Exam III Solutions for Ma 2212004 Fall.

1 Exam IIIA

1 (25 pts.) Use Laplace Transforms to solve

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0 \quad y(0)=1 \quad y^{\prime}(0)=-3
$$

Solution: We take the Laplace transform of both sides and get

$$
s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)+2 s \mathcal{L}\{y\}-2 y(0)+5 \mathcal{L}\{y\}=0
$$

Using the initial conditions we get

$$
\left(s^{2}+2 s+5\right) \mathcal{L}\{y\}=s-1
$$

or

$$
\mathcal{L}\{y\}=\frac{s-1}{s^{2}+2 s+5}
$$

We must find

$$
\begin{gathered}
\mathcal{L}^{-1}\left\{\frac{s-1}{s^{2}+2 s+5}\right\} \\
\frac{s-1}{s^{2}+2 s+5}=\frac{s-1}{(s+1)^{2}+4}=\frac{s+1}{(s+1)^{2}+4}+\frac{-2}{(s+1)^{2}+4}
\end{gathered}
$$

Therefore

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s-1}{s^{2}+2 s+5}\right\} & =\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+4}\right\}-\mathcal{L}^{-1}\left\{\frac{2}{(s+1)^{2}+4}\right\} \\
& =e^{-t} \cos 2 t-e^{-t} \sin t
\end{aligned}
$$

2a ($\mathbf{1 0} \mathbf{p t s}$.) Use the definition of the Laplace transform to find $\mathcal{L}\{f(t)\}$ where

$$
f(t)=\left\{\begin{array}{cc}
0 & 0 \leq t<4 \\
2 e^{-3 t} & 4 \leq t<\infty
\end{array}\right.
$$

Solution:
$\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=2 \int_{4}^{\infty} e^{-(s+3) t} d t=-\left.2 \lim _{R \rightarrow \infty} \frac{e^{-(s+3) t}}{s+3}\right|_{4} ^{R}=-\frac{2}{s+3} \lim _{R \rightarrow \infty}\left[e^{-(s+3) R}-\right.$
2b (15 pts.) Find $\mathcal{L}^{-1}\left\{\frac{(s+5)(s+3)}{s(s+2)(s+6)}\right\}$.
Solution:

$$
\frac{(s+5)(s+3)}{s(s+2)(s+6)}=\frac{A}{s}+\frac{B}{s+2}+\frac{C}{s+6}
$$

Multiplying by s and setting $s=0$ gives

$$
A=\frac{5(3)}{2(6)}=\frac{5}{4}
$$

Similarly multiplying by $(s+2)$ and setting $s=-2$ gives

$$
B=\frac{3(1)}{-2(4)}=-\frac{3}{8}
$$

and multiplying by $(s+6)$ and setting $s=-6$ gives

$$
C=\frac{(-1)(-3)}{(-6)(-4)}=\frac{1}{8}
$$

Thus

$$
\frac{(s+5)(s+3)}{s(s+2)(s+6)}=\left(\frac{5}{4}\right) \frac{1}{s}-\left(\frac{3}{8}\right) \frac{1}{s+2}+\left(\frac{1}{8}\right) \frac{1}{s+6}
$$

so

$$
\mathcal{L}^{-1}\left\{\frac{(s+5)(s+3)}{s(s+2)(s+6)}\right\}=\frac{5}{4}-\left(\frac{3}{8}\right) e^{-2 t}+\left(\frac{1}{8}\right) e^{-6 t}
$$

3 (25 pts.) Find the first six non-zero terms in the series solution near $x=0$ of the equation

$$
y^{\prime \prime}-x y=0
$$

Give the recurrence relation also.
Solution:

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
y^{\prime} & =\sum_{n=1}^{\infty} a_{n}(n) x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} a_{n}(n)(n-1) x^{n-2}
\end{aligned}
$$

Substituting into the DE gives

$$
\sum_{n=2}^{\infty} a_{n}(n)(n-1) x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n+1}=0
$$

We shift the second summation by letting $k-2=n+1$ or $n=k-3$ and get, since $n=0 \Rightarrow k=3$

$$
\sum_{n=2}^{\infty} a_{n}(n)(n-1) x^{n-2}-\sum_{k=3}^{\infty} a_{k-3} x^{k-2}=0
$$

Replacing n and k by m yields

$$
\text { (2) (1) } a_{2}+\sum_{m=3}^{\infty}\left\{a_{m}(m)(m-1)-a_{m-3}\right\} x^{m-2}=0
$$

Thus $a_{2}=0$ and we have the recurrence relation

$$
a_{m}=\frac{1}{m(m-1)} a_{m-3} \quad m=3,4, \ldots
$$

Thus

$$
\begin{aligned}
a_{3} & =\frac{1}{6} a_{0} \\
a_{4} & =\frac{1}{12} a_{1} \\
a_{5} & =0 \\
a_{6} & =\frac{1}{30} a_{3}=\frac{1}{180} a_{0} \\
a_{7} & =\frac{1}{42} a_{4}=\frac{1}{(42)(12)} a_{1}
\end{aligned}
$$

Thus

$$
\begin{aligned}
y(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\cdots \\
& =a_{0}\left[1+\frac{1}{6} x^{3}+\frac{1}{180} x^{6}+\cdots\right]+a_{1}\left[x+\frac{1}{12} x^{4}+\frac{1}{(42)(12)} x^{7}+\cdots\right]
\end{aligned}
$$

4 (25 pts.) Find the eigenvalues and eigenfunctions for

$$
y^{\prime \prime}+(\lambda+4) y=0 \quad y(0)=y(1)=0
$$

Be sure to consider all values of λ.
Solution: The characteristic equation is

$$
r^{2}+(\lambda+4)=0
$$

so

$$
r= \pm \sqrt{-\lambda-4}
$$

There are 3 cases to consider:
I. $-\lambda-4>0$, that is $\lambda<-4$. Let $\alpha^{2}=-\lambda-4, \alpha \neq 0$. Then $r= \pm \alpha$ and $y(x)=c_{1} e^{\alpha x}+c_{2} e^{-\alpha x}$. The boundary conditions imply

$$
\begin{aligned}
& y(0)=c_{1}+c_{2}=0 \quad \text { or } c_{1}=-c_{2} \\
& y(1)=c_{1} e^{\alpha}+c_{2} e^{-\alpha}=0 \text { or } c_{1}\left(e^{\alpha}-e^{-\alpha}\right)=0
\end{aligned}
$$

Since $e^{\alpha}-e^{-\alpha} \neq 0$, we see that $c_{1}=c_{2}=0$, so $y=0$ and there are no eigenvalues for $\lambda<-4$.
II. $\lambda=-4$. In this case $r=0$ is a repeated root so $y(x)=c_{1}+c_{2} x$. The boundary conditions imply $c_{1}=c_{2}$, so $y=0$ and $\lambda=-4$ is not an eigenvalue.
III. $-\lambda-4<0$, that is $\lambda>-4$. Let $\beta^{2}=-(-\lambda-4)=\lambda+4$. Then $r= \pm \beta i$ and $y(x)=c_{1} \sin \beta x+c_{2} \cos \beta x$. The boundary conditions imply

$$
\begin{aligned}
& y(0)=c_{2}=0 \\
& y(1)=c_{1} \sin \beta=0
\end{aligned}
$$

Thus

$$
\beta=n \pi, \quad n=1,2,3, \ldots
$$

so the eigenvalues are

$$
\lambda_{n}=\beta^{2}-4=n^{2} \pi^{2}-4, \quad n=1,2,3, \ldots
$$

and the eigenfunctions are

$$
y_{n}(x)=A_{n} \sin (n \pi x)
$$

2 Exam IIIB

1 (25 pts.) Use Laplace Transforms to solve

$$
y^{\prime \prime}-2 y^{\prime}+5 y=0 \quad y(0)=2 \quad y^{\prime}(0)=-5
$$

Solution: We take the Laplace transform of both sides and get

$$
s^{2} \mathcal{L}\{y\}-s y(0)-y^{\prime}(0)-2 s \mathcal{L}\{y\}+2 y(0)+5 \mathcal{L}\{y\}=0
$$

Using the initial conditions we get

$$
\left(s^{2}+2 s+5\right) \mathcal{L}\{y\}=2 s-9
$$

or

$$
\mathcal{L}\{y\}=\frac{2 s-9}{s^{2}-2 s+5}
$$

We must find

$$
\mathcal{L}^{-1}\left\{\frac{2 s-9}{s^{2}-2 s+5}\right\}
$$

$$
\frac{2 s-9}{s^{2}-2 s+5}=\frac{2 s-9}{(s-1)^{2}+4}=\frac{2(s-1)}{(s-1)^{2}+4}+\frac{-7}{(s-1)^{2}+4}
$$

Therefore

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{2 s-9}{s^{2}-2 s+5}\right\} & =2 \mathcal{L}^{-1}\left\{\frac{s-1}{(s-1)^{2}+2^{2}}\right\}-\frac{7}{2} \mathcal{L}^{-1}\left\{\frac{2}{(s-1)^{2}+2^{2}}\right\} \\
& =2 e^{t} \cos 2 t-\frac{7}{2} e^{t} \sin 2 t
\end{aligned}
$$

2a ($\mathbf{1 0} \mathbf{p t s}$.) Use the definition of the Laplace transform to find $\mathcal{L}\{f(t)\}$ where

$$
f(t)=\left\{\begin{array}{lr}
0 & 0 \leq t<2 \\
4 e^{3 t} & 2 \leq t<\infty
\end{array}\right.
$$

Solution:
$\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=4 \int_{2}^{\infty} e^{-(s-3) t} d t=-\left.4 \lim _{R \rightarrow \infty} \frac{e^{-(s-3) t}}{s-3}\right|_{2} ^{R}=-\frac{4}{s-3} \lim _{R \rightarrow \infty}\left[e^{-(s-3) R}-\right.$
2b (15 pts.) Find $\mathcal{L}^{-1}\left\{\frac{(s-5)(s-3)}{s(s-2)(s-6)}\right\}$.
Solution:

$$
\frac{(s-5)(s-3)}{s(s-2)(s-6)}=\frac{A}{s}+\frac{B}{s-2}+\frac{C}{s-6}
$$

or

$$
(s-5)(s-3)=A(s-2)(s-6)+B s(s-6)+C s(s-2)
$$

Setting $s=0$ gives

$$
A=\frac{(-5)(-3)}{(-2)(-6)}=\frac{5}{4}
$$

Similarly setting $s=2$ gives

$$
B=\frac{(-3)(-1)}{(2)(-4)}=-\frac{3}{8}
$$

and setting $s=6$ gives

$$
C=\frac{(1)(3)}{(6)(4)}=\frac{1}{8}
$$

Thus

$$
\frac{(s-5)(s-3)}{s(s-2)(s-6)}=\left(\frac{5}{4}\right) \frac{1}{s}-\left(\frac{3}{8}\right) \frac{1}{s-2}+\left(\frac{1}{8}\right) \frac{1}{s-6}
$$

so

$$
\mathcal{L}^{-1}\left\{\frac{(s-5)(s-3)}{s(s-2)(s-6)}\right\}=\frac{5}{4}-\left(\frac{3}{8}\right) e^{2 t}+\left(\frac{1}{8}\right) e^{6 t}
$$

3 (25 pts.) Find the first six non-zero terms in the series solution near $x=0$ of the equation

$$
y^{\prime \prime}-x^{2} y=0
$$

Also give the recurrence relation.
Solution:

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
y^{\prime} & =\sum_{n=1}^{\infty} a_{n}(n) x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} a_{n}(n)(n-1) x^{n-2}
\end{aligned}
$$

Substituting into the DE gives

$$
\sum_{n=2}^{\infty} a_{n}(n)(n-1) x^{n-2}-\sum_{n=0}^{\infty} a_{n} x^{n+2}=0
$$

We shift the first summation by letting $k=n-2$ or $n=k+2$ and get, since $n=2 \Rightarrow k=0$

$$
\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}-\sum_{n=0}^{\infty} a_{n} x^{n+2}=0
$$

We shift the second summation by letting $k=n+2$ or $n=k-2$ and get, since $n=0 \Rightarrow k=2$

$$
\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}-\sum_{k=2}^{\infty} a_{k-2} x^{k}=0
$$

We observe that the first series has two more terms than the second, pull them out and combine the rest to obtain

$$
\text { (2) (1) } a_{2}+(3)(2) a_{3} x+\sum_{k=2}^{\infty}\left\{a_{k+2}(k+2)(k+1)-a_{k-2}\right\} x^{k}=0
$$

Thus $a_{2}=0$ and $a_{3}=0$ and we have the recurrence relation

$$
a_{k+2}=\frac{1}{(k+2)(k+1)} a_{m-2} \quad k=2,3,, \ldots
$$

Thus

$$
\begin{aligned}
& a_{4}=\frac{1}{4 \cdot 3} a_{0} \\
& a_{5}=\frac{1}{5 \cdot 4} a_{1} \\
& a_{6}=a_{7}=0 \\
& a_{8}=\frac{1}{8 \cdot 7} a_{4}=\frac{1}{8 \cdot 7 \cdot 4 \cdot 3} a_{0} \\
& a_{9}=\frac{1}{9 \cdot 8} a_{5}=\frac{1}{9 \cdot 8 \cdot 5 \cdot 4} a_{1}
\end{aligned}
$$

Thus

$$
\begin{aligned}
y(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\cdots \\
& =a_{0}\left[1+\frac{1}{4 \cdot 3} x 4+\frac{1}{8 \cdot 7 \cdot 4 \cdot 3} x^{8}+\cdots\right]+a_{1}\left[x+\frac{1}{5 \cdot 4} x^{5}+\frac{1}{9 \cdot 8 \cdot 5 \cdot 4} x^{9}+\cdots\right]
\end{aligned}
$$

4 (25 pts.) Find the eigenvalues and eigenfunctions for

$$
y^{\prime \prime}+(\lambda+4) y=0 \quad y^{\prime}(0)=y^{\prime}(1)=0
$$

Be sure to consider all values of λ.
Solution: The characteristic equation is

$$
r^{2}+(\lambda+4)=0
$$

so

$$
r= \pm \sqrt{-\lambda-4}
$$

There are 3 cases to consider:
I. Two real roots, corresponding to a positive discriminant. $-\lambda-4>0$, that is $\lambda<-4$. Let $\alpha^{2}=-\lambda-4, \alpha \neq 0$. Then $r= \pm \mu$ and $y(x)=$ $c_{1} e^{\mu x}+c_{2} e^{-\mu x}$ and $y^{\prime}(x)=c_{1} \mu e^{\mu x}-c_{2} \mu e^{-\mu x}$. The boundary conditions imply

$$
\begin{aligned}
& y^{\prime}(0)=c_{1}-c_{2}=0 \text { or } c_{1}=c_{2} \\
& y^{\prime}(1)=\mu\left(c_{1} e^{\alpha}-c_{2} e^{-\alpha}\right)=0 \text { or } c_{1} \mu\left(e^{\alpha}-e^{-\alpha}\right)=0
\end{aligned}
$$

Since $e^{\alpha}-e^{-\alpha} \neq 0$, we see that $c_{1}=c_{2}=0$, so $y=0$ and there are no eigenvalues for $\lambda<-4$.
II. A single repeated real root correspnding to the discriminant having value zero. $\lambda=-4$. In this case $r=0$ is a repeated root so $y(x)=$ $c_{1}+c_{2} x$ and $y^{\prime}(x)=c_{2}$. The boundary conditions imply $c_{2}=0$, so $y=c$ is a solution and $\lambda=-4$ is an eigenvalue.
III.Complex roots corresponding to a negative discriminant. $-\lambda-4<0$, that is $\lambda>-4$. Let $\mu^{2}=-(-\lambda-4)=\lambda+4$. Then $r= \pm \mu i$ and $y(x)=$ $c_{1} \cos \mu x+c_{2} \sin \mu x$ and $y^{\prime}(x)=-c_{1} \mu \sin \mu x+c_{2} \cos \mu x$. The boundary conditions imply

$$
\begin{aligned}
y^{\prime}(0) & =c_{2}=0 \\
y(1) & =c_{1} \mu \sin \mu=0
\end{aligned}
$$

Thus

$$
\mu_{n}=n \pi, \quad n=1,2,3, \ldots
$$

so the eigenvalues are

$$
\lambda_{n}=\mu_{n}^{2}-4=n^{2} \pi^{2}-4, \quad n=1,2,3, \ldots
$$

and the eigenfunctions are

$$
y_{n}(x)=A_{n} \cos (n \pi x), \quad n=1,2,3, \ldots
$$

