Name:	Lecure Section	
IDN:	Recitation Section	
Ma 221	Exam II A Solutions	05F
I pledge my honor that I have abided by the Stevens I	Honor System.	
You may not use a calculator, cell phone, shown to obtain full credit. Credit will no you finish, be sure to sign the pledge.		
Score on Problem #1a		
#1b		
#1c		
#2a		
#2b		
#2c		
#2d		
# 3		
Total Score		

Name:		

Lecure Section ____

IDN:_____

Recitation Section ____

1. Consider the differential equation

$$y'' + 4y = 3e^{2x} + \sin 2x + 8x^2$$

1 a (7 **pts**.) Find the homogeneous solution of this equation.

Solution: The characteristic equation is $p(r) = r^2 + 4 = 0$, so $r = \pm 2i$. Thus

$$y_h = c_1 \sin 2x + c_2 \cos 2x$$

1 b (25 **pts**.) Find a particular solution of this equation.

Solution: We first find a particular solution for $3e^{2x}$. Since $p(2) = 8 \neq 0$, then

$$y_{p_1} = \frac{3e^{2x}}{8}$$

To find a particular solution for $\sin 2x$, there are two approaches:

Approach 1: (using complex variables)

$$y'' + 4y = \sin 2x$$

and a companion equation

$$v'' + 4v = \cos 2x$$

We multiply the first equation by i and add it to the second to get

$$w'' + 4w = e^{2ix}$$

where w = iy + v. Then since p(2i) = 0 and $p'(2i) = 4i \neq 0$

$$w_{p_2} = \frac{xe^{2ix}}{4i} = -\frac{ix}{4}(\cos 2x + i\sin 2x)$$

Thus

$$y_{p_2} = imagw_{p_2} = -\frac{x\cos 2x}{4}.$$

Approach 2: (without complex variables)

$$y'' + 4y = \sin 2x$$

Since $\sin 2x$ is a solution of the homogeneous equation we let

$$y_{p_2} = x(A\sin 2x + B\cos 2x)$$

Then,
$$y'_{p_2} = \frac{d}{dx} \{ x(A\sin 2x + B\cos 2x) \} = B\cos 2x + A\sin 2x + x(2A\cos 2x - 2B\sin 2x)$$

and $y''_{p_2} = \frac{d}{dx} \{ B\cos 2x + A\sin 2x + x(2A\cos 2x - 2B\sin 2x) \} =$

$$4A\cos 2x - 4B\sin 2x + x(-4B\cos 2x - 4A\sin 2x)$$

Substituting into the DE:

$$4A\cos 2x - 4B\sin 2x + x(-4B\cos 2x - 4A\sin 2x) + 4x(A\sin 2x + B\cos 2x) = \sin 2x$$

$$\Rightarrow 4A\cos 2x - 4B\sin 2x = \sin 2x$$

So,
$$4A = 0 \Rightarrow A = 0$$

$$-4B = 1 \Rightarrow B = -\frac{1}{4}$$

So,

Name:____

Lecure Section ____

IDN:

Recitation Section _____

$$y_{p_2} = -\frac{1}{4}x\cos 2x$$

To find a particular solution for $8x^2$ we let

$$y_{p_3} = a_0 + a_1 x + a_2 x^2$$

Then $y'_{p_3} = a_1 + 2a_2x$ and $y''_{p_3} = 2a_2$ so the DE implies

$$2a_2 + 4a_0 + 4a_1x + 4a_2x^2 = 8x^2$$

Then $a_2 = 2$, $a_1 = 0$ and $a_0 = -\frac{1}{2}a_2 = -1$, so

$$y_{p_3} = -1 + 2x^2$$

Therefore

$$y_p = y_{p_1} + y_{p_2} + y_{p_3} = \frac{3e^{2x}}{8} - \frac{x\cos 2x}{4} - 1 + 2x^2$$

1 c (5 pts.) Give a general solution of this equation.

$$y = y_h + y_p = c_1 \sin 2x + c_2 \cos 2x + \frac{3e^{2x}}{8} - \frac{x \cos 2x}{4} - 1 + 2x^2$$

2 Consider the differential equation

$$y'' + 2y' + y = t^5 e^{-t} (*)$$

2 a (8 pts.) Find two linearly independent solutions of the homogeneous equation corresponding to (*) and give the homogeneous solution.

Solution: The characteristic polynomial is $p(r) = r^2 + 2r + 1 = (r+1)^2$ so r = -1 is a repeated root and e^{-t} and te^{-t} are LI solutions.

$$y_h = c_1 e^{-t} + c_2 t e^{-t}$$

2 b (**10 pts**.) Find the value of the Wronskian of the two linearly independent solutions you found in 2a.

$$W[e^{-t}, te^{-t}] = \begin{vmatrix} e^{-t} & te^{-t} \\ -e^{-t} & e^{-t} - te^{-t} \end{vmatrix} = e^{-2t}$$

2c (25 **pts**.) Use Variation of Parameters to find a particular solution to (*).

$$y_p = v_1 e^{-t} + v_2 t e^{-t}$$

The two equations for v_1' and v_2' are

$$v_1'e^{-t} + v_2'te^{-t} = 0$$
$$-v_1'e^{-t} + v_2'(e^{-t} - te^{-t}) = t^5e^{-t}$$

IDN:_____

Recitation Section _____

$$v_1' = \frac{\begin{vmatrix} 0 & te^{-t} \\ t^5 e^{-t} & e^{-t} - te^{-t} \end{vmatrix}}{e^{-2t}} = -t^6$$

$$v_2' = \frac{\begin{vmatrix} e^{-t} & 0 \\ -e^{-t} & t^5 e^{-t} \end{vmatrix}}{e^{-2t}} = t^5$$

Thus

$$v_1 = -\frac{t^7}{7}$$

$$v_2 = \frac{t^6}{6}$$

or

$$v_1 = -\int \frac{y_2 f(t)}{aW[y_1, y_2]} dt = -\int \frac{t e^{-t} (t^5 e^{-t})}{1(e^{-2t})} dt = -\int t^6 dt = -\frac{t^7}{7}$$

$$v_2 = \int \frac{y_1 f(t)}{aW[y_1, y_2]} dt = \int \frac{e^{-t} (t^5 e^{-t})}{1(e^{-2t})} dt = \int t^5 dt = \frac{t^6}{6}$$

so

$$y_p = -\frac{t^7}{7}e^{-t} + \frac{t^7}{6}e^{-t} = \frac{1}{42}t^7e^{-t}$$

2 d (5 pts.) Give a general solution to (*).

$$y = y_h + y_p = c_1 e^{-t} + c_2 t e^{-t} + \frac{1}{42} t^7 e^{-t}$$

 $y'' + 2y' + y = t^5 e^{-t}$, Exact solution is: $y(t) = \frac{1}{42} t^7 e^{-t} + C_1 e^{-t} + C_2 t e^{-t}$

3 (15 pts.) Solve the equation

$$x^2y'' + 2xy' + y = 0$$

Solution: Since p = 2 and q = 1, the indicial equation is

$$r^2 + (2-1)r + 1 = r^2 + r + 1 = 0$$

$$r = \frac{-1 \pm \sqrt{1 - 4}}{2} = \frac{-1 \pm i\sqrt{3}}{2}$$

We get complex conjugate roots with the real part $\alpha = -\frac{1}{2}$ and the imaginary part $\beta = \frac{\sqrt{3}}{2}$. Thus

$$y = c_1 x^{-\frac{1}{2}} \sin\left(\frac{\sqrt{3}}{2} \ln x\right) + c_2 x^{-\frac{1}{2}} \cos\left(\frac{\sqrt{3}}{2} \ln x\right)$$