Name:		Lecturer
Lecture Section: _		
Ma 221 07S		Exam IB Solutions
	I have abided by the Stevens Honor	
shown to obtain f	_ ·	mputer while taking this exam. All work must be iven for work not reasonably supported. When
Score on Problem	#1	
	#2	
	#3	
	#4	

Total Score

Name:

Lecturer ____

Lecture Section: _____

Solve the equations:

$$e^{y}dx + (xe^{y} + 4y)dy = 0$$

Solution: Here $M = e^y$ and $N = xe^y + 4y$, so $M_y = N_x = e^y$ and this equation is exact. Thus there exists f(x, y) such that

$$f_X = M = e^y$$

$$f_y = N = xe^y + 4y$$

Therefore

$$f(x,y) = xe^y + g(y)$$

so

$$f_y = xe^y + g'(y) = N = xe^y + 4y$$

Therefore

$$g'(y) = 4y \Rightarrow g(y) = 2y^2 + C$$

and

$$f(x,y) = xe^y + g(y) = xe^y + 2y^2 + C$$

so the solution is

$$xe^y + 2y^2 = K$$

2 [25 pts.]

$$y' + \frac{1}{x}y = \frac{4}{x};$$
 $y(1) = 1$

Solution: This is first order linear.

Integrating Factor $I(x) = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$. Mutliplying the

equation by x, we get

$$xy' + y = \frac{d}{dx}(xy) = 4$$

Then

$$xy = 4x + c$$

or

$$y = 4 + \frac{c}{x}$$

The IC implies

$$1 = 4 + c$$

so c = -3 and

$$y = 4 - \frac{3}{x}$$

SNB check:

$$y' + \frac{1}{x}y = \frac{4}{x}$$

$$y(1) = 1$$

Lecture Section: _____

, Exact solution is: $\left\{\frac{1}{x}(4x-3)\right\}$

3 [25 pts.]

$$xy^2 - y'x^2 = 0$$
; $y(e) = 1$

Solution:

$$x^2 \frac{dy}{dx} = xy^2$$

or

$$\frac{dy}{y^2} = \frac{dx}{x}$$

Integrating we get

$$-\frac{1}{y} = \ln x + c$$

The initial condition implied

$$-2 = c$$

so

$$-\frac{1}{y} = \ln x - 2$$

4b [25 pts.]

$$y' + xy = xy^3$$

Solution: This is a Bernoulli equation.

$$y^{-3}y' + xy^{-2} = x$$

Let $z = y^{-2}$ so that $z' = -2y^{-3}y'$. The DE becomes

$$\frac{z'}{-2} + xz = x$$

or

$$z' - 2xz = -2x$$

Then $e^{\int -2xdx} = e^{-x^2}$. Multiply the DE by this to get

$$e^{-x^2}z' - 2xe^{-x^2}z = -2xe^{-x^2}$$

or

$$\frac{d}{dx}\left(e^{-x^2}z\right) = -2xe^{-x^2}$$

Integrating we get

$$e^{-x^2}z = e^{-x^2} + c$$

and therefore

$$y^{-2} = 1 + ce^{x^2}$$

or

$$y = 0$$

a trivial solution