Exam II Solutions for Ma 2212004 Fall.

1 Exam IIA

1. Consider the differential equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=3 e^{2 x}+2 \sin x-8 e^{-x}
$$

a (10 pts.) Find the homogeneous solution of this equation.
Solution: The characteristic equation is

$$
p(r)=r^{2}-3 r-4=0
$$

This can be factored into

$$
(r-4)(r+1)=0
$$

so $r=4,-1$. The homogeneous solution is therefore

$$
y_{h}=C_{1} e^{4 x}+C_{2} e^{-x}
$$

b (25 pts.) Find a particular solution of this equation.
Solution: We find a particular solution corresponding to each term on the right hand side and then add them together.
$3 e^{2 x}$: Since $e^{2 x}$ is not a homogeneous solution and therefore $p(2) \neq 0$, then

$$
y_{p_{1}}=\frac{3 e^{2 x}}{p(2)}=\frac{3 e^{2 x}}{-6}=-\frac{1}{2} e^{2 x}
$$

$2 \sin x$: We consider the equation

$$
y^{\prime \prime}-3 y^{\prime}-4 y=2 \sin x
$$

and the companion equation

$$
v^{\prime \prime}-3 v^{\prime}-4 v=2 \cos x
$$

Multiplying the first equation by i, adding the two equations and letting $w=v+i y$ leads to

$$
w^{\prime \prime}-3 w^{\prime}-4 w=2(\cos x+i \sin x)=2 e^{i x}
$$

Since $p(i)=(i)^{2}-3 i-4=-5-3 i$

$$
w_{p}=-\frac{2 e^{i x}}{5+3 i}
$$

We need the imaginary part of w_{p}, which will be $y_{p_{2}}$. Now

$$
w_{p}=-\frac{2 e^{i x}}{5+3 i} \times \frac{5-3 i}{5-3 i}=-\frac{2(5-3 i)}{34} e^{i x}=-\frac{1}{17}(5-3 i)(\cos x+i \sin x)
$$

Thus

$$
y_{p_{2}}=\frac{1}{17}(3 \cos x-5 \sin x)
$$

Alternative solution for $y_{p_{2}}$: Let $y_{p_{2}}=A \cos x+B \sin x$. Differentiating twice and plugging into the DE leads to

$$
-A \cos x-B \sin x-3(-A \sin x+B \cos x)-4(A \cos x+B \sin x)=2 \sin x
$$

This implies

$$
\begin{aligned}
3 A-5 B & =2 \\
-5 A-3 B & =0
\end{aligned}
$$

Solution is: $\left\{A=\frac{3}{17}, B=-\frac{5}{17}\right\}$ which leads to the same $y_{p_{2}}$.
$-8 e^{-x}$: Since $p(-1)=0$ and $p^{\prime}(r)=2 r-3$ so that $p^{\prime}(-1)=-5 \neq 0$ we have that

$$
y_{p_{3}}=-\frac{8 x e^{-x}}{-5}=\frac{8}{5} x e^{-x}
$$

c (10 pts.) Give a general solution of this equation.
$y=y_{h}+y_{p_{1}}+y_{p_{2}}+y_{p_{3}}=C_{1} e^{4 x}+C_{2} e^{-x}-\frac{1}{2} e^{2 x}+\frac{1}{17}(3 \cos x-5 \sin x)+\frac{8}{5} x e^{-x}$
2 Consider the differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=x^{2} \ln x \quad x>0 \tag{*}
\end{equation*}
$$

2 a (10 pts.) Find two linearly independent solutions of the homogeneous equation corresponding to ($*$).

Solution: This is an Euler equation. The homogeneous equation is

$$
x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=0
$$

so that $p=-4$ and $q=6$. The equation for m is $m^{2}+(p-1) m+q=0$ or in this case

$$
m^{2}-5 m+6=(m-2)(m-3)=0
$$

The two linearly independent solutions are x^{2} and x^{3}.
2 b (10 pts.) Find the value of Wronskian of the two linearly independent solutions you found in 2a.

Solution:

$$
W\left[x^{2}, x^{3}\right]=\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|=x^{4}
$$

2c (25 pts.) Find a particular solution to (*).
Note:

$$
\begin{aligned}
\int \frac{(\ln x)^{n}}{x} d x & =\frac{(\ln x)^{n+1}}{n+1}+C \\
\int \frac{\ln x}{x^{n}} d x & =-\left[\frac{\ln x}{(n-1) x^{n-1}}+\frac{1}{(n-1)^{2} x^{n-1}}\right]+C \quad n \neq 0,1
\end{aligned}
$$

Solution: We use variation of parameters. Let

$$
y_{p}=v_{1} y_{1}+v_{2} y_{2}
$$

where $y_{1}=x^{2}$ and $y_{2}=x^{3}$. The two equations for v_{1}^{\prime} and v_{2}^{\prime} are

$$
\begin{aligned}
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2} & =0 \\
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime} & =\frac{f(x)}{a(x)}
\end{aligned}
$$

Since for our equation $f(x)=x^{2} \ln x$ and $a(x)=x^{2}$ these two equations become

$$
\begin{aligned}
v_{1}^{\prime} x^{2}+v_{2}^{\prime} x^{3} & =0 \\
2 v_{1}^{\prime} x+v_{2}^{\prime}\left(3 x^{2}\right) & =\frac{x^{2} \ln x}{x^{2}}=\ln x
\end{aligned}
$$

Then

$$
v_{1}^{\prime}=\frac{\left|\begin{array}{cc}
0 & x^{3} \\
\ln x & 3 x^{2}
\end{array}\right|}{\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|}=-\frac{\ln x}{x}
$$

and

$$
v_{2}^{\prime}=\frac{\left|\begin{array}{cc}
x^{2} & 0 \\
2 x & \ln x
\end{array}\right|}{\left|\begin{array}{cc}
x^{2} & x^{3} \\
2 x & 3 x^{2}
\end{array}\right|}=\frac{\ln x}{x^{2}}
$$

$$
\begin{aligned}
\int \frac{(\ln x)^{n}}{x} d x & =\frac{(\ln x)^{n+1}}{n+1}+C \\
\int \frac{\ln x}{x^{n}} d x & =-\left[\frac{\ln x}{(n-1) x^{n-1}}+\frac{1}{(n-1)^{2} x^{n-1}}\right]+C \quad n \neq 0,1
\end{aligned}
$$

Thus

$$
\begin{aligned}
& v_{1}=-\frac{(\ln x)^{2}}{2} \\
& v_{2}=-\left[\frac{\ln x}{x}+\frac{1}{x}\right]
\end{aligned}
$$

and

$$
y_{p}=-x^{2} \frac{(\ln x)^{2}}{2}-x^{3}\left[\frac{\ln x}{x}+\frac{1}{x}\right]
$$

Note: One need not include the $-x^{2}$ term in the above, since x^{2} is a homogeneous solution.

2d (10 pts.) Give a general solution to (*).

$$
y=y_{h}+y_{p}=C_{1} x^{2}+C_{2} x^{3}-x^{2} \frac{(\ln x)^{2}}{2}-x^{2} \ln x
$$

2 Exam IIB

1. Consider the differential equation

$$
y^{\prime \prime}+4 y^{\prime}-5 y=3 e^{2 x}+2 \cos x-8 e^{x}
$$

a (10 pts.) Find the homogeneous solution of this equation.
Solution: The characteristic equation is

$$
p(r)=r^{2}+4 r-5=0
$$

This can be factored into

$$
(r-1)(r+5)=0
$$

so $r=4,-1$. The homogeneous solution is therefore

$$
y_{h}=C_{1} e^{x}+C_{2} e^{-5 x}
$$

b (25 pts.) Find a particular solution of this equation.
Solution: We find a particular solution corresponding to each term on the right hand side and then add them together.
$3 e^{2 x}$: Since $e^{2 x}$ is not a homogeneous solution and therefore $p(2) \neq 0$, then

$$
y_{p_{1}}=\frac{3 e^{2 x}}{p(2)}=\frac{3 e^{2 x}}{7}=\frac{3}{7} e^{2 x}
$$

$2 \cos x$: We consider the equation

$$
u^{\prime \prime}+4 u^{\prime}-5 u=2 \cos x
$$

and the companion equation

$$
v^{\prime \prime}+4 v^{\prime}-5 v=2 \sin x
$$

Multiplying the first equation by i, adding the two equations and letting $w=u+i v$ leads to

$$
w^{\prime \prime}+4 w^{\prime}-5 w=2(\cos x+i \sin x)=2 e^{i x}
$$

Since $p(i)=(i)^{2}+4 i-5=-6+4 i$

$$
w_{p}=-\frac{2 e^{i x}}{6-4 i}
$$

We need the real part of w_{p}, u, which will be $y_{p_{2}}$. Now

$$
w_{p}=-\frac{2 e^{i x}}{6-4 i} \times \frac{6+4 i}{6+4 i}=-\frac{2(6+4 i)}{52} e^{i x}=-\frac{1}{13}(3+2 i)(\cos x+i \sin x)
$$

Thus

$$
y_{p_{2}}=-\frac{1}{13}(3 \cos x-2 \sin x)
$$

Alternative solution for $y_{p_{2}}$: Let $y_{p_{2}}=A \cos x+B \sin x$. Differentiating twice and plugging into the DE leads to
$-A \cos x-B \sin x+4(-A \sin x+B \cos x)-5(A \cos x+B \sin x)=2 \cos x$
This implies

$$
\begin{aligned}
& -6 A+4 B=2 \\
& -4 A-6 B=0
\end{aligned}
$$

, Solution is: $\left[A=-\frac{3}{13}, B=\frac{2}{13}\right]$ which leads to the same $y_{p_{2}}$.
$-8 e^{x}$: Since $p(1)=0$ and $p^{\prime}(r)=2 r+4$ so that $p^{\prime}(1)=6 \neq 0$ we have that

$$
y_{p_{3}}=\frac{8 x e^{x}}{6}=\frac{4}{3} x e^{x}
$$

c (10 pts.) Give a general solution of this equation.
$y=y_{h}+y_{p_{1}}+y_{p_{2}}+y_{p_{3}}=C_{1} e^{x}+C_{2} e^{-5 x}+\frac{3}{7} e^{2 x}+\frac{1}{13}(-3 \cos x+2 \sin x)+\frac{4}{3} x e^{x}$
2 Consider the differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=x^{3} \ln x \quad x>0 \tag{*}
\end{equation*}
$$

2 a (10 pts.) Find two linearly independent solutions of the homogeneous equation corresponding to ($*$).

Solution: This is an Euler equation. The homogeneous equation is

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0
$$

so that substitution of $y=x^{m}$ and simplifying gives

$$
m^{2}-4 m+3=(m-1)(m-3)=0
$$

The two linearly independent solutions are x and x^{3}.
2 b (10 pts.) Find the value of Wronskian of the two linearly independent solutions you found in 2a.

Solution:

$$
W\left[x^{2}, x^{3}\right]=\left|\begin{array}{cc}
x & x^{3} \\
1 & 3 x^{2}
\end{array}\right|=2 x^{3}
$$

2c (25 pts.) Find a particular solution to (*).
Note:

$$
\begin{aligned}
\int \frac{(\ln x)^{n}}{x} d x & =\frac{(\ln x)^{n+1}}{n+1}+C \\
\int x^{n} \ln x d x & =\frac{1}{n+1} x^{n+1} \ln x-\frac{1}{(n+1)^{2}} x^{n+1}+C
\end{aligned}
$$

Solution: We use variation of parameters. Let

$$
y_{p}=v_{1} y_{1}+v_{2} y_{2}
$$

where $y_{1}=x$ and $y_{2}=x^{3}$. Then

$$
\begin{aligned}
y_{p} & =x v_{1}+x^{3} v_{2} \\
y_{p}^{\prime} & =v_{1}+3 x^{2} v_{2}+x v_{1}^{\prime}+x^{3} v_{2}^{\prime}
\end{aligned}
$$

To simplify the next step and obtain the second equation, we set

$$
x v_{1}^{\prime}+x^{3} v_{2}^{\prime}=0 .
$$

Then

$$
y_{p}^{\prime \prime}=6 v_{2}+v_{1}^{\prime}+3 x^{2} v_{2} .
$$

Substitution into the d.e. produces our two equations for v_{1} and v_{2}.

$$
\begin{aligned}
x v_{1}^{\prime}+x^{3} v_{2}^{\prime} & =0 \\
x^{2} v_{1}^{\prime}+3 x^{4} v_{2}^{\prime} & =x^{3} \ln x
\end{aligned}
$$

Then multiplying the first equation by x and subtracting it from the second yields

$$
2 x^{4} v_{2}^{\prime}=x^{3} \ln x
$$

or

$$
v_{2}^{\prime}=\frac{1}{2 x} \ln x .
$$

Subtituting this into the first equation, we have

$$
v_{1}^{\prime}=-\frac{1}{2} x \ln x .
$$

Using the integrals provided, we have

$$
\begin{aligned}
& v_{1}=-\int x \ln x d x=-\frac{1}{2}\left(\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}\right) \\
& v_{2}=\int \frac{1}{x} \ln x d x=\frac{1}{4}(\ln x)^{2}
\end{aligned}
$$

and

$$
y_{p}=-x^{3}\left(\frac{1}{4} \ln x-\frac{1}{8}\right)+\frac{1}{4} x^{3}(\ln x)^{2}
$$

Note: One need not include the $\frac{1}{8} x^{3}$ term in the above, since x^{3} is a homogeneous solution, but variation of parameters picks out one particular solution.

2d (10 pts.) Give a general solution to (*).

$$
y=y_{h}+y_{p}=C_{1} x+C_{2} x^{3}-x^{3}\left(\frac{1}{4} \ln x\right)+\frac{1}{4} x^{3}(\ln x)^{2}
$$

