Exam III Problems for Ma 2212004 Fall.

1 Exam IIIA

1 (25 pts.) Use Laplace Transforms to solve

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0 \quad y(0)=1 \quad y^{\prime}(0)=-3
$$

2a ($\mathbf{1 0} \mathbf{p t s}$.) Use the definition of the Laplace transform to find $\mathcal{L}\{f(t)\}$ where

$$
f(t)=\left\{\begin{array}{cc}
0 & 0 \leq t<4 \\
2 e^{-3 t} & 4 \leq t<\infty
\end{array}\right.
$$

2b (15 pts.) Find $\mathcal{L}^{-1}\left\{\frac{(s+5)(s+3)}{s(s+2)(s+6)}\right\}$.
3 (25 pts.) Find the first six non-zero terms in the series solution near $x=0$ of the equation

$$
y^{\prime \prime}-x y=0
$$

Give the recurrence relation also.
4 (25 pts.) Find the eigenvalues and eigenfunctions for

$$
y^{\prime \prime}+(\lambda+4) y=0 \quad y(0)=y(1)=0
$$

Be sure to consider all values of λ.

2 Exam IIIB

1 (25 pts.) Use Laplace Transforms to solve

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0 \quad y(0)=2 \quad y^{\prime}(0)=-5
$$

2a(10 pts.) Use the definition of the Laplace transform to find $\mathcal{L}\{f(t)\}$ where

$$
f(t)=\left\{\begin{array}{lr}
0 & 0 \leq t<2 \\
4 e^{3 t} & 2 \leq t<\infty
\end{array}\right.
$$

2b (15 pts.) Find $\mathcal{L}^{-1}\left\{\frac{(s-5)(s-3)}{s(s-2)(s-6)}\right\}$.
3 (25 pts.) Find the first six non-zero terms in the series solution near $x=0$ of the equation

$$
y^{\prime \prime}-x^{2} y=0
$$

Also give the recurrence relation.
4 (25 pts.) Find the eigenvalues and eigenfunctions for

$$
y^{\prime \prime}+(\lambda+4) y=0 \quad y^{\prime}(0)=y^{\prime}(1)=0
$$

Be sure to consider all values of λ.

