\int \sin t \cos t d t=\frac{\sin ^{2} t}{2}+C \text { or }-\frac{\cos ^{2} t}{2}+C^{\prime}
$$

so

$$
y(t)=\frac{\sin t}{2}+\frac{C}{\sin t} \text { or } y(t)=-\frac{\cos ^{2} t}{2 \sin t}+\frac{C^{\prime}}{\sin t}
$$

The initial condition implies

$$
C=\frac{5}{2} \quad \text { or } \quad C^{\prime}=3
$$

Thus

$$
y(t)=\frac{\sin t}{2}+\frac{5}{2 \sin t} \text { or } y(t)=-\frac{\cos ^{2} t}{2 \sin t}+\frac{3}{\sin t}
$$

These two expressions are equivalent since

$$
y(t)=\frac{\sin ^{2} t}{2 \cos t}+\frac{2}{\cos t}=\frac{1-\cos ^{2} t}{2 \cos t}+\frac{2}{\cos t}=-\frac{\cos t}{2}+\frac{5}{2 \cos t}
$$

2 [25 pts.]

$$
\frac{d y}{d x}=-\frac{4 x y^{2}+6 x y}{4 x^{2} y+3 x^{2}+2}
$$

Solution: We rewrite the equation as

$$
\left(4 x y^{2}+6 x y\right) d x+\left(4 x^{2} y+3 x^{2}+2\right) d y=0
$$

Letting $M=4 x y^{2}+6 x y$ and $N=4 x^{2} y+3 x^{2}+2$, we see that $M_{y}=$ $8 x y+6 x=N_{x}$ so this equation is exact. The there exists a function $F(x, y)$ such that

$$
\begin{aligned}
& F_{x}=M=4 x y^{2}+6 x y \\
& F_{y}=N=4 x^{2} y+3 x^{2}+2
\end{aligned}
$$

Integrating the first equation with respect to x while holding y fixed leads to

$$
F=2 x^{2} y^{2}+3 x^{2} y+g(y)
$$

so

$$
F_{y}=4 x^{2} y+3 x^{2}+g^{\prime}(y)=N=4 x^{2} y+3 x^{2}+2
$$

Therefore $g^{\prime}(y)=2$, so that $g(y)=2 y$. Hence

$$
F=2 x^{2} y^{2}+3 x^{2} y+2 y
$$

and the solution is given by

$$
2 x^{2} y^{2}+3 x^{2} y+2 y=C
$$

3 [25 points]

$$
\frac{d x}{d t}-\frac{1}{t} x=3 t^{2} x^{3}
$$

Solution: We observe that the problem is a Bernoulli d.e. and first rewrite the equation as

$$
x^{-3} x^{\prime}-\frac{1}{t} x^{-2}=3 t^{2}
$$

Let $v=x^{-2}$. Then $v^{\prime}=-2 x^{-3} x^{\prime}$ and the DE can be written as

$$
-\frac{1}{2} v^{\prime}-\frac{1}{t} v=3 t^{2}
$$

or

$$
v^{\prime}+\frac{2}{t} v=-6 t^{2}
$$

Then

$$
e^{\int P d t}=e^{\int \frac{2}{t} d t}=e^{2 \ln t}=e^{\ln t^{2}}=t^{2}
$$

Multiplying the DE by this we get

$$
t^{2} v^{\prime}+2 t v=-6 t^{4}
$$

or

$$
\left(t^{2} v\right)^{\prime}=-6 t^{4}
$$

Integrating gives

$$
t^{2} v=-\frac{6}{5} t^{5}+C
$$

so that

$$
\frac{1}{x^{2}}=-\frac{6}{5} t^{3}+C t^{-2}
$$

$4 \mathbf{a}(15 \mathrm{pts}$.$) The differential equation$

$$
\begin{equation*}
y^{\prime \prime}-9 y=9 x^{2} \tag{*}
\end{equation*}
$$

has the general solution

$$
y(x)=c_{1} e^{-3 x}+c_{2} e^{3 x}-x^{2}-\frac{2}{9}
$$

Find the solution or solutions (if they exist) to $(*)$ with the initial conditions $y(0)=-\frac{1}{9}, y^{\prime}(0)=\frac{1}{3}$.

Solution:

$$
\begin{gathered}
y(0)=c_{1}+c_{2}-\frac{2}{9}=-\frac{1}{9} \\
y^{\prime}(x)=-3 c_{1} e^{-3 x}+3 c_{2} e^{3 x}+2 x \\
y^{\prime}(0)=-3 c_{1}+3 c_{2}=\frac{1}{3}
\end{gathered}
$$

Thus the equations for the constants are

$$
\begin{gathered}
c_{1}+c_{2}=\frac{1}{9} \\
-c_{1}+c_{2}=\frac{1}{9}
\end{gathered}
$$

Adding these yields $2 c_{2}=\frac{2}{9}$ or $c_{2}=\frac{1}{9}$ and thus $c_{1}=0$.

$$
y(x)=\frac{1}{9} c_{2} e^{3 x}-x^{2}-\frac{2}{9}
$$

4b (10 pts.) Solve the equation

$$
x^{2} \frac{d y}{d x}=2(y+4) \quad y \neq-4
$$

Solution: This equation is separable. Hence

$$
\frac{d y}{y+4}=\frac{2}{x^{2}} d x
$$

Therefore

$$
\ln |y+4|=-\frac{2}{x}+C
$$

