\qquad

IDN: \qquad Recitation Section \qquad
Ma 221
Exam II B
05F
I pledge my honor that I have abided by the Stevens Honor System.

You may not use a calculator, cell phone, or computer while taking this exam. All work must be shown to obtain full credit. Credit will not be given for work not reasonably supported. When you finish, be sure to sign the pledge.

Score on Problem \#1a \qquad
\#1b \qquad
\#1c \qquad
\#2a \qquad
\#2b \qquad
\#2c \qquad
\#2d \qquad
\#3 \qquad

Total Score
\qquad

IDN: \qquad Recitation Section \qquad

1. Consider the differential equation

$$
y^{\prime \prime}+9 y=4 e^{3 x}+\cos 3 x-9 x^{2}
$$

$\mathbf{1} \mathbf{a}$ (7 pts.) Find the homogeneous solution of this equation.
$\mathbf{1} \mathbf{b}$ (25 pts.) Find a particular solution of this equation.
$\mathbf{1} \mathbf{c}$ (5 pts.) Give a general solution of this equation.
\qquad

IDN:
Recitation Section \qquad
2 Consider the differential equation

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+y=t^{6} e^{t} \tag{*}
\end{equation*}
$$

$\mathbf{2 a (8} \mathbf{~ p t s .)}$ Find two linearly independent solutions of the homogeneous equation corresponding to $(*)$ and give the homogeneous solution.
$\mathbf{2} \mathbf{b}$ (10 pts.) Find the value of the Wronskian of the two linearly independent solutions you found in 2a.
\qquad

IDN:
Recitation Section \qquad
2c (25 pts.) Use Variation of Parameters to find a particular solution to $(*)$.
$2 \mathbf{d}$ (5 pts.) Give a general solution to (*).
\qquad

IDN:
Recitation Section \qquad
3 ($\mathbf{1 5} \mathbf{p t s}$.) Solve the equation

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=0
$$

