Name:	Lecure Section
-------	----------------

Ma 221	Exam IIIB Solutions 08S				
I pledge my honor that I have abided by the Stevens Honor System.					
must be shown t	e a calculator, cell phone, or computer while taking this exam. All word obtain full credit. Credit will not be given for work not reasonably n you finish, be sure to sign the pledge.				
Score on Problem	#1				
	#2				
	#3				
	#4				
Total Score					

Note: A table of Laplace Transforms is given at the end of the exam.

1 (25 pts.) Use Laplace Transforms to solve

$$y'' + 2y' - 8y = e^t$$
 $y(0) = 0$ $y'(0) = 1$

Solution: Taking the Laplace Transform of the DE leads to

$$s^{2}\mathcal{L}\{y\} - sy(0) - y'(0) + 2s\mathcal{L}\{y\} - y(0) - 8\mathcal{L}\{y\} = \frac{1}{s-1}$$

So

$$(s^2 + 2s - 8)\mathcal{L}{y} = \frac{1}{s-1} + 1 = \frac{s}{s-1}$$

Therefore

$$\mathcal{L}\{y\} = \frac{s}{(s-1)(s+4)(s-2)}$$

Using partial fractions we have

$$\frac{s}{(s-1)(s+4)(s-2)} = \frac{A}{s-1} + \frac{B}{s+4} + \frac{C}{s-2}$$

Solving we have

$$A = \frac{1}{(5)(-1)} = -\frac{1}{5}$$
 $B = \frac{-4}{(-5)(-6)} = -\frac{2}{15}$ $C = \frac{2}{(1)(6)} = \frac{1}{3}$

Therefore

$$\mathcal{L}\{y\} = \frac{s}{(s-1)(s+4)(s-2)} = -\frac{1}{5}\frac{1}{s-1} - \frac{2}{15}\frac{1}{s+4} + \frac{1}{3}\left(\frac{1}{s-2}\right)$$

and

$$y(t) = -\frac{1}{5}e^{t} - \frac{2}{15}e^{-4t} + \frac{1}{3}e^{2t}$$

$$y'' + 2y' - 8y = e^t$$

SNB check:

$$y(0) = 0$$
 , Exact solution is : $y(t) = -\frac{1}{5}e^t + \frac{1}{3}e^{2t} - \frac{2}{15}e^{-4t}$

2a (15 pts.) Find the partial fractions break down of

$$\frac{4s^2 - 4s + 30}{s(s^2 - 2s + 10)}$$

Solution:

$$\frac{4s^2 - 4s + 30}{s(s^2 - 2s + 10)} = \frac{A}{s} + \frac{Bs + C}{s^2 - 2s + 10}$$

Multiplying by s and setting s = 0 yields

$$\frac{30}{10} = 3 = A$$

Thus

$$\frac{4s^2 - 4s + 30}{s(s^2 - 2s + 10)} = \frac{3}{s} + \frac{Bs + C}{s^2 - 2s + 10}$$

Setting s = 1 and s = -1 we have

$$\frac{4-4+30}{1(1-2+10)} = \frac{3}{1} + \frac{B+C}{9}$$
$$\frac{4+4+30}{-1(1+2+10)} = \frac{3}{-1} + \frac{-B+C}{13}$$

or

$$\frac{30}{9} = 3 + \frac{B+C}{9}$$
$$\frac{38}{-13} = -3 + \frac{-B+C}{13}$$

or

$$30 = 27 + B + C$$
$$-38 = -39 - B + C$$

Adding we have

$$-8 = -12 + 2C$$

so C = 2. Thus B = -C + 3 = 1 and

$$\frac{4s^2 - 4s + 30}{s(s^2 - 2s + 10)} = \frac{3}{s} + \frac{s + 2}{s^2 - 2s + 10}$$

2b (10 **pts**.) Find

$$\mathcal{L}^{-1}\left\{\frac{4s^2-4s+30}{s(s^2-2s+10)}\right\}$$

Solution:

$$\mathcal{L}^{-1}\left\{\frac{4s^2 - 4s + 30}{s(s^2 - 2s + 10)}\right\} = \mathcal{L}^{-1}\left\{\frac{3}{s}\right\} + \mathcal{L}^{-1}\left\{\frac{s + 2}{s^2 - 2s + 10}\right\}$$

$$= 3 + \mathcal{L}^{-1}\left\{\frac{s + 2}{(s - 1)^2 + 9}\right\}$$

$$= 3 + \mathcal{L}^{-1}\left\{\frac{s - 1}{(s - 1)^2 + 9} + \frac{3}{(s - 1)^2 + 9}\right\}$$

$$= 3 + \mathcal{L}^{-1}\left\{\frac{s - 1}{(s - 1)^2 + 9}\right\} + \mathcal{L}^{-1}\left\{\frac{3}{(s - 1)^2 + 9}\right\}$$

$$= 3 + e^t \cos 3t + e^t \sin 3t$$

3 (25 pts.) Find the first \underline{six} non-zero terms in the series solution near x = 0 of the equation

$$y'' - 3x^2y = 0$$

Be sure to give the recurrence relation. Indicate the two linearly independent solutions and give the first *six* nonzero terms of the solution.

Solution:

$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$

$$y'(x) = \sum_{n=1}^{\infty} a_n(n) x^{n-1}$$

$$y''(x) = \sum_{n=2}^{\infty} a_n(n) (n-1) x^{n-2}$$

Substituting into the DE we have

$$\sum_{n=2}^{\infty} a_n(n)(n-1)x^{n-2} - 3\sum_{n=0}^{\infty} a_n x^{n+2} = 0$$

Shifting the first sum by letting n - 2 = k + 2 or n = k + 4 leads to

$$\sum_{k=-2}^{\infty} a_{k+4}(k+4)(k+3)x^{k+2} - 3\sum_{n=0}^{\infty} a_n x^{n+2} = 0$$

Replacing k and n by m we have

$$\sum_{m=-2}^{\infty} a_{m+4}(m+4)(m+3)x^{m+2} - 3\sum_{m=0}^{\infty} a_m x^{m+2} = 0$$

or

$$a_2(2)(1) + a_3(3)(2)x + \sum_{m=0}^{\infty} [a_{m+4}(m+4)(m+3) - 3a_m]x^{m+2} = 0$$

Therefore $a_2 = a_3 = 0$ and the recurrence relation is

$$a_{m+4} = \frac{3}{(m+4)(m+3)} a_m \quad m = 0, 1, 2, \dots$$

Hence

$$a_4 = \frac{3}{(4)(3)} a_0 \quad a_5 = \frac{3}{(5)(4)} a_1$$

$$a_6 = 0 \quad a_7 = 0$$

$$a_8 = \frac{3}{8(7)} a_4 = \frac{9}{8(7)(4)(3)} a_0$$

$$a_9 = \frac{3}{9(8)} a_5 = \frac{9}{9(8)(5)(4)} a_1$$

Thus

$$y(x) = a_0 \left[1 + \frac{3}{(4)(3)} x^4 + \frac{9}{8(7)(4)(3)} x^8 + \cdots \right] + a_1 \left[x + \frac{3}{(5)(4)} x^5 + \frac{9}{9(8)(5)(4)} x^9 + \cdots \right]$$

4 (25 pts.) Find the eigenvalues and eigenfunctions for

$$y'' + \lambda y = 0$$
; $y(0) = 0$, $y'(3) = 0$

Be sure to consider all values of λ .

Solution:

Case I: $\lambda < 0$. Let $\lambda = -\alpha^2$ where $\alpha \neq 0$. Then the DE is

$$y'' - \alpha^2 y = 0$$

Name:_____

Lecure Section ____

which has the solutions $y(x) = c_1 e^{\alpha x} + c_2 e^{-\alpha x}$. Also $y'(x) = c_1 \alpha e^{\alpha x} - c_2 \alpha e^{-\alpha x}$. The BCs imply

$$y(0) = c_1 + c_2 = 0$$

$$y'(3) = c_1 \alpha e^{3\alpha} - c_2 \alpha e^{-3\alpha}$$

The first equation implies that $c_1 = -c_2$ and the second equation then becomes

$$c_1\alpha(e^{3\alpha}+e^{-3\alpha})=0$$

Thus $c_1 = 0$ and hence $c_2 = 0$ and therefore the only solution for this case is y = 0. There are no negative eigenvalues.

Case II: $\lambda = 0$. Then y = Ax + B. y(0) = B = 0 and y'(3) = A = 0. Thus zero is not an eigenvalue.

Case III: $\lambda > 0$. Let $\lambda = \beta^2$ where $\beta \neq 0$. The DE is $y'' + \beta^2 y = 0$ so

$$y(x) = c_1 \sin \beta x + c_2 \cos \beta x$$

The condition y(0) = 0 implies that $c_2 = 0$ so $y(x) = c_1 \sin \beta x$. The BC y'(3) = 0 leads to

$$c_1 \cos 3\beta = 0$$

and

$$3\beta = (2n+1)\frac{\pi}{2}$$
 $n = 0, 1, 2, ...$

so the eigenvalues are

$$\lambda = \beta^2 = (2n+1)^2 \frac{\pi^2}{36}$$
 $n = 0, 1, 2, ...$

The eigenfunctions are

$$y_n(x) = a_n \sin \left[(2n+1) \frac{\pi}{6} x \right] \quad n = 0, 1, 2, ...$$

Name:_____ Lecure Section ____

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f\}(s)$		
$\frac{t^{n-1}}{(n-1)!}$	$\frac{1}{s}$	$n \ge 1$	<i>s</i> > 0
e^{at}	$\frac{1}{s-a}$		s > a
sin bt	$\frac{b}{s^2 + b^2}$		<i>s</i> > 0
$\cos bt$	$\frac{s}{s^2 + b^2}$		<i>s</i> > 0
$e^{at}f(t)$	$\mathcal{L}\{f\}(s-a)$		
$t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} (\mathcal{L}\{f\}(s))$		