Name:	Lecure Section		
IDN:	Recitation Section		
Ma 221	Exam IIIA Solutions 05F		
I pledge my honor that I have abided by	the Stevens Honor System.		
•	c, cell phone, or computer while taking this exam. All work credit. Credit will not be given for work not reasonably be sure to sign the pledge.		
Score on Problem #1			
#2			
#3			
#4			
Total Score			
NI A A III CT I			

Note: A table of Laplace Transforms is given at the end of the exam.

Name:

Lecure Section ____

IDN:____

Recitation Section _____

IDN:______

1 (25 pts.) Use Laplace Transforms to solve

$$y'' - y = e^{2t}$$
 $y(0) = 0$ $y'(0) = 1$

Solution: Taking the Laplace transform of both sides of the DE yields

$$\mathcal{L}\{y''\} - \mathcal{L}\{y\} = \frac{1}{s-2}$$

or

$$s^2 \mathcal{L}{y} - sy(0) - y'(0) - \mathcal{L}{y} = \frac{1}{s-2}$$

Thus

$$(s^2-1)\mathcal{L}{y} = \frac{1}{s-2} + 1 = \frac{s-1}{s-2}$$

SO

$$\mathcal{L}\{y\} = \frac{s-1}{(s-2)(s^2-1)} = \frac{1}{(s+1)(s-2)}$$

Now

$$\frac{1}{(s+1)(s-2)} = \frac{A}{s+1} + \frac{B}{s-2}$$

and $A = -\frac{1}{3}$ and $B = \frac{1}{3}$ so

$$\mathcal{L}\{y\} = -\left(\frac{1}{3}\right)\left(\frac{1}{s+1} - \frac{1}{s-2}\right)$$

Thus

$$y(t) = -\frac{1}{3}e^{-t} + \frac{1}{3}e^{2t}$$

2a (10 pts.) Use the definition of the Laplace transform to find $\mathcal{L}\{t\}$. Assume s > 0.

Solution:

$$\mathcal{L}\{t\} = \int_{0}^{\infty} t e^{-st} dt = \lim_{R \to \infty} \int_{0}^{R} t e^{-st} dt$$

Integrating by parts with u = t and $dv = e^{-st}$ we have du = dt and $v = -\frac{1}{s}e^{-st}$ so

$$\mathcal{L}\left\{t\right\} = \lim_{R \to \infty} \left[-\frac{1}{s} t e^{-st} \right]_0^R - \int_0^R \left(-\frac{1}{s} e^{-st} \right) dt \right] = \lim_{R \to \infty} \left[-\frac{1}{s} R e^{-sR} - \frac{1}{s^2} (e^{-st})_0^R \right] = \lim_{R \to \infty} \left[-\frac{1}{s} R e^{-sR} - \frac{1}{s^2} (e^{-sR}) + \frac{1}{s^2} \right] = \frac{1}{s} \left[-\frac{1}{s} R e^{-sR} - \frac{1}{s^2} (e^{-sR}) + \frac{1}{s^2} \right] = \frac{1}{s} \left[-\frac{1}{s} R e^{-sR} - \frac{1}{s^2} (e^{-sR}) + \frac{1}{s^2} \right] = \frac{1}{s} \left[-\frac{1}{s} R e^{-sR} - \frac{1}{s^2} (e^{-sR}) + \frac{1}{s^2} \right] = \frac{1}{s} \left[-\frac{1}{s} R e^{-sR} - \frac{1}{s^2} (e^{-sR}) + \frac{1}{s^2} \right] = \frac{1}{s} \left[-\frac{1}{s} R e^{-sR} - \frac{1}{s^2} (e^{-sR}) + \frac{1}{s^2} \right] = \frac{1}{s} \left[-\frac{1}{s} R e^{-sR} - \frac{1}{s^2} (e^{-sR}) + \frac{1}{s^2} \right] = \frac{1}{s} \left[-\frac{1}{s} R e^{-sR} - \frac{1}{s^2} (e^{-sR}) + \frac{1}{s^2} (e^{-sR}) + \frac{1}{s^2} (e^{-sR}) + \frac{1}{s} (e^{-sR}) + \frac{1}{s}$$

2b (15 **pts**.) Find
$$\mathcal{L}^{-1} \left\{ \frac{s+1}{s^2+4s+9} \right\}$$
.

Solution:

$$\frac{s+1}{s^2+4s+9} = \frac{s+1}{s^2+4s+4+5} = \frac{s+1}{(s+2)^2+5} = \frac{s+2-1}{(s+2)^2+5} = \frac{s+2}{(s+2)^2+(\sqrt{5})^2} - \frac{1}{\sqrt{5}} \frac{\sqrt{5}}{(s+2)^2+(\sqrt{5})^2}$$

SO

$$\mathcal{L}^{-1}\left\{\frac{s+1}{s^2+4s+13}\right\} = e^{-2t}\cos\left(\sqrt{5}t\right) - \frac{1}{\sqrt{5}}e^{-2t}\sin\left(\sqrt{5}t\right)$$

3 (25 pts.) Find the first \underline{six} non-zero terms in the series solution near x = 0 of the equation

$$y'' - xy' + 2y = 0$$

Give the recurrence relation also.

IDN:

Recitation Section _____

Solution:

$$y = \sum_{n=0}^{\infty} a_n x^n$$

$$y' = \sum_{n=1}^{\infty} a_n(n) x^{n-1}$$

$$y'' = \sum_{n=2}^{\infty} a_n(n) (n-1) x^{n-2}$$

Substituting into the DE we have

$$\sum_{n=2}^{\infty} a_n(n)(n-1)x^{n-2} - \sum_{n=1}^{\infty} a_n(n)x^n + 2\sum_{n=0}^{\infty} a_nx^n = 0$$

We shift the first sum in the above equation by letting k = n - 2 or n = k + 2 and combine the second and third sums. This yields

$$\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1)x^k + \sum_{n=1}^{\infty} a_n(2-n)x^n + 2a_0 = 0$$

Replacing k and n by m we have

$$\sum_{m=1}^{\infty} \{a_{m+2}(m+2)(m+1) + a_m(2-m)\} x^m + 2(1)a_2 + 2a_0 = 0$$

Thus $a_2 = -a_0$ and

$$a_{m+2}(m+2)(m+1) + a_m(2-m) = 0$$

or

$$a_{m+2} = \frac{m-2}{(m+2)(m+1)} a_m$$
 for $m = 1, 2, 3, ...$

Thus

$$a_{3} = \frac{1}{3(2)}a_{1} = \frac{1}{6}a_{1}$$

$$a_{4} = 0$$

$$a_{5} = \frac{1}{5(4)}a_{3} = \frac{1}{5(4)(3)(2)}a_{1} = \frac{1}{120}a_{1}$$

$$a_{6} = 0$$

$$a_{7} = \frac{3}{7(6)}a_{5} = \frac{1}{7(6)(5)(4)(2)}a_{1} = \frac{1}{1680}a_{1}$$

Hence

$$y = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$
$$= a_0 (1 - x^2) + a_1 \left(x + \frac{1}{6} x^3 + \frac{1}{120} x^5 + \frac{1}{1680} x^7 + \cdots \right)$$

SNB check: y'' - xy' + 2y = 0, Series solution is: $\{y(0) + xy'(0) - x^2y(0) - \frac{1}{6}x^3y'(0) - \frac{1}{120}x^5y'(0) - \frac{1}{1680}x^7y'(0) + O(x^9)\}$

4 (25 **pts**.) Find the eigenvalues and eigenfunctions for

Name:______ Lecure Section ____

IDN:_____ Recitation Section ____

$$y'' + \lambda y = 0$$
 $y(0) = y'(\pi) = 0$

Be sure to consider all values of λ .

Solution: There are three cases to consider.

I. $\lambda < 0$. Let $\lambda = -\alpha^2$. Then we have

$$y'' - \alpha^2 y = 0$$

so

$$v(x) = c_1 e^{\alpha x} + c_2 e^{-\alpha x}$$

$$y(0) = c_1 + c_2 = 0$$

so $c_1 = -c_2$ and $y(x) = c_1(e^{\alpha x} - e^{-\alpha x})$. Hence $y'(x) = c_1(\alpha)(e^{\alpha x} + e^{-\alpha x})$.

$$y'(\pi) = c_1(\alpha)(e^{\alpha\pi} + e^{-\alpha\pi}) = 0$$

Thus $c_1 = c_2 = 0$, and y = 0 and there are no eigenvalues for $\lambda < 0$.

II. $\lambda = 0$. The $y(x) = c_1 x + c_2$. y(0) = 0 implies that $c_2 = 0$, whereas $y'(\pi) = c_1 = 0$. Hence no eigenvalues for $\lambda = 0$.

III. $\lambda > 0$. Let $\lambda = \beta^2$, where $\beta \neq 0$. Then we have

$$y'' + \beta^2 y = 0$$

and $y(x) = c_1 \cos \beta x + c_2 \sin \beta x$. $y(0) = c_1 = 0$. Thus $y(x) = c_2 \sin \beta x$ so $y'(x) = c_2 \beta \cos \beta x$. $y'(\pi) = 0$ implies that

$$\cos \beta \pi = 0$$

so

$$\beta\pi = (2n+1)\frac{\pi}{2}$$
 $n = 0, 1, 2, ...$

Thus $\beta = \frac{2n+1}{2}$ and the eigenvalues are

$$\lambda = \beta^2 = \left(\frac{2n+1}{2}\right)^2$$
 $n = 0, 1, 2, ...$

with corresponding eigenfunctions

$$y_n(x) = a_n \sin\left(\frac{2n+1}{2}\right) x \quad n = 0, 1, 2, ...$$

Name:	Lecure Section
IDN:	Recitation Section

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s)$		
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s^n}$	$n \ge 1$	s > 0
e^{at}	$\frac{1}{s-a}$		s > a
sin bt	$\frac{b}{s^2 + b^2}$		s > a
$\cos bt$	$\frac{s}{s^2 + b^2}$		s > a
$e^{at}f(t)$	$\mathcal{L}\{f\}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		

$$\int u dv = uv - \int v du$$